『壹』 焊接性是什么
焊接性(Weldability),是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。 一种金属,如果能用较普通又简便的焊接工艺获得优质接头,则认为这种金属具有良好的焊接性能。 钢材焊接性能的好坏主要取决于它的化学组成。而其中影响最大的是碳元素,也就是说金属含碳量的多少决定了它的可焊性。钢中的其他合金元素大部分也不利于焊接,但其影响程度一般都比碳小得多。钢中含碳量增加,淬硬倾向就增大,塑性则下降,容易产生焊接裂纹。通常,把金属材料在焊接时产生裂纹的敏感性及焊接接头区力学性能的变化作为评价材料可焊性的主要指标。所以含碳量越高,可焊性越差。所以,常把钢中含碳量的多少作为判别钢材焊接性的主要标志。含碳量小于0.25%的低碳钢和低合金钢,塑性和冲击韧性优良,焊后的焊接接头塑性和冲击韧性也很好。焊接时不需要预热和焊后热处理,焊接过程普通简便,因此具有良好的焊接性。随着含碳量增加,大大增加焊接的裂纹倾向,所以,含碳量大于0.25%的钢材不应用于制造锅炉、压力容器的承压元件。
金属材料的焊接性可以通过计算碳当量、斜Y型坡口焊接裂纹试验、热影响区最高硬度试验、热模拟试验、高温蠕变试验以及时效试验等进行验证。
『贰』 什么是塑性温度区对那些材料焊接时有影响
塑性温度区就是塑性温度范围,出了这个范围,材料塑性发生突然下降。
对于低、中碳钢焊接时有影响。
『叁』 焊接术语接头的塑性和韧性是什么意思
钢材焊接性能的好坏主要取决于它的化学组成。而其中影响最大的是碳元素,也就是说金属含碳量的多少决定了它的可焊性。钢中的其他合金元素大部分也不利于焊接,但其影响程度一般都比碳小得多。钢中含碳量增加,淬硬倾向就增大,塑性则下降,容易产生焊接裂纹。通常,把金属材料在焊接时产生裂纹的敏感性及焊接接头区力学性能的变化作为评价材料可焊性的主要指标。所以含碳量越高,可焊性越差。所以,常把钢中含碳量的多少作为判别钢材焊接性的主要标志。含碳量小于0.25%的低碳钢和低合金钢,塑性和冲击韧性优良,焊后的焊接接头塑性和冲击韧性也很好。焊接时不需要预热和焊后热处理,焊接过程普通简便,因此具有良好的焊接性。随着含碳量增加,大大增加焊接的裂纹倾向,所以,含碳量大于0.25%的钢材不应用于制造锅炉、压力容器的承压元件。
『肆』 焊接应力与变形的产生原因是什么
焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织版是产生焊接应力权和变形的根本原因。
当焊接引起的不均匀温度场尚未消失时,焊件中的这种应力和变形称为瞬态焊接应力和变形;焊接温度场消失后的应力和变形称为残余焊接应力和变形。在没有外力作用的条件下,焊接应力在焊件内部是平衡的。
焊接应力和变形在一定条件下会影响焊件的功能和外观,因此是设计和制造中必须考虑的问题。
(4)什么是焊缝的塑性扩展阅读:
焊接变形的预防和控制:
焊接变形的大小与焊缝的尺寸、数量和布置有关。
首先从设计上合理地确定焊缝的数量、坡口的形状和尺寸,并恰当地安排焊缝的位置,对于减少变形十分重要。
在工艺上采用高能量密度的焊接方法和小线能量的工艺参量,例如多层焊对减少焊缝的纵、横向收缩以及由此引起的挠曲和失稳变形是有利的。
但多层焊对角变形不利。采用合理的装配、焊接顺序、反变形和刚性固定可以减少焊接变形。
参考资料来源:网络—焊接应力和变形
『伍』 焊接线能量概念及对焊缝性能的影响是什么
对焊后的冷却速率会产生直接影响,从而对焊后的热影响区的组织和性能产内生影响。当其他参数相容同时,焊接线能量较大时,焊后的冷却速率会较慢。
1、焊接线能量又称焊接热输入。
2、他的影响是焊缝的强度、抗裂性能、韧性、塑性等指标。
『陆』 铝热焊获得到的焊缝金属组织细小,韧性,塑性较好!错在那里
你要理解了铝热焊的焊接过程就明白错在哪里了。
铝热焊是利用金属氧化物和铝之间的铝热专属反应所产生的过热,熔敷金属来加热工件的填充接头而完成焊接的一种方法。铝热焊的工作原理是焊接前在坩埚中装以热剂,用高温火柴点燃从而引起剧烈的化学反应,当热剂钢水和熔渣分离,将热剂钢水浇注到铸型中,冷却凝固后,形成铝热剂焊接接头,完成焊接。
从定义就能看出,铝热焊的焊缝是由钢水冷却凝固而成,类似铸造工艺方法,铸造大家都知道的,组织、性能均较差,不可能组织细小,韧性塑性都较好。相反,组织粗大,韧性塑性都较差
『柒』 焊缝金属的过烧,是碳元素的大量烧损,焊接接头的强度怎样塑性和韧性怎样
焊缝金属的过烧,不仅使碳元素的大量氧化,而且主要也使硅锰等有益元素烧损。有益元素烧损会使焊接接头"失强",所有的力学性能都会降低,即强度、硬度以及塑性和韧性都下降。
但是,由于焊接材料的的设计都考虑了补充元素烧损,因此,对于普通结构钢焊接,接头的性能变化并不大。
『捌』 焊接应力是怎么产生的
焊接中.焊缝处温度迅速升高,体积膨胀。热影响区温度低,阻碍焊缝膨胀,内结果焊缝处产生压应力,热影容响区产生拉应力。但此时焊缝处于塑性状态,焊缝被压应力墩粗,松弛了此应力。
焊后冷却时,热影响区冷却速度快,很快进入弹性状态,焊缝处温度高,处于塑性状态。这时焊缝收缩,较热影响区收缩慢,焊缝阻碍热影响区收缩,焊缝仍受压应力,影响区受拉应力。但焊缝处于塑性状态,焊缝的塑性墩粗,松弛了此应力。
热影响区温度不断降低,冷却速度也变慢,当焊缝的冷却速度高于热影响区时,焊缝收缩较快,焊缝的收缩受到热影响区阻碍,应力方向发生了转变,焊缝受拉应力,热影响区受压应力。当焊缝和热影响区都进入弹性状态时,因焊缝温度高,冷却速度快,收缩量大,热影响区温度低,冷却速度低,收缩量小,焊缝收缩受到热影响区阻碍,结果焊缝受拉应力,热影响区受压应力。此时没有塑性变形,这一对压应力,随着温度的降低,焊缝收缩受阻碍越来越大,拉应力也越来越大,直至室温,拉应力可近似于屈服极限。
豪克能焊接应力消除设备能有效消除焊应力80%以上,防止焊接开裂变形问题!!
『玖』 钢材的焊接特性受什么影响
1、材料包括母材和焊接材料。与母材有关的影响因素有母材的化学成分,冶炼轧制状态、热处理状态、组织状态和力学性能等,其中尤以化学成分影响最大。
2、化学成分是钢材焊接性的主要影响因素。如果钢材只是依靠合金元素实现固溶强化,焊接过程中就容易使焊缝金属及热影响区与母材有良好的匹配性能。如果钢材为较复杂的合金系,并通过热处理、变形加工等方式实现固溶强化,则不易获得与母材完全匹配的焊缝金属或接头
3、钢的冶炼方法、轧制工艺及热处理状态等,对焊接性也都有不同程度的影响。例如,近年来研发的各种CF钢(抗裂钢)、TMCP钢(控轧钢)等,就是通过精炼提纯、控制轧制工艺等手段,以使其焊接性有重大改善。
4、焊接材料直接参与焊接过程一系列化学冶金反应,决定着焊缝金属的成分、组织和缺欠的形成。如果选择的焊接材料与母材匹配不当,不仅不能获得满足使用要求的接头,还会引起裂纹等缺欠的产生和脆化等力学性能的变化,所以正确选用焊接材料是保证获得优质焊接接头的重要冶金条件。
(9)什么是焊缝的塑性扩展阅读:
工艺条件因素
工艺条件因素包括焊接方法、焊接参数、预热、后热及焊后热处理等。它们对焊接性的影响,首先在于诸如其焊接热源的特点,功率密度、功率大小等,它们直接决定接头的温度场和热循环的各种参数,例如热输入的大小、高温停留时间、相变区的冷却速度,从而对焊缝及热影响区范围的大小、组织性能和产生缺欠的敏感性等有明显的影响。
其次是诸工艺方面的因素决定了熔池和近缝区的保护方式及冶金条件,例如熔渣保护、渣、气联合保护等都会影响冶金过程;采用焊前预热和焊后缓冷可降低接头的冷却速度,有利于降低接头的淬硬倾向和裂纹敏感性;选择合理的焊接顺序可以改善结构的拘束程度和应力状态。
『拾』 q345焊缝区塑性和韧性为什么比母材好
其主要原因是热影响区的近缝区被高温作用后晶粒严重长大,形成粗晶区和半熔化区,造成塑性和韧性下降。其母材组织比焊缝金属还要粗,因此该区域是焊接接头的最薄弱环节。