『壹』 焊接後焊件出現裂紋是什麼原因
這個原因太多了,可以做好幾個課題。
一般有冷裂紋,熱裂紋,和延遲版裂紋
普通結構鋼,權碳鋼,一般是冷裂紋,結構原因,坡口設計太窄等都可能;
熱裂紋一般不銹鋼比較多,原因是低熔點共晶的存在,就是坡口沒清理干凈;
延遲裂紋在耐熱鋼中很常見,也很難處理,關鍵要做好焊前預熱,控制層間溫度,焊後保溫緩冷;
這個是我干焊接10年的總結,細節上具體情況就需要具體分析了。
『貳』 焊接裂紋的特徵是具有什麼
你好,焊接裂紋的特徵是:熱裂紋是中間寬兩頭窄,帶有分枝的彎曲狀。(沿晶而過)冷裂紋是一條直線,也是中間大兩頭尖。(穿晶而過)
『叄』 焊接冷裂紋和熱裂紋有什麼區別
冷裂紋與熱裂紋區別
1、產生的溫度和時間不同
熱裂紋一般產生在焊縫的結晶過程中。冷裂紋大致發生在焊件冷卻到200~300℃,有的焊後會立即出現,有的可以延至幾小時到幾周甚至更長時間才會出現。所以冷裂紋又稱延遲裂紋。
2、產生的部位和方向不同
熱裂紋絕大多數產生在焊縫金屬中,有的是縱向,有的是橫向,有時熱裂紋也會延伸到基本金屬中去。冷裂紋大多數產生在基本金屬或熔合線上,大多數為縱向裂紋,少數為橫向裂紋。
3、外觀特徵不同
熱裂紋斷面都有明顯的氧化色。冷裂紋斷口發亮,無氧化色。
4、金相結構不同
熱裂紋都是沿晶界開裂的。冷裂紋是貫穿晶粒內部,即穿品開裂,不過也有的是沿晶界開裂。
『肆』 簡述焊接熱裂紋和焊接冷裂紋的形成機理 並比較它們各自的特點。
1)熱裂紋。在焊接過程中,焊縫和熱影響區金屬冷卻到固相線附近的高溫區產生的焊接裂紋就是熱裂紋。
形成:由於被焊接的材料大多數都是合金,而合金凝固自開始到最終結束,是在一定的溫度區間內進行的,這是熱裂紋產生的基本原因。焊縫中的許多雜質的凝固溫度都低於焊縫金屬的凝固溫度,這樣首先凝固的焊縫金屬把低熔點的雜質推擠到凝固結晶的晶粒邊界,形成了一層液體薄膜,又因為焊接時熔池的冷卻速度很大,焊縫金屬在冷卻的過程中發生收縮,使焊縫金屬內部產生拉應力,拉應力把凝固的焊縫金屬沿晶粒邊界拉開,又沒有足夠的液體金屬補充時,就會形成微小的裂紋,隨著溫度的繼續下降,拉應力增大,裂紋不斷擴大。當焊縫金屬中含有較多的低熔點雜質時,焊縫金屬極易產生裂紋。母材和焊接材料中含有的有害雜質,特別是硫元素,它是引起鋼材焊縫金屬中發生凝固裂紋的最主要元素。另外,鋼材中含碳量較高時,有利於硫在晶界處富集,因而也是促進形成凝固裂紋的原因,所以採用含碳量低的焊接材料有利於防止凝固裂紋的產生。
‚熱裂紋的特徵:斷口呈藍黑色,即金屬在高溫被氧化的顏色,有時在熱裂紋里流入熔渣的跡象。再者,弧坑裂紋多為熱裂紋。
2)冷裂紋。冷裂紋指焊接接頭冷卻到較低溫度時產生的焊接裂紋。
冷裂紋產生的原因:鋼材的淬火傾向,殘余應力,焊縫金屬和熱影響區的擴散氫含量。其中氫的作用是形成冷裂紋的重要因素。當焊縫和熱影響區的含量較高時,焊縫中的氫在結晶過程中向熱影響區擴散,當這些氫不能逸出時,就聚集在離熔合線不遠的熱影響區中;如果被焊材料的淬火傾向較大,焊後冷卻下來,在熱影響區可能形成馬氏體組織,該種組織脆而硬;在加上焊後的焊接殘余應力,在上述幾種因素的作用下,導致了冷裂紋的產生。
‚冷裂紋與熱裂紋的主要區別就是:冷裂紋在較低的溫度下形成,一般在200-300℃以下形成;冷裂紋不是在焊接過程中產生的,而是在焊後延續一定的時間後才產生,如果鋼的焊接接頭冷卻到濕溫後並在一定的時間(幾小時、幾天、甚至十幾天以後)才出現的冷裂紋稱為延遲裂紋;冷裂紋多在焊接熱影響區內產生,如沿應力集中的焊縫根部形成的冷裂紋稱為焊根裂紋。沿應力集中的焊趾處形成的冷裂紋稱為焊趾裂紋。在靠近堆焊焊道的熱影響區內所形成的裂紋稱為焊道下裂紋。冷裂紋有時也在焊縫金屬內發生。一般焊縫金屬的橫向裂紋多為冷裂紋。冷裂紋與熱裂紋相比,冷裂紋的斷口無氧化色。
『伍』 焊接時熱裂紋產生的原因及防止方法是什麼
熱裂紋是高溫下在焊縫金屬和焊縫熱影響區中產生的一種沿晶裂紋。
冷裂紋是由於材料在室溫附近溫度下脆化而形成的裂紋。
預熱和焊後熱處理都是控製冷裂紋,一個是控制脆硬組織產生、另一個消除擴散氫的含量。
熱裂紋的主要採取控制母材和焊材雜質的含量。
『陸』 焊接時熱裂紋產生的原因及防止方法是什麼
產生原因:是由於熔池冷卻結晶時,受到的拉應力作用,而凝固時,低熔點共晶體形成的液態薄層共同作用的結果。
防止方法:
①控制焊縫中的有害雜質的含量即碳、硫、磷的含量,減少熔池中底熔點共晶體的形成。
②預熱:以降低冷卻速度,改善應力狀況。
③採用鹼性焊條,因為鹼性焊條的熔渣具有較強脫硫、脫磷的能力。
④控制焊縫形狀,盡量避免得到深而窄的焊縫。
⑤採用手弧板,將弧坑引至焊件外面,即使發生弧坑裂紋,也不影響焊件本身。
『柒』 什麼叫熱裂紋,它是怎樣產生的
焊接件中最常見的一種嚴重缺陷。金屬的焊接性中包括了兩大類的問題:一類是焊接引起的材料性能變壞,使焊件失掉了材料原來特有的性能,如不銹鋼焊後失掉其耐蝕性等;另一類是在焊接接頭或其附近的母材內產生裂紋和氣孔等缺陷。裂紋影響焊接件的安全使用,是一種非常危險的工藝缺陷。焊接裂紋不僅發生於焊接過程中,有的還有一定潛伏期,有的則產生於焊後的再次加熱過程中。焊接裂紋根據其部位、尺寸、形成原因和機理的不同,可以有不同的分類方法。按裂紋形成的條件,可分為熱裂紋、冷裂紋、再熱裂紋和層狀撕裂等四類。
熱裂紋 多產生於接近固相線的高溫下,有沿晶界(見界面)分布的特徵;但有時也能在低於固相線的溫度下,沿「多邊形化邊界」形成。熱裂紋通常多產生於焊縫金屬內,但也可能形成在焊接熔合線附近的被焊金屬(母材)內。按其形成過程的特點,又可分為下述三種情況。
結晶裂紋 產生於焊縫金屬結晶過程末期的「脆性溫度」區間,此時晶粒間存在著薄的液相層,因而金屬塑性極低,由冷卻的不均勻收縮而產生的拉伸變形超過了允許值時,即沿晶界液層開裂。消除結晶裂紋的主要冶金措施為通過調整成分,細化晶粒,嚴格控制形成低熔點共晶的雜質元素等,以達到提高材料在脆性溫度區間的塑性;此外,從設計和工藝上盡量減少在該溫度區間的內部拉伸變形。
液化裂紋 主要產生於焊縫熔合線附近的母材中,有時也產生於多層焊的先施焊的焊道內。形成原因是由於在焊接熱的作用下,焊縫熔合線外側金屬內產生沿晶界的局部熔化,以及在隨後冷卻收縮時引起的沿晶界液化層開裂。造成這種裂紋的情況有二:一是材料晶粒邊界有較多的低熔點物質;另一種是由於迅速加熱,使某些金屬化合物分解而又來不及擴散,致局部晶界出現一些合金元素的富集甚至達到共晶成分。防止這類裂紋的原則為嚴格控制雜質含量,合理選用焊接材料,盡量減少焊接熱的作用。
多邊化裂紋 是在低於固相線溫度下形成的。其特點是沿「多邊形化邊界」分布,與一次結晶晶界無明顯關系;易產生於單相奧氏體金屬中。這種現象可解釋為由於焊接的高溫過熱和不平衡的結晶條件,使晶體內形成大量的空位和位錯,在一定的溫度、應力作用下排列成亞晶界(多邊形化晶界),當此晶界與有害雜質富集區重合時,往往形成微裂紋。消除此種缺陷的方法是加入可以提高多邊形化激活能的合金元素,如在Ni-Cr合金中加入W、Mo、Ta等;另一方面是減少焊接時過熱和焊接應力。
冷裂紋 根據引起的主要原因可分為淬火裂紋、氫致延遲裂紋和變形裂紋。
淬火裂紋 產生在鋼的馬氏體轉變點()附近(見過冷奧氏體轉變圖)或在200以下的裂紋,主要發生於中、高碳鋼,低合金高強度鋼以及鈦合金等,主要產生部位在熱影響區以及焊縫金屬內。裂紋走向為沿晶或穿晶。形成冷裂紋的主要因素有:①金屬的含氫量偏高;②脆性組織或對氫脆敏感的組織;③焊接拘束應力(或應變)。
氫致延遲裂紋 焊接過程中溶於焊縫金屬內的氫向熱影響區擴散、偏聚,特別是在容易啟裂的三軸拉應力集中區富集,引起氫脆,即降低金屬在啟裂位置(或裂紋前端)的臨界應力,當此處的局部應力超過此臨界應力時,就造成開裂。這種裂紋的形成有明顯的時間延遲的特徵,其原因在於氫擴散富集需要時間(孕育期)。產生此種裂紋的條件是存在著氫和對氫敏感的組織,同時又有較大的拘束應力。因此,它常產生在嚴重應力集中的焊件根部和縫邊,以及過熱區。防止的措施包括:①降低焊縫中的含氫量,例如採用低氫焊條,嚴格烘乾焊接材料等;②合理的預熱及後熱;③選用碳當量較低的原材料;④減小拘束應力,避免應力集中(見金屬中氫)。
變形裂紋 這種裂紋的形成不一定是因為氫含量偏高,在多層焊或角焊縫產生應變集中的情況下,由於拉伸應變超過了金屬塑性變形能力而產生。
再熱裂紋 產生於某些低合金高強度鋼、珠光體耐熱鋼、奧氏體不銹鋼以及鎳基合金焊後的再次高溫加熱過程中。其主要原因一般認為當焊後再次加熱到 500~700時,在熱影響區的過熱區內,由於特殊碳化物析出引起的晶內二次強化,一些弱化晶界的微量元素的析出,以及使焊接應力鬆弛時的附加變形集中於晶界,而導致沿晶開裂。因此,這種裂紋具有晶間開裂的特徵,並且都發生在有嚴重應力集中的熱影響區的粗晶區內。為了防止這種裂紋的產生,首先在設計時要選擇再熱裂紋敏感性低的材料,其次從工藝上要盡量減少近縫區的內應力和應力集中問題。
層狀撕裂 主要產生於厚板角焊時,其特徵為平行於鋼板表面,沿軋制方向呈階梯形發展。這種裂紋往往不限於熱影響區內,也可出現在遠離表面的母材中。其產生的主要原因是由於金屬中非金屬夾雜物的層狀分布,使鋼板沿板厚方向塑性低於沿軋制方向,另外由於厚板角焊時在板厚方向造成了很大的焊接應力,所以引起層狀撕裂。通常認為片狀硫化物夾雜危害最大,而層狀硅酸鹽和過量密集的氧化鋁夾雜物也有影響。防止這種缺陷,主要應在冶金過程中嚴格控制夾雜物的數量和分布狀態。另外,改進接頭設計和焊接工藝,也有一定的作用。
『捌』 焊接裂紋的分類與特徵
奧菲達技術研發部,熱線0757-81137905,客服1004027259
裂紋分類
基本特徵
敏感的溫度區間
被焊材料
位置
裂紋走向
熱裂紋
結晶裂紋
在結晶後期,由於低熔共晶形成的液態薄膜削弱了晶粒間的聯結,在拉伸應力的作用下發生開裂
在固相線溫度以上稍高的溫度(固液狀態)
雜質較多的碳鋼、低中合金鋼、奧氏體鋼、鎳基合金及鋁
焊縫上、少量在熱影響區
沿奧氏體晶界
多邊化裂紋
已凝固的結晶前沿,在高溫和應力的作用下,晶格缺陷發生移動和聚集,形成二次邊界,它在高溫處於低塑性狀態,在應力作用下產生的裂紋
固相線以下再結晶溫度
純金屬及單相奧氏體合金
焊縫上,少量在熱影響區
沿奧氏體晶界
液化裂紋
在焊接熱循環峰值溫度在作用下,在熱影響區和多層焊的層間發生重熔,在應力作用下產生的裂紋
固相線以下稍低溫度
含S、P、C較多的鎳鉻高強鋼、奧氏體鋼、鎳基合金
熱影響區及多層焊的層間
沿晶界開裂
再熱裂紋
厚板焊接結構消除應力處理過程中,在熱影響區的粗晶區存在不同程度的應力集中時,由於應力鬆弛所產生附加變形大於該部位的蠕變塑性,則發生再熱裂紋
600-700℃回火處理
含有沉澱強化元素的高強鋼、珠光體鋼、奧氏體鋼、鎳基合金等
熱影響區的粗晶區
沿晶界開裂
冷裂紋
延遲裂紋
在淬硬組織、氫和拘束應力的共同作用下而產生的具有延遲特徵的裂紋
在MS點以下
中、高碳鋼,抵、中合金鋼,鈦合金等
熱影響區、少量在焊縫
沿晶或穿晶
淬硬脆化裂紋
主要是由淬硬組織在焊接應力的作用下產生的裂紋
MS 點附近
含碳的NiCrMo鋼、馬氏體不銹鋼
熱影響區、少量在焊縫
沿晶或穿晶
低塑性脆化裂紋
在較低的溫度下,由於被焊材料的收縮應變,超過了材料本身的塑性儲備而產生的裂紋
在400℃以下
鑄鐵、堆焊硬質合金
熱影響區及焊縫
沿晶或穿晶
層狀撕裂
主要是由於鋼板的內部存在有分層的夾雜物(沿軋制方向),在焊接時產生的垂直於軋制方向的應力,致使在熱影響區或稍遠的地方產生「台階」狀層狀開裂
約400℃以下
含有雜質的低合金高強鋼
熱影響區附近
沿晶或穿晶
應力腐蝕裂紋(SCC)
某些焊接結構(如壓力容器和管道等),在腐蝕介質和應力的共同作用下產生的延遲開裂
任何工作溫度
碳鋼、低合金鋼、不銹鋼、鋁合金
焊縫和熱影響區
沿晶或穿晶
『玖』 焊接時冷裂紋和熱裂紋是怎樣產生的
1、冷裂紋
冷裂紋的特徵
多出現在焊道與母材熔合線附近的熱影響區中,多為穿晶裂紋。
冷裂紋無氧化色彩。
冷裂紋發生於碳鋼或合金鋼,高的含碳量和合金含量。
冷裂紋具有延遲性質,主要是延遲裂紋。
冷裂紋產生原因
焊接接頭(焊縫和熱影響區及熔合區)的淬火傾向嚴重,產生淬火組織,導致接頭性能脆化。
焊接接頭含氫量較高,並聚集在焊接缺陷處形成大量氫分子,造成非常大的局部壓力,使接頭脆化;磷含量過高同樣產生冷裂紋。
存在較大的拉應力。因氫的擴散需要時間,所以冷裂紋在焊後需延遲一段時間才出現。由於是氫所誘發的,也叫氫致裂紋。
防止冷裂紋的措施
選用鹼性焊條或焊劑,減少焊縫金屬中氫的含量,提高焊縫金屬塑性。
焊條焊劑要烘乾,焊縫坡口及附近母材要去油、水、除銹,減少氫的來源。
工件焊前預熱,焊後緩冷(大部分材料的溫度可查表),可降低焊後冷卻速度,避免產生淬硬組織,並可減少焊接殘余應力。
採取減小焊接應力的工藝措施,如對稱焊,小線能量的多層多道焊等,焊後進行清除應力的退火處理。
焊後立即進行去氫(後熱)處理,加熱到250℃,保溫2~6h,使焊縫金屬中的散氫逸出金屬表面。
2、熱裂紋(又稱結晶裂紋)
熱裂紋的特徵
熱裂紋可發生在焊縫區或熱影響區,沿焊縫長度方向分布。
熱裂紋的微觀特徵是沿晶界開裂,所以又稱晶間裂紋。因熱裂紋在高溫下形成,
有氧化色彩。
焊後立即可見。
熱裂紋產生原因。
焊縫金屬的晶界上存在低熔點共晶體(含硫、磷、銅等雜質)。
接頭中存在拉應力。
防止措施
選用適宜的焊接材料,嚴格控制有害雜質碳、硫、磷的含量。Fe和FeS易形成低熔點共晶,其熔點為988℃,很容易產生熱裂紋。
嚴格控制焊縫截面形狀,避免突高,扁平圓弧過渡。
縮小結晶溫度范圍,改善焊縫組織,細化焊縫晶粒,提高塑性減少偏析。
確定合理的焊接工藝參數,減緩焊縫的冷卻速度,以減小焊接應力。如採用小線能量,焊前預熱,合理的焊縫布置等。
『拾』 在焊接中什麼是冷裂紋和熱裂紋
熱裂紋:沿晶開裂來,一般發生在近焊源縫或焊縫區。有氧化色彩,五金屬光澤。主要分為結晶裂紋,高溫液化裂紋和多變化裂紋三類。
冷裂紋:有時穿晶開裂有時沿晶開裂,一般發生在焊接熱影響區的熔合區或物理化學不均勻的氫聚集的局部地帶。冷裂紋是具有金屬光澤的脆性斷口。主要分為延遲裂紋,淬硬脆化裂紋和低塑性脆化裂紋三類。防止延遲裂紋的措施
①
選用鹼性焊條,減少焊縫金屬中氫含量、提高焊縫金屬塑性
②
減少氫來源棗焊材要烘乾,接頭要清潔(無油、無銹、無水)
③
避免產生淬硬組織棗焊前預熱、焊後緩冷(可以降低焊後冷卻速度)
④
降低焊接應力棗採用合理的工藝規范,焊後熱處理等
⑤
焊後立即進行消氫處理(即加熱到250℃,保溫2~6左右,使焊縫金屬中的擴散氫逸出金屬表面)。