① 鋼筋有哪幾種錨固形式,錨固長度是多少
鋼筋錨固分為直錨和彎錨。
能直錨時可採用直錨方式,錨固長度lae,當直錨長度不足時,可採用彎錨方式,錨固長度0.4lae+15d,其中,0.4lae是平直段,15d是彎折後的錨固段。
② 為使鋼筋在混凝土中有可靠的錨固,可採取哪些措施
為使鋼筋在混凝土中有可靠的錨固,可採取措施:
1、有足夠的錨固長度;
2、光圓鋼筋:專180 度彎鉤;
3、帶肋鋼筋可屬採用末端直鉤和機 械錨固(末端帶 135 度彎鉤,末端與鋼板塞焊,末端與短鋼筋雙面貼焊) 。
4、鋼筋表面變形(螺紋鋼)。
5、在鋼筋端部設置錨固環、錨固板。
③ 提高鋼筋和混凝土之間粘結力的措施有哪些
這些措施都對,但還不全面。其中,1)(採用螺紋鋼)3)5)6)措施均屬於提高回鋼答筋在混凝土中的錨固強度;2)4)措施屬於構造要求,保證混凝土有足夠錨固能力。這些措施都沒有涉及提高鋼筋與混凝土之間的粘結強度。
提高鋼筋與混凝土的粘結強度可以採取的措施為:提高混凝土強度或使用高強混凝土;使用鋼纖維混凝土。
④ 鋼筋錨固具體指的是什麼彎鉤與錨固的區別是什麼
鋼筋錨固具體指的是鋼筋被灌注在混凝土中,增強混凝土與鋼筋的連接,共同承擔應力。專
唯一的區別屬是錨固受力鋼筋伸進支座內的總長度,而彎鉤長度僅僅指鋼筋彎鉤的鉤本身長度。
鋼筋混凝土結構中鋼筋能夠受力,依靠鋼筋和混凝土之間的粘結錨固作用,因此鋼筋的錨固是混凝土結構受力的基礎。如錨固失效,則結構將喪失承載能力並由此導致結構破壞。
鋼筋的錨固長度
在工程中常用「鋼筋的錨固長度」一詞,鋼筋的錨固長度一般指梁、板、柱等構件的受力鋼筋伸入支座或基礎中的總長度,包括直線及彎折部分。
如果沒有足夠的錨固長度,鋼筋受力就不能有效傳遞給錨固體,為保證鋼筋傳力效果,應根據鋼筋的受力情況、保護層厚度、鋼筋形式等具體錨固條件對粘結強度的影響,按混凝土結構設計規范確定鋼筋的錨固長度,且不應小於200mm。
⑤ 建築工程鋼筋錨固性能有哪些
鋼筋混凝土結構抄中,兩種性襲能不同的材料能夠共同受力是由於它們之間存在著粘結錨固作用,這種作用使接觸界面兩邊的鋼筋與混凝土之間能夠實現應力傳遞,從而在鋼筋與混凝土中建立起結構承載所必須的工作應力。
鋼筋在混凝土中的粘結錨固作用有:膠結力即接觸面上的化學吸附作用,但其影響不大;摩阻力它與接觸面的粗糙程度及側壓力有關,且隨滑移發展其作用逐漸減小;咬合力這是帶肋鋼筋橫肋對肋前混凝土擠壓而產生的,為帶肋鋼筋錨固力的主要來源;機械錨固力這是指彎鉤、彎折及附加錨固等措施(如焊錨板、貼焊鋼筋等)提供的錨固作用。
鋼筋基本錨固長度,取決於鋼筋強度及混凝土抗拉強度,並與鋼筋外形有關。《混凝土結構設計規范》(GB50010-2002)給出了受拉鋼筋的錨固長度la計算公式。
ft混凝土軸心抗拉強度設計值(N/mm2);當混凝土強度等級高於C40時,按C40取值;
α鋼筋外形系數,光面鋼筋為0.16,帶肋鋼筋0.14,螺旋肋鋼絲0.13;
d鋼筋的公稱直徑(mm)。
上式應用時,應將計算所得的基本錨固長度乘以對應於不同錨固條件的修正系數。
⑥ 請問建築工程鋼筋的錨固形式有哪幾種類型
錨固長度一般指梁、板、柱等構件的受力鋼筋伸入支座或基礎中的總長度,可以直線錨固和彎折錨固。彎折錨固長度包括直線段和彎折段。錨固長度對於建築來說至關重要,甚至關繫到整個工程施工的成功與否。在工程中常用「鋼筋的錨固長度」一詞,鋼筋的錨固長度一般指梁、板、柱等構件的受力鋼筋伸入支座或基礎中的總長度,包括直線及彎折部分,如果沒有足夠的錨固長度,鋼筋受力就不能有效傳遞給錨固體,為保證鋼筋傳力效果,應根據鋼筋的受力情況、保護層厚度、鋼筋形式等具體錨固條件對粘結強度的影響,按《混凝土結構設計規范》(GB50010-2010)第8.3.1條確定鋼筋的錨固長度,且不應小於200mm。
鋼筋錨固長度(anchorage length of steel bar)受力鋼筋通過混凝土與鋼筋的粘結將所受的力傳遞給混凝土所需的長度,用來承載上部所受的荷載。混凝土結構設計使用一個計算公式來計算錨固長度,這個公式內含有一項「鋼筋外形系數」,對光面鋼筋、帶肋鋼筋、刻痕鋼絲、螺旋肋鋼絲、鋼絞絲等不同類型的鋼筋規定了不同的系數。再以鋼筋的錨固形式、錨固區的混凝土保護層厚度、設計計算面積與實際配筋面積的比值等等因素,對計算的錨固長度進行修正,可以得到鋼筋錨固長度。這樣計算的結果雖然比較精確,但卻因得出的數據太多,一般不採用。
⑦ 鋼筋的錨固形式
鋼筋錨固分為直錨和彎錨。
能直錨時可採用直錨方式,錨固長度lae,當直錨長度不足時,可採用彎錨方式,錨固長度0.4lae+15d,其中,0.4lae是平直段,15d是彎折後的錨固段。
鋼筋的錨固長度一般指梁、板、柱等構件的受力鋼筋伸入支座或基礎中的總長度,可以直線錨固和彎折錨固。彎折錨固長度包括直線段和彎折段。
鋼筋錨固長度的計算。根據混凝土結構設計規范的規定:
當計算中充分利用鋼筋的抗拉強度時,受拉鋼筋(普通鋼筋)的基本錨固長度應按下列公示計算:
Lab=α×(fy/ft)×d。
式中:Lab為受拉鋼筋的基本錨固長度;
fy為錨固鋼筋的抗拉強度設計值;
ft為混凝土的軸心抗拉強度設計值;
α為錨固鋼筋的外形系數,光圓鋼筋取0.16,帶肋鋼筋取0.14;
d為錨固鋼筋的直徑。
鋼筋錨固長度規范:在混凝土結構基本理論中,受混凝土的極限應變值的限制,強度過高的鋼筋發揮不出其全部作用(這正是混凝土設計規范和施工規范不設Ⅳ級鋼筋的理論依據),Ⅳ級鋼筋的塑性性能和可焊性比新Ⅲ級鋼筋差,用在普通混凝土結構中並不合適,也不經濟。
即便是Ⅳ級鋼筋,其強度設計值也只能取到360N/mm2(與Ⅲ級鋼筋相同),且當用於軸心受拉和小偏心受拉構件時只能按300N/mm2取用。因此,高於Ⅲ級的鋼筋的錨固長度取值按Ⅲ級鋼筋即可。
⑧ 鋼筋混凝土結構的加固方法主要有有哪些
鋼筋混凝土結構直接加固方法有:
1、加大截面加固法
該法施工工藝簡單、適應*強,並具有成熟的設計和施工經驗;適用於梁、板、柱、牆和一般構造物的混凝土的加固;但現場施工的濕作業時間長,對生產和生活有一定的影響,且加固後的建築物凈空有一定的減小。
2、置換混凝土加固法
該法的優點與加大截面法相近,且加固後不影響建築物的凈空,但同樣存在施工的濕作業時間長的缺點;適用於受壓區混凝土強度偏低或有嚴重缺陷的梁、柱等混凝土承重構件的加固。
3、有粘結外包型鋼加固法
該法也稱濕式外包鋼加固法,施工簡便、現場工作量較小,但用鋼量較大,且不宜在無防護的情況下用於600C以上高溫場所;適用於使用上不允許顯著增大原構件截面尺寸,但又要求大幅度提高其承載能力的混凝土結構加固。
4、粘貼鋼板加固法
該法施工快速、現場無濕作業或僅有抹灰等少量濕作業,對生產和生活影響小,且加固後對原結構外觀和原有凈空無顯著影響,但加固效果在很大程度上取決於膠粘工藝與操作水平;適用於承受靜力作用且處於正常濕度環境中的受彎或受拉構件的加固。
5、粘貼纖維增強塑料加固法
除具有粘貼鋼板相似的優點外,還具有耐腐濁、耐潮濕、幾乎不增加結構自重、耐用、維護費用較低等優點,但需要專門的防火處理,適用於各種受力材質的混凝土結構構件和一般構築物。
6、繞絲法
該法的優缺點與加大截面法相近;適用於混凝土結構構件斜截面承載力不足的加固,或需對受壓構件施加橫向約束力的場合。
7、錨栓錨固法
該法適用於混凝土強度等級為C20~C60的混凝土承重結構的改造、加固;不適用於已嚴重風化的上述結構及輕質結構。
⑨ 鋼筋的錨固有幾種形式
分兩種:非抗震與抗震,內容是不同的。 選擇錨固長度的前提條件是混凝土強度等級與抗震等級,然後參照鋼筋種類決定。在任何情況下,錨固長度不得小於250mm。
非框架梁下部縱筋的錨固長度為12d;非框架梁包括:簡支梁;連系梁;樓梯梁;過梁;雨蓬陽台梁;但不包括圈樑懸挑梁和基礎梁,圈樑懸挑梁和基礎梁另有規定。
當邊柱內側柱筋頂部和中柱筋頂部的直錨長度小於錨固長度時,可向內或向外側彎12d直角鉤。
鋼筋錨固長度的計算根據《混凝土結構設計規范》GB50010-2010 8.3.1條的規定:
當計算中充分利用鋼筋的抗拉強度時,受拉鋼筋(普通鋼筋)的基本錨固長度應按下列公示計算:
Lab=α×(fy/ft)×d。
式中:Lab為受拉鋼筋的基本錨固長度;
fy為錨固鋼筋的抗拉強度設計值;
ft為混凝土的軸心抗拉強度設計值;
α為錨固鋼筋的外形系數,光圓鋼筋取0.16,帶肋鋼筋取0.14;
d為錨固鋼筋的直徑。
(9)2增大鋼筋的錨固性能的方式有哪些擴展閱讀
影響粘結錨固的因素:
① 混凝土強度的影響——混凝土強度越高,咬合齒越強,握裹層混凝土的劈裂就越不容易發生,故粘結錨固作用越強。
② 保護層厚度——混凝土保護層越厚,對錨固鋼筋的約束越大;咬合力對握裹層混凝土的劈裂越難發生,粘結錨固作用越強。當保護層厚度大到一定程度,混凝土不會發生劈裂破壞,而會發生咬合齒擠壓破碎引起的刮犁拔出破壞。
③ 鋼筋的外形——鋼筋的外形決定了混凝土咬合齒的形狀,因而對錨固強度影響很大。
④ 錨固區域的配箍——錨固區箍筋可加大混凝土的約束。
⑩ 什麼叫鋼筋的機械錨固
機械錨固是相對於縱筋的錨固來說的,當縱筋受到支座寬度等限制時,可能無法滿足直錨長度或彎錨平直段的最小要求,而採取的錨固端加強的一種措施。鋼筋伸入支座的長度,設計和規范有規定,一般為Lae(是縱向受拉鋼筋的抗震錨固長度)任何情況下不得小於250mm。錨固長度是指鋼筋伸入砼支座的長度。鋼筋的錨固長度就是為了加強鋼筋與混凝土的機械咬合力。
錨桿支護廣泛應用於地下工程且使用量逐年增加。預應力結構能否形成是判斷錨桿支護合理性的標准,預應力結構的厚度及承載力是控制圍岩變形的關鍵,它取決於構件的布置及預拉力的大小,國內金屬錨桿在300k.m扭矩作用下預緊力一般在10—30kn,在受爆破等的影響下緊固件松動,造成圍岩反復松動,支護效果差。現國內相近的金屬錨桿三種,一種是專利號99221864.0所述的回採巷道脹殼式快速安裝錨桿,桿身由圓鋼製成,其外端加工螺紋,採用托盤和螺母緊固,其桿尾加工成圓台形,安裝時套上一個帶有槽縫的圓筒形脹殼。其不足是:1、桿尾為圓台式,圓台的大頭直徑幾乎等於鑽孔直徑,無法使用樹脂葯卷進行加長錨固;2、其脹殼為圓筒形,與鑽孔壁產生的摩擦力低,錨桿容易松動,失去預應力的作用。第二種是普通的螺紋鋼錨桿,其外端採用托盤和與螺紋鋼螺絲相配套的螺母緊固,尾部採用樹脂葯卷錨固,其不足是:1、外端的螺紋依靠桿體的自身螺紋,螺距大,緊固時預應力小;2、尾部採用樹脂葯卷錨固,緊固時需待葯卷凝固後再進行安裝速度慢。第三種是倒楔式錨桿,錨桿尾部與配合的小楔緊固,受其結構限制,其缺點是預應力小。為此,發明了全預應力金屬錨桿機械錨固裝置,力求克服上述問題。