㈠ 碳钢焊接后在多高温度下会开裂
1.碳钢焊接后,如果没抄有施袭加非常大的外加应力,在800度的温度下焊缝决不会开裂.
2.若保证焊缝不开裂,第一就是组对焊接构件时绝不能让焊缝承担过大的外力;第二是焊接高碳钢时需要预热;第三是露天焊接要设挡风屏障;第四是高碳钢与中碳钢焊缝的冷却速度不能太快,冷却速度太快有时产生裂纹.
㈡ 热处理过程中工件开裂有哪些原因
1.受热复不均匀,膨胀不均匀
2.加热温度过制高,出现过烧
3.淬火冷却速度过快
4.组织不均匀,存在成分偏析
5.材料本身存在裂纹,加热中裂纹扩大开裂
暂时我就想到了这些,要是考试的时候写这些,十分的题能的六七分没问题
如果是技术上需要的话,那就复杂多了,有很多原因
比如,锻造中不均匀,热处理中,温度控制不正常,淬火油失效,等等扥等
㈢ 不锈钢 与碳钢焊接为什么会长出现裂纹,请高手指点该怎么做
不锈钢
与碳钢焊接为什么会长出现裂纹,请高手指点该怎么做:
低碳钢与奥氏体不锈钢之间的焊接在这类异种钢焊接接头中,由于其工作条件有晶间腐蚀和应力腐蚀问题,通常选择E309型的焊接材料,但当这种焊接接头处于温度较高的环境(设计温度≥315℃)时,为了防止在工作过程中发生碳的迁移,通常采用镍合金含量较高的焊接材料(如Inconel182焊条等)。
低合金钢与奥氏体不锈钢之间的焊接低合金钢通常都是在温度较高(设计温度≥315℃)的条件下使用,这种与奥氏体不锈钢相焊的异种接头,通常要求抗高温蠕变、控制碳迁移以及高温抗氧化能力,可采用镍基合金焊接材料(如Inconel82焊丝和Inconel182焊条等)。但是,在氢系统中,由于强烈的氢腐蚀作用,采用的焊接材料不同,焊后得到的焊缝化学成分和金相组织不同,从而影响接头在工作过程中氢脆化而引起的剥离裂纹敏感性。当采用镍基焊条(如Inconel182焊条等),焊后焊缝靠近低合金钢一侧生成的单一奥氏体,多是与熔合线平行的粗大晶粒,且不含铁素体,这种组织容易产生剥离裂纹。而采用E309焊材,焊后焊缝靠近低合金一侧形成奥氏体和铁素体的混合组织,这种组织不易产生裂纹。
㈣ 耐高温塑胶料高底温后会裂开是什么原因
耐高温耐高温的塑料,主要有聚四氟乙烯,能耐260℃的温度;改性聚苯内乙烯,热变形温容度176~205℃;增强型线型聚脂,热变形温度240℃;聚酰亚胺,热变形温度360℃;改性聚苯醚PPO,热变形温度190℃。
㈤ 为什么高碳钢在淬火时容易出现开裂
高碳钢过热淬火容易开裂,是因为奥氏体晶粒粗大和马氏体碳含量过高而引起形成显微裂纹敏感度增大的缘故。为防止变形和开裂,过共析钢通常采用不完全淬火获得隐晶马氏体,不易产生显微裂纹。
㈥ 钢从高温快速冷却到水中后,易产生开裂的原因``
钢有厚度 极速冷却,内外降温不均,即收缩速度不同,其二钢非单质铁,加剧收缩程度的差别,因此钢从高温快速冷却到水中后,易产生开裂。
仅供参考
㈦ 为什么在高温下硬质合金会裂
焊接啊!!
当前,在烧结的产品中,陶瓷或金属塑胶的使用量
不断增长.塑胶的特性使得混合物能够按所用注模机
器类型的标准进行编排.此外,在粉末注模(PIM)领域
已经进行了大量的研究,也有很多这方面的出版物,这
意味着PIM正在快速成长,并已经在工业中有了自己
的位置,可以看作是一个工艺分支.粉末注模尤其适
用于陶瓷和金属部分的系列产品.该技术可以应用于
很多领域,诸如医疗,航空航天部门,汽车工业和电力
工程等
粉末注模的工艺流程可分为3个步骤.首先,在
调配阶段,用一种热塑性的粘合剂对陶瓷或金属粉末
进行调配.然后就可以对高密度聚合物填料(填料含
量大约占容积的70%)进行注模处理.用这种方法生
产的注模部分称为"原型部分",在下一个阶段(脱离
阶段)中还必须把粘合剂从其中移走.粘合剂可以通
过使用热萃取或者是借助于催化剂,溶剂萃取除去,这
部分称为"已脱离原型部分".陶瓷或金属部分的实际
产品是在随后高达2000℃的烧结阶段中形成的.这
部分很致密,其密度值为理论值的98%一99.9%.
由于应用注模方法进行生产的部件受到几何形状
复杂性的制约,因此最好是在"原型部分"阶段就把这
些部件按简单的几何形状进行编排.对于塑胶材料,
传统的串焊(series welding)即可满足该要求,这样,使
得塑胶的应用成为现实.该文中塑胶作为一种加工助
剂不仅可用于注模,还用于在脱离和烧结之前,连接几
个独立的部分.另外一个正面效应是可能生产出复合
材料〔例如熔钢和建筑用钢).
料,选一种聚烯烃做氧化铝的粘合剂,聚缩醛(树脂)做
特种钢的粘合剂.用这些材料为样品注模,然后用不
同的方法进行焊接和数据对照.在注模之后和烧结之
前的原型部分阶段进行焊接.塑胶焊接的方法是应用
高密度聚合物填料进行连接,在原型致密阶段,会产生
非匀质性焊缝,但可在随后的烧结阶段消失.山于陶
瓷或金属部分的几何形状比较复杂,所以导致炸接的
特点受到限制,在试验中应用3种不同的焊接方法
第1种是热具焊接,原理是所焊物体局部接触电热焊
具并在其高温下连接在一起.第2种是热辐射焊接,
热辐射焊接并不接触所焊部位,它通过一种红外辐射
的方法传热.第3种是振动焊接,振动焊接'j上述两
种方法相反,它通过摩擦使所焊部位成为部分可塑状
态,从而两物体在压力的作用下连接在一起,可以相互
带动对方移动.由于原型部分表现出一定的脆性材料
特征,因此要注意确保连接压力很低并且焊接部位在
此阶段没有受损.热具焊接的温度大约为180℃,对
于低熔点的陶瓷原料(118℃)和金属原料(164 Y:)是
适用的.
1原型部分的塑焊
选一种氧化铝(A1z 0s)和一种特种钢料做试验材
2试验结果
陶瓷和金属焊接的结果是可以调换的,以特种钢
复合物或特种钢为例进行讨论.不同焊接方法不同阶
段的焊接强度(二,)和焊接系数(人)见表1焊接系数
(f)表示焊接强度和原材料强度的比例.
由于表中的数据只是在最初的可行性研究阶段得
出的,因此如果振动焊接可行,考虑到其优越性,那么
与其他方法相比,它的缺点是可以忽略的.通过试验
发现,在原型部分阶段,有个明显的特点是强度很低,
这主要是由于填料的含量很高,大约占到容积的70%,
表1特种钢焊接强度与焊接系数
连接阶段
热具焊接强度
『1/MPa
焊接系数
天1
热辐射焊接强度
o ,/MPa
焊接系数
f
振动焊接强度
,W,/MPa
焊接系数
f,
刀住王
6行了1
八,气
原型紧密阶段
已脱离原型紧密阶段
烧结阶段
一_92090.980.67
0.950.67
0.960.970.79
万方数据
诊
46 焊接2004(1)
蒸
于典型的PIM产品,通常靠外的区域紧凑而无孔,在焊
接部件的内侧则形成一个有一些小孔的组织,孔的数
量在很大程度上由烧结条件决定
3结论
拱
这些填充物并没有起到提高强度的作用,反而会降低
横截面的承载能力,这就需要大大降低焊接压力.在
已脱离阶段结构已经固定,在烧结前温度大概能达到
1 000℃,这使得强度有较大的提高.采用振动焊接方
法.在烧结阶段时,连原型部分阶段产生的焊缝非匀质
问题都已经在粘合中消失了.
烧结后的部件具有较高的强度,高温焊接时其强
度为母材强度的96%,热辐射焊接时其强度为母材强
度的97%.振动焊接此数值达到了80%,据估计采用
振动焊接方法的该数值还会有较大的提高.采用高温
焊接方法在已脱离原型阶段时焊接系数超过了1.0,其
原因可以归结为在焊接中形成的焊珠.由于焊接时材
料的损失,还要考虑到两方面的影响,一方面截面面积
增加,另一方面由于焊珠和焊接部件之间的缺口—
通常是断裂的开始点,缺口效应会逐渐显现出来.对
总的来说,采用粉末注模〔PIM)的方法来生产部件
具有很高的实用价值,同传统的单边多极焊接相比,它
使生产成本大幅降低.尤其是在高强度的陶瓷和金属
粉末注模过程中,采用传统的单边多极焊接方法,其后
处理工艺费用很高,往往占生产成本的90%.目前的
研究结果表明,将来用粉末注模(PIM)方法生产复合材
料也是切实可行的(例如将硬质的金属外壳与具有延
展性的内核相连接),这必A1会开发出更多的应用领域.
(收稿日期2003 11 10)
作者简介:白海欣,1978年出生,硕士研究生〕
350 MW机组自动主汽门门前后疏水管管座更换
河北省电力研究院(石家庄市050021)张东文冯砚厅李中伟杨建菊
华能上安电厂2#机2#自动主汽门体为美国GE公
司生产的350 MW机组超高温高压汽轮机配套部件.
在2001年10月中级检修中,通过光谱检验发现该主
汽门的门前门后两个疏水管座错用为碳钢.
将错用材质的两个管座全部更换,2#机2#自动主
汽门体材质为Crmov钢,壁厚约为160 mm;更换后门
前后两管座材质为12Cr1Mo\,规格冲89二,30..
,焊接性分析
2#自动主汽门门体材质为低合金耐热铸钢,管座
材质为低合金耐热钢.由于门体壁厚刚性大,施焊处
埋难度较大,为避免焊后焊缝及热影响区淬火,产生冷
裂,焊前必须预热,温度升高到200℃方可进行施焊.
该处的疏水管座与门体采用单V形坡日,全焊透形式,
手工电弧焊.
2焊前准备
2,1短管去除
采用气割方法将管座割除,注意距离根部10 mm,
再用切割片角磨机打磨至根部.打磨后进行磁粉探伤
检查.探伤检查应无裂纹等缺陷.
2.2坡口加工
将主汽门体与管座联接处周围原角焊缝(焊肉)打
磨掉,并将周围50 m.处打磨干净,露出金属光泽.并
经无损探伤检验,无任何缺陷进人下一道工序
加工管座,按图1要求加工管座的坡口,坡口经探
伤检验合格后进行焊接操作.
2.3焊接材料
焊接材料选用R31焊丝,规格币2. 5 mm; 8317焊
条,规格巾3.2 mm,焊材应进行复验.
2.4主汽门体大局部(周围)预热
将主汽门门体管座范围内沿主汽门按整圈用远红
外加热器包裹起来,L下宽度即高度按400一500 mm
考虑,用铁丝固定,在加热范围内按3600布置4支热电
祸.预留币89 mm管座处待焊,这个部位还需用大号
焊炬进行300℃以上的预热,预热升温速度不控,但需
要恒温时间,主要目的是为了均温,当内壁温度达到
150℃时,即可进行管座角焊缝的焊接.
㈧ 热处理淬火裂纹产生的主要原因是什么呢
原因有多种抄,锻件袭是否有缺陷、退火是否达到要求、淬火、退火操作是否存在问题等等,都可能造成淬裂。
在淬火过程中,当淬火产生的巨大应力大于材料本身的强度时,便会导致裂纹产生。淬火裂纹往往是在马氏体转变开始进行后不久产生的,裂纹的分布则没有一定的规律,但一般容易在工件的棱角槽口、截面突变处形成。 在显微镜下观察到的淬火开裂,可能是沿晶开裂,也可能是穿晶开裂;有的呈放射状,也有的呈单独线条状或呈网状。 因在马氏体转变区的冷却过快而引起的淬火裂纹,往往是穿晶分布,而且裂纹较直,周围没有分枝的小裂纹。 因淬火加热温度过高而引起的淬火裂纹,都是沿晶分布,裂纹尾端尖细,并呈现过热特征:结构钢中可观察到粗针状马氏体;工具钢中可观察到共晶或角状碳化物。 表面脱碳的高碳钢工件,淬火后容易形成网状裂纹。这是因为,表面脱碳层在淬火冷却时的体积胀大比未脱碳的心部小,表面材料受心部膨胀的作用而被拉裂呈网状。
㈨ 钢材折弯90度时开裂,具体是哪些方面的原因啊
屈服强度不够。含碳量比较高,比较硬。
屈服强度:是金属材料发生屈版服现象时的屈服极权限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
屈服强度:是材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的材料,规定应变值为0.2%所对应的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。