① 金矿里含砷,怎么处理
含砷金矿石是世界上公认的难处理金矿类型之一,也是处理量最大、可回收经济价值最高的金矿石。我国含砷金矿资源主要分布在西南、西北和东北等地区。含砷金矿石处理的难点在于金矿物与含砷矿物(主要是毒砂)以及黄铁矿密切共生,金以微细粒状分布,常被包裹在毒砂和黄铁矿中,或存在于其单个晶体之间,造成金的选别难度增大,同时金精矿中含砷量高,金的回收率低,也不利于后续的冶金工作。目前,浮选法是对含砷金矿进行预处理的有效方法之一,浮选含砷金矿的目的是将砷与金分离,从而实现金的回收。研究并改进含砷金矿的选矿工艺十分必要,既能提高选冶技术经济效益,还有利于环境保护,具有可持续发展的意义。目前,国内外许多学者对毒砂和含金硫化矿的分选进行了大量研究,含砷金矿浮选分离是含金硫化矿与砷矿物浮选分离的主要体现。毒砂与含金硫化矿物分选的研究重点在于浮选药剂的选择与浮选工艺的研究。
1 含砷金矿浮选药剂研究进展
浮选药剂研究的重点是低成本、高效率及小毒性混合药剂的开发,到目前为止,浮选药剂的研究工作取得了较多成果。
1.1 高选择性捕收剂
选金捕收剂一般有乙基黄药、丁基黄药、异戊基黄药、甲酚黑药、羟肟酸钠和油酸等。朱申红和钱鑫、童雄和钱鑫]对某含砷金矿石进行研究时发现,丁基黄药、仲辛基黄药和氨醇黄药在碱性介质中能选择性地浮起含金黄铁矿,且这些药剂的组合使用对含金黄铁矿与毒砂的分离更有效,能够强化含金黄铁矿的浮选。随着性质单一、易浮选金矿石的减少,矿物组成复杂的难选金矿石成为主要的金矿资源。对于这类矿石的浮选,单一药剂制度很难取得理想指标,为此越来越多的选矿工作者根据现有药剂的性能,着力于混合用药和开发新药剂来解决现有难题。张大铸和贾振武等针对吴家塬含砷微细粒金矿石金回收率偏低问题,提出用25 号黑药与丁基黄药混合用药,取代原来的单一丁基黄药作捕收剂的用药制度,通过小型闭路试验,金回收率提高了26.11%。B A 钱图里亚在丁基黄原酸盐与过量丙烯氯醇的基础上,将丙烯基三硫代碳酸盐与丙氧基化硫化物组合制成的新型ПРОКС 药剂固着于毒砂表面,通过阻止黄药吸附使得毒砂矿物表面亲水,从而抑制毒砂,用黄药作捕收剂浮选黄铁矿和毒砂时,先添加ПРОКС 药剂能有效抑制毒砂,还能提高黄铁矿的可浮性。刘四清和张文林将烤胶与硫酸钠组合对毒砂进行抑制,获得了各项指标均比较理想的金精矿。黄万抚和李新冬以3∶2 比例组合使用38 号捕收剂与丁胺黑药对江西某含砷金矿进行研究,金回收率达到93.48%以上。
1.2 砷的抑制剂
在含砷金矿浮选中,往往使用抑制剂来提高矿物的亲水性或阻止矿物与捕收剂的作用,使其
可浮性受到抑制,以此实现砷与金的浮选分离,从而实现金的回收。砷的抑制剂主要有石灰组合型、氧化剂型、碳酸盐型、硫氧化合物类和有机抑制剂5 种类型。
(1)石灰组合型抑制剂。由于毒砂与硫化矿物具有不同的浮选临界pH 值,因此,在含砷金矿的浮选中,通常利用石灰作为pH 值调整剂促进矿物表面溶解或氧化,从而达到抑制砷的目的。然而,使用单一石灰法进行抑制毒砂或黄铁矿的效果不理想,为了取得理想的试验指标,常常与其他药剂混合使用,主要有石灰—铵盐法(NH4NO3 和NH4Cl)、石灰—亚硫酸钠法和石灰—硫酸铜法等。在碱性矿浆中,黄铁矿表面会氧化生成亲水物质Fe(OH)3,毒砂表面则会氧化生成亲水物质FeAsO4、Fe3(AsO4)2和Fe(OH)3,这些亲水物质覆盖在矿物表面形成亲水薄膜,使黄铁矿和毒砂受到抑制。河南某金矿为高砷难处理金矿,通过利用石灰将矿浆控制在抑制砷矿物所需的碱性条件,同时添加保护剂LA,破坏载金矿物黄铁矿表面在碱性条件下生成的氧化亲水膜,经闭路实验得到的金精矿中金品位达68.00×10-6,回收率为78.43%,含砷量仅为0.37%,成功地实现了金砷浮选分离。
(2)氧化剂型抑制剂。针对浮选过程中毒砂易氧化的特点,可以通过对矿浆进行充氧搅拌或加入氧化剂达到有效抑制毒砂可浮性的效果。Beattie在研究毒砂抑制剂时发现,采用NaOH 作pH 值调整剂,以H2O2 或NaClO 作氧化剂,可以在毒砂表面氧化生成铁的氧化物亲水薄膜,从而抑制毒砂。对天马山高砷高硫难选金矿石进行硫砷分离工艺研究发现,采用NaClO 作为氧化剂能选择性氧化抑制毒砂,硫砷分离效果十分显著,脱砷率达90%,最终硫精矿中含砷量<0.3%。袁来敏等对某含砷难选金矿进行分离研究,采用阶段选别、阶段抑制的工艺流程,选择多种抑制剂进行组合试验,最终筛选出石灰、NaHSO3 和少量氰化物的组合,能有效抑制毒砂,最终获得金精矿金品位为82.50×10-6,金回收率为87.01%,含砷0.27%,金砷分离效果非常显著。
(3)碳酸盐型抑制剂。方法原理:碳酸盐(主要是Na2CO3 和ZnCO3)对黄铁矿等硫化矿物表面的氧化物有一定的清洗作用,从而活化黄铁矿等硫化矿物,使硫化矿物与砷矿物的可浮性差异增大,提高分离效果。研究发现,Na2CO3 和ZnCO3 的配比对浮选效果没有影响;Na2CO3 和漂白粉联合使用时,可强化对毒砂的抑制,通过适当控制药剂的加
入顺序可以改善黄铁矿的浮选效果。
(4)硫氧化合物类抑制剂。硫氧化合物作为砷抑制剂已经有长期的实践,主要有Na2SO3、硫代硫酸盐、Na2S 和K2S2O8 等。其中,Na2SO3 是比较常用的无机调整剂,具有价廉且有效的特点;K2S2O8 抑制剂选择性较强,且分离浮选不受氧化时间的影响。
(5)有机抑制剂。由于成本较低且对环境没有危害,有机抑制剂的研究日益得到重视。其中,抑制效果较好的有机抑制剂主要有糊精、腐植酸钠(铵)、丹宁、聚丙烯酰胺、木质素磺酸盐及其混合物等。通过组合使用有机抑制剂与无机抑制剂来提高金浮选过程的选择性是目前有机抑制剂研究的重点方向。童雄和钱鑫进行含金黄铁矿和毒砂浮选分离研究时,使用有机与无机组合抑制剂腐植酸钠,能有效抑制毒砂,取得了良好的金砷分离效果。张剑峰和胡岳华合成的一类含氮小分子非硫化矿有机抑制剂能有效抑制黄铁矿,在黄铁矿与毒砂的纯矿物和人工混合矿的浮选中具有良好的选择性,几乎能完全抑制毒砂。杨玮等对云南某磁选尾矿进行黄铁矿与毒砂的分离,试验采用有机抑制剂MF 作为砷的抑制剂,取得了良好的试验指标。穆枭等从云南蒙自地区某高砷含黄铁矿尾矿中回收黄铁矿,使用新型有机抑制剂SN,在不影响黄铁矿回收率的前提下实现了对毒砂的有效抑制。
2 含砷金矿浮选工艺研究进展
常规浮选工艺对砷的抑制效果不理想,然而新科技和新工艺的应用有效提高了含砷难处理金矿的浮选效率。我国在浮选技术与工艺创新方面已取得的突出表现:通过电位控制含金砷硫化矿的浮选,以N2 代替空气准确控制矿浆电位,实现对砷的有效抑制;在Na2CO3 介质中充入空气能有效提高砷黄铁矿的可浮性。
3 含砷金矿浮选技术研究展望
稀有金属资源开采中,单一矿源越来越少,绝大部分矿源都是成分复杂的复合型矿源,然而,我国对稀有金属资源的需求不断增加,因此,成分复杂金矿的开采成为当前形势的必然要求。针对含砷金矿在金矿资源中所占比例巨大,其浮选技术的发展必将得到各方重视,而浮选药剂和浮选工艺又是影响浮选技术发展的重要因素,因此,药剂选择和工艺研究将成为未来浮选技术的重要课题,含砷金矿的浮选研究正在迈向一个更高的台阶。
目前,含砷金矿浮选中,金的回收率并不高,因此浮选技术有待进一步提高。浮选技术正在得到越来越广泛的应用,在这一过程中药剂的使用是关键,捕收剂和抑制剂已成为我国难处理金矿开采的研究重点,随着更为先进的药剂出现,含砷金矿中金的回收率将会得到提高。浮选工艺及联合工艺的创新发展,能够使含砷金矿的处理过程更高效,结合先进的科学技术,浮选技术的创新将会带来新的变革。
② 不锈钢含硫高会怎样
硫在通常情况下是有害元素,它可以使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。因此对不同钢种含硫量有严格的规定
③ 地下水砷超标怎么处理
咨询记录 · 回答于2021-10-28
④ 不锈钢含砷吗
不锈钢含有铁、碳、铬、镍等元素。不会含砷,砷加热到613℃,便可不经液态,直接升华,成为蒸气。不锈钢的冶炼温度起码在1300℃以上,有砷也早已化为蒸汽跑掉了。
⑤ 含砷金矿为什么难处理,有什么解决的办法
因为砷离子在水溶液中存在都会造成污染,并且剧毒
解决砷的办法一般采用强还原剂将水溶液的砷离子还原为单质沉淀下来
⑥ 金矿的砷怎么处理
含砷的话一般无法直接用湿法冶金提取黄金,必须先去除砷,一般用高温法或浮选可以很好的在提金前除砷,高温在600-800度左右保持2-3小时,不能温度过高,否则矿粉会烧结成团,浮选的话,如果含硫,则不能使用黄药浮选,尽量不要使用助浮剂
⑦ 含砷废水怎样处理
处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。
1 化学法处理含砷废水
中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准。
絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等。
铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣。Nakazawa Hiroshi 等研究指出,在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。
马伟等报道,采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。
化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。
2 物化法处理含砷废水
物化法一般都是采用离子交换 、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。
陈红等曾利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。
胡天觉等报道,合成制备了一种对As(III)离子高效选择性吸附的螯合离子交换树脂,用该离子交换柱脱砷:含As(III)5 g/L的溶液脱砷率高于99.99%,脱砷溶液中砷含量完全达标,而且离子交换柱用2mol/L的氢氧化钠(含5% 硫氢化钠)作洗脱液洗涤,可完全回收As(III)并使树脂再生循环利用。
刘瑞霞等也曾制备了一种新型离子交换纤维,该离子交换纤维对砷酸根离子具有较高的吸附容量和较快的吸附速度。实验表明该纤维具有较好的动态吸附特性,30mL 0.5mol/L氢氧化钠溶液可定量将96.0 mg/g吸附量的砷从纤维上洗脱。
另外,还有不少人作了用钢渣、选矿尾渣、高炉冶炼矿渣等废渣处理含砷废水的研究,取得了不错的成果。但由于物化法只能处理浓度较低,处理量不大,组成单纯且有较高回收价值的废水,而工业废水的成分较复杂,所以物化法的工程化程度较低。
3 微生物法处理含砷废水
与传统物理化学方法相比,用微生物法处理含砷废水具有经济、高效且无害化等优点,已成为公认最具发展前途的方法。
3.1 活性污泥
国内外诸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金属离子,尤其是重金属离子,他们与ECP的络合更为稳定。关于吸附机制,在ECP的复杂成分中吸附重金属离子的似乎是糖类。Brown和Lester(1979)指出ECP中的中性糖和阴离子多糖有着吸附不同金属离子的结合点位,不同价态或不同电荷的金属离子可以在不同的点位与 ECP结合,如中性糖的羟基、阴离子多聚物的羟基都可能是金属的结合位。Kasan、Lester、Modak和Natarajam等认为:活性污泥对重金属离子的吸附有两种机制即表面吸附和胞内吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲壳素、壳聚糖等)含有配位基团—OH,—COOH,—NH2,PO43-和—HS等,他们与金属离子进行沉淀、络合、离子交换和吸附,其特点是快速、可逆和不需要外加能量,与代谢无关;胞外吸收通过金属离子和胞内的透膜酶、水解酶相结合而实现,速度较慢需要能量,而且与代谢有关。
此外,Ralinske指出:好氧生物能大量富集各种重金属离子,这些离子积累于细胞外多聚物中,并在厌氧条件下释放回液相中。这就有利于我们在二沉池中分离和沉降重金属离子。
在活性污泥法处理含砷废水的实验中,存在许多影响因素,主要影响因素如下:
(1)砷的浓度及价态
不同价态的砷对活性污泥的毒性不同。实验表明,As(III)对脱氢酶的毒性比As(V)平均大53倍。As(III)对蛋白酶活性的毒性约为As(V)的75倍。还有,As(III)对活性污泥脲酶活性的毒害作用是As(V)的35倍。所以处理含砷废水时有必要将As(III)氧化成As(V)。实验还表明,活性污泥对低浓度砷的去除率高于对高浓度砷的去除率,这是由于污泥的吸附能力有限所造成的。此外,重金属离子浓度小于5mg·L-1时,活性污泥法对污水中有机物的处理效果不受重金属影响,当重金属离子浓度大于30mg·L-1时,活性污泥法污水中有机物的处理效果则大大受到影响。
(2)有机负荷
有机负荷对活性污泥去除五价砷也有较大的影响,有机负荷高,去除率也高。主要有两方面的原因:一是污水中的有机物本身可和五价砷相结合,降低了污水中砷的浓度;二是有机物浓度高有利微生物生长繁殖,这进一步提高活性污泥对五价砷的去除率。此外,有机负荷高还可以防止污泥膨胀。因为在高有机负荷环境中絮状菌比大多数丝状菌有更强的吸附和存贮营养物能力,能够充分利用高浓度的底物迅速增殖,具有较高的比生长速率,抑制了丝状菌的生长。在低负荷下混合液中底物浓度长时间都低,由于缺少足够的营养底物,絮状菌的生长受到抑制,而丝状菌具有较大的比表面积,当环境不利于微生物的生长时,丝状菌会从菌胶团中伸展出来以增加其摄取营养物质的表面积。一方面,伸出絮体之外的丝状菌更易吸收底物和营养,其生长速率高于絮状菌,从而成为活性污泥中的优势菌种;另一方面,丝状菌越多,其菌丝越长,活性污泥越不易沉降,SVI越高,导致了污泥膨胀。
(3)pH
pH 对金属去除影响很大,因为pH不仅影响金属的沉降状态,而且影响吸附点的电荷。一般pH 升高有利于污泥对阳离子金属的吸附。直至产生氢氧化物沉淀,反之则有利于对呈负电荷状态存在的金属的吸附。但是,过高或过低的pH对微生物生长繁殖不利,具体表现在以下几个方面:①pH过低(pH=1.5),会引起微生物体表面由带负电变为带正电,进而影响微生物对营养物的吸收。②过高或过低的 PH还可影响培养基中有机化合物的离子化作用,从而间接影响微生物。③酶只有在最适宜的pH时才能发挥其最大活性,极端的pH使酶的活性降低,进而影响微生物细胞内的生物化学过程,甚至直接破坏微生物细胞。④过高或过低的pH均降低微生物对高温的抵抗能力。
(4)生物固体停留时间(Qc)
Qc对阳离子金属去除有较大影响,因为活性污泥表面常被难溶性或微溶性的多聚物所包围(如多糖),这些多聚物表面的电荷可使金属迅速地得以去除。已经证实,细菌多聚物产生和细菌生长相有关,稳定相和内源呼吸阶段多聚物产量最大,而Qc增大,污泥中细菌处于稳定相和内源呼吸阶段,有利于对金属的去除。
(5)污泥浓度
污泥浓度高,吸附点也随着增加,从而有利于金属的去除。从去除金属的角度出发,高有机负荷,高污泥浓度的运行方式最为理想。
活性污泥法处理含砷废水,不论在处理费用,还是二次污染,或者工程化方面,都比传统处理方法具有相当突出的优势。虽然在理论研究方面还不是十分完善,但是在处理机制和影响因素方面都已达成一定的共识。如果在处理工艺上再进行一定的改进,如往污泥中投加优势菌种,可以改善污水的处理效果;此外,还可以引进生活污水进行混合处理并进行曝气,这样不仅降低了砷的浓度以及砷对污泥的毒害作用,同时还解决了活性污泥的营养源问题,为活性污泥法处理含砷废水的工程化应用开辟了一片新天地。
3.2 菌藻共生体
国外研究表明,生物迁移转化作为一种新的微生物法处理重金属废水,与传统方法相比,具有更高效,费用更低等优点。用小球藻的生物迁移转化处理重金属废水的工艺,有一些已投入工程运作。
菌藻共生体对砷的去除机理可认为是藻类和细菌的共同作用。许多研究表明,在去除金属过程中,微生物的表面起着重要作用。菌藻共生体中,藻类和细菌表面存在许多功能键,如羟基、氨基、羧基、硫基等。这些功能键可与水中砷共价结合,砷先与藻类和细菌表面上亲和力最强的键结合,然后与较弱的键结合,吸附在细胞表面的砷再慢慢渗入细胞内原生质中。因而在藻类和细胞吸附砷中,可能经过快吸附过程和较慢吸附两过程后,吸附作用才趋于平衡。
廖敏等人曾研究了菌藻共生体对废水中砷的去除效果。研究发现:培养分离所得菌藻共生体中以小球藻为主,此时菌藻共生体积累砷达7.47 g/kg干重。在引入菌藻共生体并培养16h后,其对无营养源的含As(III),As(V)的废水除砷率达80%以上,并趋于平衡,含营养源的As(III)、As(V)的废水中,菌藻共生体对As(V)的去除率大于As(III),对As(V)去除率超过70%,但对As(III)的去除率也在50%以上,在除砷过程中同时出现砷的解吸现象。在无营养源条件下,对As(III)、As(V)混合废水的除砷率超过80%。
菌藻共生体是一种易培养获得的材料。其对废水中的砷具有较强的去除力,并能同时去除废水中的营养物,因此其在含砷废水的处理运用中有着广阔的前景。
3.3 投菌活性污泥法
投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microorganisms)是将具有强活力的细菌投入到曝气池里去,使曝气池混合液内的各种细菌处于最佳活性状态,这样.不仅投入了吸气池内所缺少的细菌,在流入污水水质不变的条件下,微生物氧化作用显著,而且,当污水水质改变,环境变异的情况下,微生物仍能适应,保持活性,其氧化代谢过程依然充分,投入菌液后使曝气池耐冲击负荷,提高污水处理厂的处理效果,改善了出水水质。
投菌活性污泥法(LLMO)是出之一种新的概念,它是根据在同一环境里,最适宜的细菌能自然繁殖,同样,污水处理厂曝气池混合液内的细菌也会自然繁殖到一定数目,自然界无处不可找到细茵,然而,在同一环境里并非可以找到一切细菌这一原则,作为理论指导,从自然界土壤内筛选出污水厂中的有用细菌制成液态的或固态的产品。液态菌液微生物成活率高;固态菌使用前需先用水溶成液态,细菌的成活率较液态菌液低,使用时按一定比例将液态菌液投入曝气池内或投到需用处,投菌活性污泥法(LLMO)在国外已收到良好的应用效果。
因此,我们可望通过向活性污泥中投加对砷具有高耐受力,对砷具有特殊处理效果的混合菌种,达到对砷的高效处理,净化工业含砷废水。
4 前景展望
随着冶金、化工等产业的日益发展,以及含砷制品市场的日益拓大,含砷废水的排放和污染问题,必将影响到人们的生活水平的提高,影响到人类生存环境的改善,所以解决含砷废水的污染问题已迫在眉睫。然而传统的处理方法都存在一定的问题。如化学法,虽然在工程上有了一定的应用,处理效果也较明显,但由于化学药剂的添加,导致了产生大量的废渣,而这些废渣目前尚无较好的处置办法。而物理法的处理费用较高,处理投资非常大,无法进行工程运作。微生物法作为一种最有前途的处理方法,不仅具有高效、无二次污染,而且处理费用低等优点。其中,活性污泥法处理含砷废水的理论在国内外处于热点研究探索中,又由于活性污泥具有的来源广泛,容易培养,处理后二次污染小等一系列优点,使其在工程上的应用成为可能,成为含砷废水的主要处理方法。此外,若对单纯活性污泥法进行工艺上的改进,如引进优势菌种,或掺入生活污水进行混合处理等工艺上的改进,都可能为活性污泥法的应用创造更为广阔的前景。
⑧ 304材质不锈钢中的砷含量标准是什么样的
304材质不锈钢中一般不含砷元素,砷元素为钢中五害元素之一。
304材质不锈钢含有过多的砷元素,对钢材的塑性有一定影响,如含量达到一定值,会造成连铸坯时效脆性,容易断裂,并对后续轧制产生轧制压力异常增大,发生开裂等质量缺陷。
由于原料中镍铁中常伴有砷元素存在,估依据生产实际钢中砷元素一般应不大于100PPm,五害元素总量不应大于200ppm。
⑨ 含砷重金属污染怎么处理
砷污染的治理措施
1、传统治理方法:包括化学法、物理法,生物法。在一定程度上的确能够处理解决掉砷元素,但化学药剂容易对环境造成潜在的二次污染,物理法难以治理全面,生物法治理技术要求高,效果不稳定。
化学法:用化合剂将砷变为人体难以吸收的砷化合物,如在含砷废水中投加石灰、硫酸亚铁和液氯将砷沉淀,然后对废渣进行处理,也可以让含砷废水通过硫化铁或用硫酸铁、氯化铁、氢氧化铁凝结沉淀等。
2、重金属稳定固化法介绍:
重金属稳定固化法能够针对砷污染物,如:土壤,污泥,尾矿等能过有效的进行处理,通过一系列模拟自然界物质生成规律,最终达到稳定固话的效果,阻止其对环境造成影响。同时,稳定固化后不会再受到外界影响而溢出。
砷污染的防御措施
1、加强环境监测,建立重点地区空气、水等流体中的砷污染预报机制,同时加强重点地区的土壤中砷的监测,解决好高砷地区人畜用水及农业灌溉用水问题
2、加含砷矿藏及其冶炼过程的管理,取缔土法炼砷的工厂,冶炼砷的工厂和其它冶金工厂的“三废”必须达标排放,对高砷煤采取强制性脱砷处理,从根本上降低空气中砷含量。
3、加强含砷化工产品管理,特别要加强对含砷农药和医药的监管,要加强这些毒性药物的使用常识培训,最大程度减少人为中毒情况的发生。
4、避免砷进入食物链,是防治砷污染的关键。