A. 焊接常見問題及處理方法
一、焊接中的局部變形的原因及預防措施
(一)產生原因
(1)加工件的剛性小或不均勻,焊後收縮,變性不一致。(2)加工件本身焊縫布置不均,導致收縮不均勻,焊縫多的部位收縮大、變形也大。(3)加工人員操作不當,未對稱分層、分段、間斷施焊,焊接電流、速度、方向不一致,造成加工件變形的不一致。(4)焊接時咬肉過大,引起焊接應力集中和過量變形。5)焊接放置不平,應力集中釋放時引起變形。
(二)預防措施
(1)設計時盡量使工件各部分剛度和焊縫均勻布置,對稱設置焊縫減少交叉和密集焊縫。(2)制定合理的焊接順序,以減少變形。如先焊主焊縫後焊次要焊縫,先焊對稱部位的焊縫後焊非對稱焊縫, 先焊收縮量大的焊縫後焊收縮量小的焊縫,先焊對接焊縫後焊角焊縫。(3)對尺寸大焊縫多的工件,採用分段、分層、間斷施焊,並控制電流、速度、方向一致。(4)手工焊接較長焊縫時, 應採用分段進行間斷焊接法, 由工件的中間向兩頭退焊,焊接時人員應對稱分散布置,避免由於熱量集中引起變形。(5)大型工件如形狀不對稱,應將小部件組焊矯正完變形後,在進行裝配焊接,以減少整體變形。(6)工件焊接時應經常翻動,使變形互相抵消。(7)對於焊後易產生角變形的零部件,應在焊前進行預變形處理,如鋼板v 形坡口對接,在焊接前應將介面適當墊高,這樣可使焊後變平。(8)通過外焊加固件增大工件的剛性來限制焊接變形,加固件的位置應設在收縮應力的反面。
(三)處理方法
對已變形的工件,如變形不大,可採用火烤矯正。如變形較大,採用邊烤邊用千斤頂頂的方法矯正。
二 鋼結構焊接裂紋的原因及預防措施
(一)熱裂紋
熱裂紋是指高溫下所產生的裂紋, 又稱高溫裂紋或結晶裂紋,通常產生在焊縫內部,有時也可能出現在熱影響區,表現形式有:縱向裂紋、橫向裂紋、根部裂紋弧坑裂紋和熱影響區裂紋。其產生原因是由於焊接熔池在結晶過程中存在著偏析現象,低熔點共晶和雜質在結晶過程中以液態間層形式存在從而形成偏析,凝固以後強度也較低,當焊接應力足夠大時,就會將液態間層或剛凝固不久的固態金屬拉開形成裂紋。此外, 如果母材的晶界上也存在有低熔點共晶和雜質,當焊接拉應力足夠大時,也會被拉開。總之,熱裂紋的產生是冶金因素和力學因素共同作用的結果。針對其產生原因,其預防措施如下:
(1)限制母材及焊接材料(包括焊條、焊絲、焊劑和保護氣體)中易偏析元素和有害雜質的含量,特別應控制硫、磷的含量和降低含碳 ,一般用於焊接的鋼材中硫的含量不應大於0.04 5% ,磷的含量不應大於0.055% ;另外鋼材含碳量越離,焊接性能越差,一般焊縫中碳的含量控制在0.10% 以下時,熱裂紋敏感性可大大降低。(2)調整焊縫金屬的化學成分,改善焊縫組織,細化焊縫品粒,以提高其塑性,減少或分散偏析程度,控制低熔點共品的有害影響。(3)採用鹼性焊條或焊劑,以降低焊縫中的雜質含攝,改善結晶時的偏析程度。(4)適當提高焊縫的形狀系數,採用多層多道焊接方法, 避免中心線偏析,可防止中心線裂紋。(5)採用合理的焊接順序和方向,採用較小的焊接線能超,整體預熱和錘擊法,收弧時填滿弧坑等工藝措施。
(二) 冷裂紋
冷裂紋一般是指焊縫在冷卻過程中溫度降到馬氏體轉變溫度范圍內(300— 200℃以下)產生的,可以在焊接後立即出現,也可以在焊接以後的較長時間才發生, 故也稱為延遲裂紋。其形成的基本條件有3個:焊接接頭形成淬硬組織;擴散氫的存在和濃集;存在著較大的焊接拉伸應力。其預防措施主要有:
(1)選擇合理的焊接規范和線能 ,改善焊縫及熱影響區組織狀態, 如焊前預熱、控制層問溫度、焊後緩冷或後熱等以加快氫分子逸出。(2)採用鹼性焊條或焊劑,以降低焊縫中的擴散氧含量。(3)焊條和焊劑在使用前應嚴格按照規定的要求進行烘乾(低氫焊條300℃ ~3 50℃保溫lh;酸性焊條l 00℃ ~l50℃保溫lh;焊劑200℃~250。C保溫2h),認真清理坡口和焊絲,太除油污、水分和銹斑等臟物,以減少氫的來源。(4)焊後及時進行熱處理.一是進行退火處理,以消除內應力,使淬火組織回火,改善其韌性;二:是進行消氫處理, 使氫從焊接接頭中充分逸出。(5)提高鋼材質量,減少鋼材中的層狀夾雜物。(6)採取可降低焊接應力的各種工藝措施。
三、鋼結構焊接檢驗中的相關問題
(一)焊縫等級、檢驗等級、評定
等級的區別與聯系要求進行內部質量探傷的焊縫,按質量等級分一級和二級,稱一級焊縫和二級焊縫,此即為焊縫等級。檢驗等級系指檢驗檢測達到的精度,即檢測儀器與檢測方法結合而得到的檢測結果的精確程度。超聲波探傷採用G B /T ll 34 5 l 9 89標准按檢測等級由低到高分為A、B、C三個級別,射線探傷採用GB/T 3 3 2 3一l 9 8 7標准按檢測等級由低到高分為A、A B、B三個級別,它們分別規定了手工超聲波探傷的檢測方法、探測面、檢測范圍和允許缺陷當量(dB值)以及射線探傷所要達到的靈敏度(透照厚度與像質計的關系)。
評定級別是指探傷人員在檢出缺陷後依據標准對缺陷測量進而確定的焊縫內部質量級別。具體來說,超聲波探傷指對波高在測長線與判廢線之間(Ⅱ區)缺陷測長後,依標准GB/Tl1345 l989表6進行缺陷定級;射線探傷是指測量底片上缺陷指示長度和大小,依標准GB /T3 3 2 3一l987表6.表7、表9、表l0並綜合評級(見該標准l 6.1~l 6.4),這一條是每一個探傷人員必須熟練掌握的。
(二)超標缺陷處理與復探、擴探GB 50205 鋼結構工程施工質量驗收規范》只規定了檢測方法.檢測比例和合格級別, 對於缺陷的處理沒有明確要求。
參照JG l 8 l 建築鋼結構焊接技術規程》和其他行業焊接檢驗標准規范的要求,對十檢出的缺陷可作如下處理:(1)檢測出的不允許缺陷必須返修,返修後按同種檢測方法檢測合格後方認為該焊縫合格。(2)對要求抽查檢驗的焊縫,發現不允許缺陷後,應在被檢測區域兩端整條焊縫長度的各l 0%且不小於00inin(長度允許時)的區域擴檢。a)若在擴檢區域未發現超標缺陷,應認為該焊縫合格。b)若在擴檢區域發現超標缺陷,則該條焊縫全檢。(3)對於現場安裝要求抽查檢驗的焊縫,發現不允許缺陷後,按下述原則擴檢;a)增加該類型同一焊工焊接的兩條焊縫檢測,若此兩條擴檢焊縫未發現超標缺陷,應認為該批焊縫合格。b)若此兩條擴檢焊縫發現超標缺陷, 則每一條含超標缺陷的焊縫按卜述原則再各抽檢兩條焊縫。C)若再次抽檢的焊縫未發現超標缺陷,應認為該批焊縫合格。d)若再次抽檢的焊縫仍發現有超標缺陷, 則該焊工焊接的該類型焊縫全檢。同時,可協商適當增加其餘焊縫檢測比例。
B. 如何提高不銹網焊接韌性; 我司採用SUS201材料,採用TIG焊接工藝,但焊接後拉伸焊接處邊緣有20%的拉裂。
焊接過程中沒有出現裂紋,拉伸就時焊縫熔合區出現裂紋了?是不是焊後你就立即拉伸了呢?
C. 確保厚板焊接質量的常見措施和辦法有哪些
1 厚板焊接工藝
由於材料為低合金結構鋼,含有少量的合金元素,淬硬傾向大,焊接性差,焊縫中極易出現裂紋,因此厚板焊接是本工程的一大難題,為防止焊接缺陷的產生,除遵循上述「焊接通則」要求外,特製定如下工藝措施:
(1)焊接材料
①選擇強度、塑性、韌性相同的焊接材料,並且焊前要進行工藝評定試驗,合格後方可正式焊接,焊接材料選擇低氫型焊接材料。
②CO2氣體保護焊:選用葯芯焊絲E71T-1或ER50-6。
CO2氣體:CO2含量(V/V)不得低於99.9%,水蒸氣與乙醇總含量(m/m)不得高於0.005%,並不得檢出液態水。
③手工電弧焊時:選用焊條為E50型, 焊接材料烘乾溫度如下所示:
(2)焊前預熱
①為減少內應力,防止裂紋,改善焊縫性能,母材焊接前必須預熱。
②預熱最低溫度:
③T型接頭應比對接接頭的預熱溫度高25-50℃。
④操作地點環境溫度低於常溫時(高於0℃)應提高預熱溫度為15-25℃。
⑤預熱方法
採用電加熱和火焰加熱兩種方式,火焰加熱僅用於個別部位且電加熱不宜施工之處,並應注意均勻加熱。電加熱預熱溫度由熱電儀自動控制,火焰加熱用測溫筆在離焊縫中心75mm的地方測溫,測溫點應選取加熱區的背面。
(3)工藝參數選擇
為提高過熱區的塑性、韌性,採取小線能量進行焊接。根據焊接工藝評定結果,選用科學合理的焊接工藝參數。
(4)焊接過程採取的措施
①由於後層對前層有消氫作用,並能改善前層焊縫和熱影響區的組織,採用多層多道焊,每一焊道完工後應將焊渣清除干凈並仔細檢查和清除缺陷後再進行下一層的焊接。
②每層焊縫始終端應相互錯開50mm左右。
③層間溫度必須保持與預熱溫度一致。
④每道焊縫一次施焊中途不可中斷。
⑤焊接過程中採用邊振邊焊技術或錘擊消除焊接應力。
在邊焊邊振過程中,可以延遲焊縫組織結晶,使焊縫中的H等有害雜質有更充足的時間逸出,從而降低焊縫金屬含氫量及雜質偏析,減少裂紋及層狀撕裂趨向;可使焊縫晶粒更加細化,提高焊接接頭塑性和韌性,從而大大提高焊接接頭的機械性能;焊縫金屬在振動狀態下結晶,可降低焊接應力,提高焊縫抗層狀撕裂及抗疲勞能力。
⑥焊接過程要注意每道焊縫的寬深比大於1.1。
(5)採取合理的焊接順序及坡口形式可降低焊縫內應力:
厚板接料盡量採取對稱的X型坡口,並且對稱焊接。
(6)後熱:
後熱不僅有利於氫的逸出,可在一定程度上降低殘余應力,適當改善焊縫的組織,降低淬硬性,因此焊後立即將焊縫加熱至200-250℃,並且保溫時間不得小於1小時。
(7)外觀質量控制:
焊縫加強高及過渡角的圓滑過渡可適當提高接頭的疲勞強度,因此:
①對焊縫內部質量在焊後24小時按規定進行無損檢測。
②對焊縫的外表面要進行磁粉探傷。
對焊縫外觀進行打磨處理,不得出現加強高過高、焊縫咬邊等缺陷。
(8)厚板焊接防止層狀撕裂的措施
板厚方向承受焊接拉應力的板材端頭伸出接頭焊縫區;
工藝措施:
採用氣體保護焊施焊,並匹配葯芯焊絲。
消氫處理:
消氫處理的加熱溫度應為200-250℃,保溫時間應依據工件板厚按每25mm板厚不小於0.5h、且總保溫時間不得小於1h確定。達到保溫時間後應緩冷至常溫。
消氫處理的加熱和保溫方法按上述方法中規定執行。
採用邊振動邊焊接工藝:
在邊焊邊振過程中,可以延遲焊縫組織結晶,使焊縫中的H等有害雜質有更充足的時間逸出,從而降低焊縫金屬焊量及雜質偏析,減少裂紋及層狀撕裂趨向;可使焊縫晶粒更加細化,提高焊接接頭塑性和韌性,從而大大提高焊接接頭的機械性能;焊縫金屬在振動狀態下結晶,可降低焊接應力,提高焊縫抗層狀撕裂及抗疲勞能力。
2 厚板焊接t8/5值及焊接規范控制
(1)厚板焊接存在的一個重要問題是焊接過程中,焊縫熱影響區由於冷卻速度較快,在結晶過程中最容易形成粗晶粒馬氏體組織,從而使焊接時鋼材變脆,產生冷裂紋的傾向增大。因此在厚板焊接過程中,一定要嚴格控制t8/5。即控制焊縫熱影響區尤其是焊縫熔合線處,從800℃冷卻到500℃的時間,即t8/5值。
(2)t8/5過於短暫時,焊縫熔合線處硬度過高,易出現淬硬裂紋;t8/5過長,則熔合線處的臨界轉變溫度會升高,降低沖擊韌性值,對低合金鋼,材質的組織發生變化。出現這兩種情況,皆直接影向焊接結頭的質量。
(3)對於手工電弧焊,焊接速度的控制:在工藝上規定不同直徑的焊條所焊接的長度,規定焊工按此執行,從而確保焊接速度,其它控制採用電焊機控制,從而達到控制焊接線能量的輸入,達到控制厚板焊接質量之目的。
3 厚板加熱方法
厚板焊接預熱,是工藝上必須採取的工藝措施,對於本工程鋼結構焊接施工採用電加熱板預加熱的方法。加熱時應力求均勻,預熱范圍為坡口兩側至少2t,且不小於100mm
寬,測溫點應在離電弧經過前的焊接點各方向不小於75mm處;預熱溫度宜在焊件反面測量。
經研究表明產生氫致裂紋要以下四項基本先決條件:
(1)敏感的微觀組織(硬度是敏感度的一個粗略的指標)
(2)適當的擴散氫含量
(3)合適的拘束度
(4)適宜的溫度
其中一項或幾項是處於支配地位的,但這四項條件都必須具備才會產生氫致裂紋。防止氫致裂紋的實用方法就是預熱,就是設法控制這些因素中的一項或幾項。
一般來說有兩種不同的方法來預估預熱溫度。根據大量的裂紋試驗,提出一種基於熱影響區臨界值,就可消除氫致裂紋的危險。被認可的臨界硬度可能是氫含量的函數。另一種預估預熱溫度的方法是基於控制氫。為弄清低溫時的冷卻速度即300℃~100℃之間的冷卻速度的作用,已經通過高約束度下坡口焊縫試驗確立了臨界冷卻速度,化學成份以及氫含量之間的關系。
通過上述的理論分析,經實踐試驗證明對於板厚不小於36mm的鋼板預熱溫度達到120℃即可,對於t=60~70mm的鋼板預熱溫度需達到150℃。
4 層間溫度控制
(1)厚板為防止出現裂紋採取加熱預熱後,在焊接過程中應注意的一個重要問題,就是焊縫層間溫度控制措施。如果層間溫度不控制,焊縫區域會出現多次熱應變,造成的殘余應力對焊縫質量不利,因此在焊接過程中,層間溫度必須嚴格控制。
(2)層間溫度一般控制在200℃~250℃之間。為了保持該溫度,厚板在焊接時,要求一次焊接連續作業完成。
(3)當構件較長(L>10米)時,在焊接過程中,厚板冷卻速度較快,因此在焊接過程中一直保持預加熱溫度,防止焊接後的急速冷卻造成的層間溫度的下降,焊接時還可採取焊後立即蓋上保溫板,防止焊接區域溫度過快冷卻。
D. 鑄造件,焊接件製作完成後需要進行那種熱處理
焊接後需要進行熱處理的材料: 10#、20#、20G、20ANTI-HCI, 16Mn、16MnR, 09MnNiD, 15CrMo、15CrMoG。
焊後為改善焊接接頭的顯微組織和性能或消除焊接殘余應力而進行的熱處理,稱為焊後熱處理。焊接接頭的焊後熱處理作用是:
(1)降低殘余應力。
(2)調整焊接接頭機械性能。
(3)改善焊縫金屬熱影響區金相組織。
焊後消除應力熱處理的作用如下:
(1)降低或消除由於焊接而產生的殘余焊接應力。
(z)降低熱影響區硬度。
(3)降低焊縫中的擴散氫含量。
(4)提高焊接接頭的塑性。
(5)提高焊接接頭沖擊韌性和斷裂韌性。
(6)提高抗應力腐蝕能力。
(7)提高組織穩定性。
E. 低合金高強鋼的焊接經常會出現冷裂紋、熱裂紋問題,有沒有什麼改善措施呢
鋼結構焊接常出現的另一質量問題是產生焊接裂紋。分為熱裂紋和冷裂紋兩類。
熱裂紋是指高溫下所產生的裂紋,又稱高溫裂紋或結晶裂紋,通常產生在焊縫內部,有時也可能出現在熱影響區,表現形式有:縱向裂紋、橫向裂紋、根部裂紋弧坑裂紋和熱影響區裂紋。其產生原因是由於焊接熔池在結晶過程中存在著偏析現象,低熔點共晶和雜質在結晶過程中以液態間層形式存在從而形成偏析,凝固以後強度也較低。當焊接應力足夠大時,就會將液態間層或剛凝固不久的固態金屬拉開,形成裂紋。此外,如果母材的晶界上也存在有低熔點共晶和雜質,當焊接拉應力足夠大時,也會被拉開。總之,熱裂紋的產生是冶金因素和力學因素共同作用的結果。
針對其產生原因,其預防措施如下:
限制母材及焊接材料(包括焊條、焊絲、焊劑和保護氣體)中易偏析元素和有害雜質的含量,特別應控制硫、磷的含量和降低含碳,一般用於焊接的鋼材中硫的含量不應大於0.045%,磷的含量不應大於0.055%;另外鋼材含碳量越離,焊接性能越差,一般焊縫中碳的含量控制在0.10%以下時,熱裂紋敏感性可大大降低。二是調整焊縫金屬的化學成分,改善焊縫組織,細化焊縫品粒,以提高其塑性,減少或分散偏析程度,控制低熔點共品的有害影響。三是採用鹼性焊條或焊劑,以降低焊縫中的雜質含攝,改善結晶時的偏析程度。適當提高焊縫的形狀系數,採用多層多道焊接方法,避免中心線偏析,也可防止中心線裂紋。另外在操作時採用合理的焊接順序和方向,採用較小的焊接線能超,整體預熱和錘擊法,收弧時填滿弧坑等工藝措施,也能預防熱裂紋的產生。
冷裂紋一般是指焊縫在冷卻過程中溫度降到馬氏體轉變溫度范圍內(300~200℃以下)產生的裂紋。可以在焊接後立即出現,也可以在焊接以後的較長時間才發生,故也稱為延遲裂紋。其形成的基本條件有3個:焊接接頭形成淬硬組織;擴散氫的存在和濃集;存在著較大的焊接拉伸應力。
冷裂紋的預防措施主要有幾方面:
一是選擇合理的焊接規范和線能,改善焊縫及熱影響區組織狀態,如焊前預熱、控制層間溫度、焊後緩冷或後熱等以加快氫分子逸出;
二是採用鹼性焊條或焊劑,以降低焊縫中的擴散氧含量。
三是焊條和焊劑在使用前應嚴格按照規定的要求進行烘乾(低氫焊條300℃~350℃保溫lh;酸性焊條l00℃~l50℃保溫lh;焊劑200℃~250°保溫2h),認真清理坡口和焊絲,汰除油污、水分和銹斑等臟物,以減少氫的來源。
四是焊後及時進行熱處理。一種是進行退火處理,以消除內應力,使淬火組織回火,改善其韌性;二是進行消氫處理,使氫從焊接接頭中充分逸出。除此之外,選材上提高鋼材質量,減少鋼材中的層狀夾雜物,工藝上採取可降低焊接應力的各種措施,也都是必要的。
F. 為了保證焊縫質量,需要什麼措施
焊接從母材和焊條熔化到熔池的形成、停留、結晶,其過程發生了許多的冶金化學反應,這樣就影響了焊縫的化學成分、組織、力學性能(強度、硬度、韌性和疲勞極限) 、物理和化學性能,因此,焊縫的質量好壞關繫到焊件的質量好壞,會影響到焊件的使用性能。所以我們應該對如何提高焊縫的質量進行分析。
一、熔焊冶金機理
1. 氧化
熔池的體積很小,受電弧加熱升溫很快,溫度可達2000 ℃或更高。在高溫下氧氣發生分解,成為氧原子,這樣,其化學性質非常活潑,容易與金屬和碳發生氧化反應,形成大量的金屬氧化物和非金屬氧化物,反應方程式如下:
Fe + O = FeO Mn + O = MnO
Si + 2O = SiO2 2Cr + 3O = Cr2O3
C + O = CO
這樣,Fe 、Mn、Si 、C 等元素大量燒損,使焊縫金屬含氧量增加,焊縫力學性能大大下降(如低溫沖擊韌性明顯下降,引起冷脆,使得焊件在低溫條件下的安全性降低) 。當焊縫凝固冷卻後,FeO 轉變為Fe3O4 ,它使焊縫金屬的屈服極限、沖擊韌度、疲勞極限。SiO2 、MnO 如果沒有充足的時間上浮,則成為夾雜物。CO如果沒有析出,則成為焊縫中氣孔。這些夾雜物和氣孔都會降低焊縫的性能。焊接高碳鋼和鑄鐵時容易發生CO 氣孔;焊接灰口鑄鐵時,由於碳、硅的燒損,冷卻快,焊縫會成為硬脆的白口組織。
2. 熔池吸氣
(1) 吸氮。由於受到高溫的影響,氮氣也要發生分解,形成氮原子,溶於液態金屬中,在冷卻過程中要發生相變(奧氏體轉變為鐵素體) ,氮在固溶體中的溶解度發生突降,最後以Fe4N 析出,由於Fe4N 呈片狀夾雜物,雖然使得焊縫金屬的硬度增高,但塑性下降。
(2) 吸氫。焊接接頭表面附著的油、鐵銹所含水分、焊條葯皮中配用的有機物等,經高溫分解產生氫,氫以原子的形式被液態金屬所吸收。當溫度降低時,過飽和的氫將從液態金屬中析出,成為氣孔。當焊縫凝固至室溫時,過飽和氫原子擴散到微孔中結合成氫
分子。在微孔中氫的壓力逐漸增大,使焊縫產生裂紋。高碳鋼和合金鋼容易產生氫裂。
3. 焊接應力
由於焊縫不能自由收縮而引起焊接應力,焊接應力可以引起變形,降低結構的承載能力,引發焊接裂紋,甚至造成結構脆斷。
二、提高焊縫質量措施
為了保證焊接質量,在焊接過程中,通常採取下列措施:
1.脫氧及摻合金。為了補償燒損的合金,提高焊縫的力學性能和物理化學性能,在焊條葯皮中加入錳鐵合金等進行脫氧、脫硫、脫磷、去氫、滲合金等,從而保證焊縫的性能。
Mn + FeO = MnO + Fe Si + 2FeO = SiO2 + 2Fe
MnO + FeS = MnS + FeO CaO + FeS = CaS + FeO
2Fe3P + 5FeO = P2O5 + 11Fe
生成的MnS、CaS、硅酸鹽MnO. SiO2 和穩定的復合物(CaO) 3&8226;P2O5 不溶於金屬,進入焊渣,最終被清理掉。
2. 焊前進行清理。對坡口以及焊縫兩側的油、銹及其它雜物進行清理;對焊條、焊劑進行烘乾,可降低吸氫現象。
3. 合理的焊接順序和焊接方向。先焊收縮量大的焊縫,以保證焊縫能夠自由收縮;拼板時,先焊錯開的短焊縫,後焊通直的長焊縫。另外,焊前預熱、焊後錘擊焊縫金屬,使之延伸,可以減少焊接應力。
4. 形成保護氣氛( 如CO2 、氬氣等) ,限制空氣侵入。
5. 控制電弧長度。因為電弧越長, 侵入的氧越多。
61. 對於重要的焊接結構,若焊接接頭的組織和性能不能滿足要求時,可採取焊後熱處理(退火、回火、淬火) 改善焊接接頭的組織和性能,同時也可以消除或減少焊接應力。
通過以上措施,可以提高焊縫的質量,同時也使得焊件的質量得到保證。
首先要確定母材的焊接方式,其次是看出現焊接不良的幾率,如果普通422不可以,那就選用別的焊條,以及預熱,用氣焊槍就可以局部預熱,並可進行焊後熱處理進行應力消除,振動時效和超聲沖擊處理效果也不錯,尤其超聲沖擊,應力消除率可大100%,就是投入大點,估計要15W左右吧!!!
G. 焊接時怎樣提高鋼的沖擊韌性
首先應該選擇與木材材質接近的焊條,其次嚴格執行焊接工藝,盡量減少熱輸入,對於一些中高合金鋼焊後應該立即進行焊後熱處理,對於要求較高的零部件,焊後可以將焊縫利用機械方法磨平。
H. 何謂「韌性」其力學性能指標是什麼如何防止零件韌性不足導致斷裂。
韌性,物理學概念,表示材料在塑性變形和破裂過程中吸收能量的能力。韌性越好,則發生脆性斷裂的可能性越小。韌性可在材料科學及冶金學上,韌性是指材料受到使其發生形變的力時對折斷的抵抗能力,其定義為材料在斷裂前所能吸收的能量與體積的比值。為防止鋼結構的脆性斷裂,除了必要時需按斷裂力學原理作斷裂分析外,一般應注意以下幾個方面:
①合理設計和選用鋼材:具體設計時應注意選擇合適的結構方案和桿件截面、連接及構造型式,避免截面的急劇改變,減小構造應力集中。應根據結構的荷載情況(包括靜力或動力性質)、所處環境溫度和所用鋼材厚度,選用合適的鋼種並提出需要的技術要求(包括必要的沖擊韌性要求)等。
②合理製造和安裝:鋼材的冷加工易使鋼材發生硬化和變脆,應採取措施盡量減少其不利影響。焊接尤其是手工焊接容易產生裂紋或類似裂紋式缺陷,應選擇合適的焊接工藝和參數,力求減少焊接缺陷,如對厚鋼板採用焊前預熱、焊後保溫或熱處理等措施、使用合格焊工、必要的質量檢驗等。對結構和構件的拼裝應採用合理的工藝順序,提高精度,減小焊接和裝配殘余應力。
③建立必要的使用維修規定和措施:應保證結構按設計規定的用途、荷載和環境條件使用不得超規范使用。建立必要的維修措施,經常監視結構尤其是承受動力荷載結構發生裂紋或類裂紋等缺陷或損壞的情況。
I. 簡述改善鋼材可焊性的措施有哪些
改善高強度鋼焊接性能的措施是多方面的,主要包括以下三個方面:一是鋼內材的化學成分設計容時即充分考慮可焊性方面的要求,嚴格控制鋼材的碳當量在一定的范圍內,盡量減少鋼材自身的脆性;二是從冶煉生產工藝上盡量降低甚至消除各種有害雜質如S、P、Sn、Sb、As等,並通過工藝措施控制夾雜物的形態;三是改善焊接工藝,避免造成很大的焊接應力,盡量減輕或避免脆性的發生。
J. 提高焊縫金屬韌性的途徑
進行預熱及後熱,避免焊縫冷卻過快,用合理的熱輸入梁,多層多道焊,焊後回火處理,用低氫型焊條