1. 含碳量對碳鋼的組織和力學性能有什麼影響
一般碳的含量越高硬度越大,韌性降低!以下是各種鋼的特點的一些簡介:
1
碳鋼
碳鋼也叫碳素鋼,是含碳量wc小於2%的鐵碳合金。碳鋼除含碳外一般還含有少量的硅、錳、硫、磷。
按用途可以把碳鋼分為碳素結構鋼、碳素工具鋼和易切削結構鋼三類。碳素結構鋼又可分為建築結構鋼和機器製造結構鋼兩種。
按含碳量可以把碳鋼分為低碳鋼(wc≤0.25%),中碳鋼(wc 0.25%一0.6%)和高碳鋼(wc >O.6%)按磷、硫含量可以把碳素鋼分為普通碳素鋼(含磷、硫較高)、優質碳素鋼(含磷、硫較低)和高級優質鋼(含磷、硫更低) 。
一般碳鋼中含碳量越高則硬度越高,強度也越高,但塑性降低。
2
碳素結構鋼
這類鋼主要保證力學性能,故其牌號體現其力學性能,用Q+數字表示,其中「Q」為屈服點「屈」字的漢語拼音字首,數字表示屈服點數值,例如Q275表示屈服點為275MPa。若牌號後面標注字母A、B、C、D,則表示鋼材質量等級不同,含s、P的量依次降低,鋼材質量依次提高。若在牌號後面標注字母「F」則為沸騰鋼,標注「b」為半鎮靜鋼,不標注「F,』或「b」者為鎮靜鋼。例如Q235-A·F表示屈服點為235MPa的A級沸騰鋼,Q235-c表示屈服點為235MPa的c級鎮靜鋼。
碳素結構鋼一般情況下都不經熱處理,而在供應狀態下直接使用。通常Q195、Q215、Q235鋼碳的質量分數低,焊接性能好,塑性、韌性好,有一定強度,常軋製成薄板、鋼筋、焊接鋼管等,用於橋梁、建築等結構和製造普通鉚釘、螺釘、螺母等零件。Q255和Q275鋼碳的質量分數稍高,強度較高,塑性、韌性較好,可進行焊接,通常軋製成型鋼、條鋼和鋼板作結構件以及製造簡單機械的連桿、齒輪、聯軸節、銷等零件。
3
優質結構鋼
這類鋼必須同時保證化學成分和力學性能。其牌號是採用兩位數字表示鋼中平均碳的質量分數的萬分數(wс×10000)。例如45鋼表示鋼中平均碳的質量分數為0.45%;08鋼表示鋼中平均碳的質量分數為0.08%。
優質碳素結構鋼主要用於製造機器零件。一般都要經過熱處理以提高力學性能。根據碳的質量分數不同,有不同的用途。08、08F、10、10F鋼,塑性、韌性高,具有優良的冷成形性能和焊接性能,常冷軋成薄板,用於製作儀表外殼、汽車和拖拉機上的冷沖壓件,如汽車身、拖拉機駕駛室等;15、20、25鋼用於製作尺寸較小、負荷較輕、表面要求耐磨、心部強度要求不高的滲碳零件,如活塞銷、樣板等;30、35、40、45、50鋼經熱處理(淬火+高溫回火)後具有良好的綜合力學性能,即具有較高的強度和較高的塑性、韌性,用於製作軸類零件,例如40、45鋼常用於製造汽車、拖拉機的曲軸、連桿、一般機床主軸、機床齒輪和其他受力不大的軸類零件;55、60、65鋼熱處理(淬火+中溫回火)後具有高的彈性極限,常用於製作負荷不大、尺寸較小(截面尺寸小於12~15mm)的彈簧,如調壓和調速彈簧、柱塞彈簧、冷卷彈簧等。
4
碳素工具鋼
碳素工具鋼是基本上不含合金元素的高碳鋼,含碳量在0.65%~1.35%范圍內,其生產成本低,原料來源易取得,切削加工性良好,處理後可以得到高硬度和高耐磨性,所以是被廣泛採用的鋼種,用來製造各種刃具、模具、量具
但這類鋼的紅硬性差,即當工作溫度大於250℃時,鋼的硬度和耐磨性就會急劇下降而失去工作能力。另外,碳素工具鋼如製成較大的零件則不易淬硬,而且容易產生變形和裂紋。
5
易切削結
構鋼
易切削結構鋼是在鋼中加入一些使鋼變脆的元素,使鋼切削時切屑易脆斷成碎屑,從而有利於提高切削速度和延長刀具壽命。使鋼變脆的元素主要是硫,在普通低合金易切削結構鋼中使用了鉛、碲、鉍等元素。
這種鋼的含硫量ws在0.08%一0.30%范圍內,含錳量wMn在0.60%-1.55%范圍內。鋼中的硫和錳以硫化錳形態存在,硫化錳很脆並有潤滑效能,從而使切屑容易碎斷,並有利於提高加工表面的質量。
6
合金鋼
在鋼中除含有鐵、碳和少量不可避免的硅、錳、磷、硫元素以外,還含有一定量的合金元素,鋼中的合金元素有硅、錳、鉬、鎳、鉻、釩、鈦、鈮、硼、鉛、稀土等其中的一種或幾種,這種鋼叫合金鋼。
各國的合金鋼系統,隨各自的資源情況、生產和使用條件不同而不同,國外以往曾發展鎳、鉻鋼系統,我國則發現以硅、錳、釩、鈦、鈮、硼、稀土為主的合金鋼系統。
合金鋼在鋼的總產量中約佔百分之十幾,一般是在電爐中冶煉的。
按用途可以把合金鋼分為8大類,它們是:合金結構鋼、彈簧鋼、軸承鋼、合金工具鋼、高速工具鋼、不銹鋼、耐熱不起皮鋼,電工用硅鋼。
7
普通低合
金鋼
普通低合金鋼是一種含有少量合金元素(多數情況下其總量w總不超過3%)的普通合金鋼。這種鋼的強度比較高,綜合性能比較好,並具有耐腐蝕、耐磨、耐低溫以及較好的切削性能、焊接性能等。
在大量節約稀缺合金元素(如鎳、鉻)條件下,通常lt普通低合金鋼可頂1.2—1.3t碳素鋼使用,其使用壽命和使用范圍更是遠遠超過碳素鋼。普通低合金鋼可以用一般冶煉方法在平爐、轉爐中冶煉,成本也和碳素鋼接近。
8
工程結構
用合金鋼
這是指工程和建築結構用的合金鋼,包括可焊接的高強度合金結構鋼、合金鋼筋鋼、鐵道用合金鋼、地質石油鑽探用合金鋼、壓力容器用合金鋼、高錳耐磨鋼等。這類鋼用作工程和建築結構件,在合金鋼中,這類鋼合金含量總量較低,但生產、使用量較大
9
機械結構
用合金鋼
這類鋼是指適用於製造機器和機械零件的合金鋼。它是在優質碳紊鋼的基礎上,適當地加入一種或數種合金元素,用來提高鋼的強度、韌性和淬透性。這類鋼通常要經過熱處理(如調質處理、表面硬化處理)後使用。主要包括常用的合金結構鋼和合金彈簧鋼兩大類,其中包括調質處理的合金鋼、表面硬化處理的合金鋼(滲碳鋼、氮化鋼、表面高頻淬火鋼等)、冷塑性成型用合金鋼(冷頂鍛用鋼、冷擠壓用鋼等)。按化學成分基本組成系列可分為Mn系鋼、SiMn系鋼、Cr系鋼、CrMo系鋼、CrNiMo系鋼、Nj系鋼、B系鋼等。
10
合金結構
鋼
合金結構鋼的含碳量wc比碳素結構鋼低一些,一般在O.15%一O.50%的范圍內。除含碳外,還含有一種或幾種合金元素,如硅、錳、釩、鈦、硼及鎳、鉻、鉬等。
合金結構鋼易於淬硬和不易變形或開裂,便於熱處理改善鋼的性能。
合金結構鋼廣泛用於製造汽車、拖拉機、船舶、汽輪機、重型機床的各種傳動件和緊固件。低碳合金鋼一般進行滲碳處理,中碳合金鋼一般進行調質處理。
11
合金工具
鋼
合金工具鋼是含有多種合金元素,如硅、鉻、鎢、鉬、釩等的中、高碳鋼。合金工具鋼容易淬硬,不易產生變形和裂紋,適於用來製造尺寸大、形狀復雜的刃具、模具和量具。
用途不同,合金工具鋼的含碳量也不同。大多數合金工具鋼的含碳量wc為0.5%~1.5%。熱變形模具用鋼含碳較低,wc在0.3%~0.6%范圍內;切削刀具用鋼一般含碳wc1%左右;冷加工模具用鋼則含碳量較高,如石墨模具鋼含碳量wc達1.5%,高碳高鉻型冷加工模具用鋼含碳量wc高達2%以上。
12
高速工具
鋼
高速工具鋼是高碳高合金工具鋼,鋼中含碳量wc為0.7%-1.4%,鋼中含有能形成高硬度碳化物的合金元素,如鎢、鉬、鉻、釩。
高速工具鋼具有高的紅硬性,在高速切削的條件下,溫度高達500-600ºc硬度也不降低,從而保證良好的切削性能。
13
彈簧鋼
彈簧在沖擊、振動或長期交變應力下使用,所以要求彈簧鋼有高的抗拉強度、彈性極限、高的疲勞強度。在工藝上要求彈簧鋼有一定的淬透性、不易脫碳、表面質量好等。
碳素彈簧鋼即含碳量wc在0.6%~0.9%范圍內的優質碳素結構鋼(包括正常和較高含錳量的)。合金彈簧鋼主要是硅錳系鋼種,它們的含碳量稍低,主要靠增加硅含量WSi(1.3%~2.8%)提高性能;另外還有鉻、鎢、釩的合金彈簧鋼。近年來,結合我國資源,並根據汽車、拖拉機設計新技術的要求,研製出在硅錳鋼基礎上加入硼、鈮、鉬等元素的新鋼種,延長了彈簧的使用壽命,提高了彈簧質量。
14
軸承鋼
軸承鋼是用來製造滾珠、滾柱和軸承套圈的鋼。軸承在工作時承受著極大的壓力和摩擦力,所以要求軸承鋼有高而均勻的硬度和耐磨性,以及高的彈性極限。對軸承鋼的化學成分的均勻性、非金屬夾雜物的含量和分布、碳化物的分布等要求都十分嚴格。
軸承鋼又稱高碳鉻鋼,含碳wc為l%左右,含鉻量wc為0.5%-1.65%。軸承鋼又分為高碳鉻軸承鋼、無鉻軸承鋼、滲碳軸承鋼、不銹軸承鋼、中高溫軸承鋼及防磁軸承鋼六大類。
15
電工硅鋼
電器工業用硅鋼主要用來製造電器工業用硅鋼片。硅鋼片是電機和變壓器製造中用量很大的鋼材。
按化學成分硅鋼可以分為低硅鋼和高硅鋼。低硅鋼含硅量wsi1.O%~2.5%,主要用來製造電機;高硅鋼含硅量wsi3.O%~4.5%,一般用來製造變壓器。它們的含碳量wc≤O.06%~0.08%。
16
鋼軌鋼
鋼軌主要承受機車車輛的壓力及沖擊載荷,因此,要求有足夠的強度和硬度及一定的韌性。通常採用的鋼軌鋼是平爐和轉爐冶煉的碳素鎮靜鋼,這種鋼含碳wc0.6%。0.8%,屬於中碳鋼和高碳鋼,但鋼中含錳量WMn較高,在O.6%一1.1%的范圍內。
近年來,已廣泛採用普通低合金鋼鋼軌,如高硅軌、中錳軌、含銅軌、含鈦軌等。普通低合金鋼軌比碳素鋼軌耐磨、耐腐蝕,使用壽命有很大提高。
17
造船用鋼
造船用鋼是指用於製造海船和大型內河船體結構的鋼。由於船體結構一般採用焊接方法製造,所以要求造船鋼有較好的焊接性能。此外,還要求有一定的強度、韌性和一定的耐低溫及腐蝕性能。過去主要採用低碳鋼作為造船用鋼。近來,已大量採用普通低合金鋼,已有的鋼種如12錳船、16錳船、15錳釩船等鋼種。這些鋼種有強度高、韌性好、容易加工和焊接、耐海水腐蝕等綜合特性,可成功地用來製造萬噸遠洋巨輪。
18
橋梁鋼
鐵路或公路橋梁承受車輛的沖擊載荷,橋梁鋼要求有一定的強度、韌性和良好的抗疲勞性能,並且對鋼材的表面質量要求較高。橋梁鋼常採用鹼性平爐鎮靜鋼,近來成功地採用了普通低合金鋼如16錳、15錳釩氮等。
19
鍋爐鋼
鍋爐鋼主要指用來製造過熱器、主蒸氣管和鍋爐火室受熱面用的材料。對鍋爐鋼的性能要求主要是有良好的焊接性能、一定的高溫強度和耐鹼性腐蝕、耐氧化等。常用的鍋爐鋼有平爐冶煉的低碳鎮靜鋼或電爐冶煉的低碳鋼,含碳量wc在O.16%~0.26%范圍內。製造高壓鍋爐時則應用珠光體耐熱鋼或奧氏體耐熱鋼。近年來也採用普通低合金鋼建造鍋爐,如12錳、15錳釩、18錳鉬鈮等。
20
焊條用鋼
這類鋼是專門供製造電弧焊和氣焊焊條鋼絲用。鋼的成分隨所焊材質不同而異。根據需要,大致分碳素鋼、合金結構鋼和不銹鋼三類。這些鋼的硫、磷含量ws、wP不大於0.03%,比一般鋼要求嚴些。這些鋼不要求力學性能,而只作化學成分的檢驗。
21
不銹鋼
不銹耐酸鋼簡稱不銹鋼,它是由不銹鋼和耐酸鋼兩大部分組成的。簡言之,能抵抗大氣腐蝕的鋼叫不銹鋼,而能抵抗化學介質(如酸類)腐蝕的鋼叫耐酸鋼。一般說來,含鉻量wcr大於12%的鋼就具有了不銹鋼的特點。
不銹鋼按熱處理後的顯微組織又可分為五大類:即鐵素體不銹鋼、馬氏體不銹鋼、奧氏體不銹鋼、奧氏體一鐵素體不銹鋼及沉澱硬化不銹鋼。
22
耐熱鋼
在高溫條件下,具有抗氧化性和足夠的高溫強度以及良好的耐熱性能的鋼稱作耐熱鋼。耐熱鋼包括抗氧化鋼和熱強鋼兩類。抗氧化鋼又稱不起皮鋼。熱強鋼是指在高溫下具有良好的抗氧化性能並具有較高的高溫強度的鋼。耐熱鋼主要用於在高溫下長期使用的零件。
23
高溫合金
高溫合金是指在高溫下具有足夠的持久強度、蠕變強度、熱疲勞強度、高溫韌性及足夠的化學穩定性的一種熱強材料,用於1000ºC左右高溫條件下工作的熱動力部件。
按其基本化學成分的不同,又可分為鎳基高溫合金、鐵鎳基高溫合金及鈷基高溫合金。
24
精密合金
精密合金是指具有特殊物理性能的合金。它是電氣工業、電子工業、精密儀表工業和自動控制系統中不可缺少的材料。
精密合金按其不同的物理性能又分為七類,即:軟磁合金、變形永磁合金、彈性合金、膨脹合金、熱雙金屬、電阻合金、熱電偶合金。絕大多數精密合金是以黑色金屬為基的,只有少數是以有色金屬為基的。
註:Wc、Ws、Wmn、Wp分別表示C、S、Mn、P的質量分數
2. 請問鋼材中的C、S、Si、Mn、P元素對鋼材都有什麼影響,他們的作用分別是什麼
鋼材的質量及性能是根據需要而確定的,不同的需要,要有不同的元素含量.
(1)碳;含碳量越高,剛的硬度就越高,但是它的可塑性和韌性就越差.
(2)硫;是鋼中的有害雜物,含硫較高的鋼在高溫進行壓力加工時,容易脆裂,通常叫作熱脆性.
(3)磷;能使鋼的可塑性及韌性明顯下降,特別的在低溫下更為嚴重,這種現象叫作冷脆性.在優質鋼中,硫和磷要嚴格控制.但從另方面看,在低碳鋼中含有較高的硫和磷,能使其切削易斷,對改善鋼的可切削性是有利的.
(4)錳;能提高鋼的強度,能消弱和消除硫的不良影響,並能提高鋼的淬透性,含錳量很高的高合金鋼(高錳鋼)具有良好的耐磨性和其它的物理性能.
(5)硅;它可以提高鋼的硬度,但是可塑性和韌性下降,電工用的鋼中含有一定量的硅,能改善軟磁性能.
(6)鎢;能提高鋼的紅硬性和熱強性,並能提高鋼的耐磨性.
(7)鉻;能提高鋼的淬透性和耐磨性,能改善鋼的抗腐蝕能力和抗氧化作用.
(8)釩;能細化鋼的晶粒組織,提高鋼的強度,韌性和耐磨性.當它在高溫熔入奧氏體時,可增加鋼的淬透性;反之,當它在碳化物形態存在時,就會降低它的淬透性.
(9)鉬;可明顯的提高鋼的淬透性和熱強性,防止回火脆性,提高剩磁和嬌頑力.
(10)鈦;能細化鋼的晶粒組織,從而提高鋼的強度和韌性.在不銹鋼中,鈦能消除或減輕鋼的晶間腐蝕現象.
(11)鎳;能提高鋼的強度和韌性,提高淬透性.含量高時,可顯著改變鋼和合金的一些物理性能,提高鋼的抗腐蝕能力.
(12)硼;當鋼中含有微量的(
0.001
-
0.005
%)硼時,鋼的淬透性可以成倍的提高.
(13)鋁;能細化鋼的晶粒組織,阻抑低碳鋼的時效.提高鋼在低溫下的韌性,還能提高鋼的抗氧化性,提高鋼的耐磨性和疲勞強度等.
(14)銅;它的突出作用是改善普通低合金鋼的抗大氣腐蝕性能,特別是和磷配合使用時更為明顯。
3. 低碳鋼經過冷加工變形後,塑型和韌性都明顯下降,這種現象叫什麼
鋼材的破壞分塑性破壞和脆性破壞兩種。
脆性破壞:載入後,無明顯變形,因此破壞前無預兆,斷裂時斷口平齊,呈有光澤的晶粒狀。脆性破壞危險性大。
影響脆性破壞的因素
1.化學成分
2.冶金缺陷(偏析、非金屬夾雜、裂紋、起層)
3.溫度(熱脆、低溫冷脆)
4.冷作硬化
5.時效硬化
6.應力集中
7.同號三向主應力狀態
1 ) 鋼材質量差、厚度大:鋼材的碳、硫、磷、氧、氮等元素含量過高,晶粒較粗,夾雜物等冶金缺陷嚴重,韌性差等;較厚的鋼材輥軋次數較少,材質差、韌性低,可能存在較多的冶金缺陷。
(2) 結構或構件構造不合理:孔洞、缺口或截面改變急劇或布置不當等使應力集中嚴重。
(3) 製造安裝質量差:焊接、安裝工藝不合理,焊縫交錯,焊接缺陷大,殘余應力嚴重;冷加工引起的應變硬化和隨後出現的應變時效使鋼材變脆。
(4) 結構受有較大動力荷載或反復荷載作用:但荷載在結構上作用速度很快時(如吊車行進時由於軌縫處高差而造成對吊車梁的沖擊作用和地震作用等),材料的應力- 應變特性就要發生很大的改變。隨著加荷速度增大,屈服點將提高而韌性降低。特別是和缺陷、應力集中、低溫等因素同時作用時,材料的脆性將顯著增加。
(5)在較低環境溫度下工作:當溫度從常溫開始下降肘,材料的缺口韌性將隨之降低,材料逐漸變脆。這種性質稱為低溫冷脆。不同的鋼種,向脆性轉化的溫度並不相同。同一種材料,也會由於缺口形狀的尖銳程度不同,而在不同溫度下發生脆性斷裂。
為了防止鋼材的脆性斷裂,可以從以下幾個方面著手:
1、裂紋
當焊接結構的板厚較大時(大於25mm),如果含碳量高,連接內部有約束作用,焊肉外形不適當,或冷卻過快,都有可能在焊後出現裂紋,從而產生斷裂破壞。針對這個問題,把碳控制在0.22%左右,同時在焊接工藝上增加預熱措施使焊縫冷卻緩慢,解決了斷裂問題。
4. 鋼材中的化學成分對鋼材性能主要有什麼影響
鋼中除鐵、碳兩種基本元素外,還含有其他的一些元素,它們對鋼的性能和質量有一定的影響。
(1)碳。碳是決定鋼材性能的主要元素。隨著含碳量的增加,鋼的強度、硬度提高,塑性、韌性降低。但當含碳量大於1.o%時,由於鋼材變脆,抗拉強度反而下降。
(2)硅、錳。硅和錳是鋼材中的有益元素。硅和錳是在煉鋼時為了脫氧加入硅鐵和錳鐵而留在鋼中的合金元素。
硅的含量在1%以內,可提高鋼材的強度,對塑性和韌性沒有明顯影響。但含硅量超過1%時,鋼材冷脆性增加,可焊性變差。
錳的含量為0.8%~1%時,可顯著提高鋼的強度和硬度,幾乎不降低塑性及韌性。當其含量大於1%時,在提高強度的同時,塑性及韌性有所下降,可焊性變差。
(3)硫、磷。硫和磷是鋼材中主要的有害元素,煉鋼時由原料帶入。
硫能夠引起熱脆性,熱脆性嚴重降低了鋼的熱加工性和可焊性。硫的存在還使鋼的沖擊韌性、疲勞強度、可焊性及耐蝕性降低。
磷能使鋼材的強度、硬度、耐蝕性提高,但顯著降低鋼材的塑性和韌性,特別是低溫狀態的沖擊韌性下降更為明顯,使鋼材容易脆裂,這種現象稱為冷脆性。冷脆性使鋼材的沖擊韌性以及焊接等性能都下降。
(4)氧、氮。氧和氮是鋼材中的有害元素,它們是在煉鋼過程中進入鋼液的。這些元素的存在降低了鋼材的強度、冷彎性能和焊接性能。氧還使鋼材的熱脆性增加,氮還使鋼材的冷脆性及時效敏感性增加。
(5)鋁、鈦、釩、鈮。鋁、鈦、釩、鈮等元素是鋼材中的有益元素,它們均是煉鋼時的強脫氧劑,也是合金鋼中常用的合金元素。適量地加入這些元素,可以改善鋼材的組織,細化晶粒,顯著提高鋼材的強度和改善鋼材的韌性。
5. 含碳量的多少對鋼的性能有什麼影響
碳是決定鋼的力學性能的最主要因素,隨含碳量的增加,硬度增大,塑性、韌性下降。當含碳量<0.77%時,隨含碳量的增加,強度增加,而當含碳量>1.0%以後,強度反而下降。
碳素鋼按其含碳量的不同,可分為三種種類,分別是:低碳鋼——含碳量wc≤0.25% 、中碳鋼——含碳量wc0.25%~0.60% 、高碳鋼——含碳量wc>0.60%。
鋼的製取都是一項高成本低效率的工作。如今,鋼以其低廉的價格、可靠的性能成為世界上使用最多的材料之一,是建築業、製造業和人們日常生活中不可或缺的成分。可以說鋼是現代社會的物質基礎。
(5)低碳鋼中夾雜了Mg會有什麼影響擴展閱讀:
不同含碳量鋼材的性能:
1、碳鋼:碳鋼的含碳量(wc)小於2%,碳鋼除含碳外一般還含有少量的硅、錳、硫、磷。按用途可以把碳鋼分為碳素結構鋼、碳素工具鋼和易切削結構鋼三類。碳素結構鋼又可分為建築結構鋼和機器製造結構鋼兩種。一般碳鋼中含碳量越高則硬度越高,強度也越高,但塑性降低。
2、碳素結構鋼:這類鋼主要保證力學性能,故其牌號體現其力學性能,用Q+數字表示,其中「Q」為屈服點「屈」字的漢語拼音字首,數字表示屈服點數值,例如Q275表示屈服點為275MPa。
若牌號後面標注字母A、B、C、D,則表示鋼材質量等級不同,含S、P的量依次降低,鋼材質量依次提高。若在牌號後面標注字母「F」則為沸騰鋼,標注「b」為半鎮靜鋼,不標注「F」或「b」者為鎮靜鋼。例如Q235-A·F表示屈服點為235MPa的A級沸騰鋼,Q235-c表示屈服點為235MPa的c級鎮靜鋼。
碳素結構鋼一般情況下都不經熱處理,而在供應狀態下直接使用。通常Q195、Q215、Q235鋼碳的質量分數低,焊接性能好,塑性、韌性好,有一定強度,常軋製成薄板、鋼筋、焊接鋼管等,用於橋梁、建築等結構和製造普通鉚釘、螺釘、螺母等零件。
Q255和Q275鋼碳的質量分數稍高,強度較高,塑性、韌性較好,可進行焊接,通常軋製成型鋼、條鋼和鋼板作結構件以及製造簡單機械的連桿、齒輪、聯軸節、銷等零件。
6. 鋼材的塑性夾雜、脆性夾雜是什麼含義對鋼材有什麼意義
塑性夾雜物 熱變形時該類夾雜物具有良好范性,沿變形方向延伸成條帶狀。屬於這類的有硫化物及 含量較低(40%~60%)的鐵錳硅酸鹽。
脆性夾物 熱加工時該類夾雜物形狀和尺寸都不變化,但可能沿加工方向成串排列或呈點鏈狀,屬於這類夾雜物的有Al2O3和Cr2O3。
非金屬夾雜物對鋼的強度、塑性、斷裂韌性、切削、疲勞、熱脆以及耐蝕等性能有很大影響。一般認為,夾雜物的成分、數量、形狀、分布以及在基體中的空間分布等影響鋼的性能。S.Ruddnik[26]指出,只有當非金屬夾雜物的尺寸小於1μm,且其數量少、夾雜物彼此之間的距離大於10μm時,才不會對材料的宏觀性能造成影響。當然,不同鋼種用途不同,對夾雜物的要求也不一樣,例如,不同鋼種和不同受力狀態時,夾雜物對性能無害的臨界尺寸是不同的。
(1)非金屬夾雜物對鋼的強度影響
夾雜物對鋼的強度的影響與顆粒尺寸密切相關。通過在燒結鐵中加入不同尺寸(0.01-35μm)、形狀(球形和稜角的)、比例(0-8%)的氧化鋁顆粒進行試驗得出[26]:室溫下,氧化鋁顆粒超過1μm時,使屈服強度和抗張強度降低;當夾雜物的含量很低時,對屈服強度的降低特別敏感。長谷川正義[27]向澆注的鋼流中噴射高熔點氧化物,研究了不同的氧化物顆粒直徑,體積比對常溫抗張強度的影響,結果表明:無論噴射氧化鋁或氧化鋯試樣,屈服和抗張強度都隨粒子體積比的增大而升高。另外,金屬斷裂時,裂紋不僅在基體中形成,而且也經常在夾雜物中形成,造成鋼的斷裂,Smith提出邊界夾雜物開裂的強度斷裂理論[28]。
(2)非金屬夾雜物對鋼的塑性影響
通常夾雜物對鋼材的縱向延性影響不大,而對橫向延性的影響卻很顯著。研究表明,高強度鋼的橫向斷面收縮率隨夾雜物總量的增加而降低。夾雜形狀對對橫向延性的影響更為顯著,隨著帶狀夾雜物的增加,橫向斷面收縮率明顯降低,這種帶狀夾雜物主要是硫化物。Funnell等[29]研究指出,夾雜物對鋼的高溫延性有很大影響,低碳鋼在奧氏體區延性大大降低,其原因是細小的第二相析出物(如AlN、TiN、Nb(C,N)等)能有效釘扎奧氏體晶界,從而降低延性。
(3)非金屬夾雜物對鋼的斷裂韌性影響
文獻[30,31]中指出,S及硫化物的含量增加降低鋼的各種韌性指標,鋼的斷裂韌性隨著夾雜物數量或長度的增加而下降。曾光廷等[31]研究了硫化物和氮化物夾雜對鋼的斷裂韌性的影響,並與Krafft模型計算值進行了比較,結果得出:對斷裂韌性的危害由小到大依次為VN→TiS→AlN→NbN→ZrN→Al2S3→CeS→MnS ;夾雜物含量與斷裂韌性大小呈線性反比關系,TiS對斷裂韌性沒有影響。一些研究工作討論了夾雜物作為裂紋根源的作用問題[29],研究證明,鋼中的脆性夾雜物由於與鋼基體的熱膨脹系數不同,在夾雜物周圍容易產生內應力。
李代鍾[30]認為,為使鋼材具有良好的韌性和使韌性各向異性盡可能降低,對夾雜物的要求是:①夾雜物的體積分數盡可能低;②夾雜物分布均勻;③夾雜物要有緊湊的外形;④夾雜物的硬度最好為鋼基體的兩倍,以使夾雜物在熱加工時變形最小。
7. Mg含量在鑄造中是什麼意思
一.Al-Mg-Si系合金的基本特點:6063鋁合金的化學成份在GB/T5237-93標准中為0.2-0.6%的硅、0.45-0.9%的鎂、鐵的最高限量為0.35%,其餘雜質元素(Cu、Mn、Zr、Cr等)均小於0.1%。這個成份范圍很寬,它還有很大選擇餘地。6063鋁合金是屬鋁-鎂-硅系列可熱處理強化型鋁合金,在AL-Mg-Si組成的三元系中,沒有三元化合物,只有兩個二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si偽二元截面為分界,構成兩個三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如圖一、田二所示:在Al-Mg-Si系合金中,主要強化相是Mg2Si,合金在淬火時,固溶於基體中的Mg2Si越多,時效後的合金強度就越高,反之,則越低,如圖2所示,在α(Al)-Mg2Si偽二元相圖上,共晶溫度為595℃,Mg2Si的最大溶解度是1.85%,在500℃時為1.05%,由此可見,溫度對Mg2Si在Al中的固溶度影響很大,淬火溫度越高,時效後的強度越高,反之,淬火溫度越低,時效後的強度就越低。有些鋁型材廠生產的型材化學成份合格,強度卻達不到要求,原因就是鋁捧加熱溫度不夠或外熱內冷,造成型材淬火溫度太低所致。在Al-Mg-Si合金系列中,強化相Mg2Si的鎂硅重量比為1.73,如果合金中有過剩的鎂(即Mg:Si>1.73),鎂會降低Mg2Si在鋁中的固溶度,從而降低Mg2Si在合金中的強化效果。如果合金中存在過剩的硅,即Mg:Si<1.73,則硅對Mg2Si在鋁中的固溶度沒有影響,由此可見,要得到較高強度的合金,必須Mg:Si<1.73。二.合金成份的選擇1.合金元素含量的選擇6063合金成份有一個很寬的范圍,具體成份除了要考慮機械性能、加工性能外,還要考慮表面處理性能,即型材如何進行表面處理和要得到什麼樣的表面。例如,要生產磨砂料,Mg/Si應小一些為好,一般選擇在Mg/Si=1-1.3范圍,這是因為有較多相對過剩的Si,有利於型材得到砂狀表面;若生產光亮材、著色材和電泳塗漆材,Mg/Si在1.5-1.7范圍為好,這是因為有較少過剩硅,型材抗蝕性好,容易得到光亮的表面。另外,鋁型材的擠壓溫度一般選在480℃左右,因此,合金元素鎂硅總量應在1.0%左右,因為在500℃時,Mg2Si在鋁中的固溶度只有1.05%,過高的合金元素含量會導致在淬火時Mg2Si不能全部溶入基體,有較多的末溶解Mg2Si相,這些Mg2Si相對合金的強度沒有多少作用,反而會影響型材表面處理性能,給型材的氧化、著色(或塗漆)造成麻煩。2.雜質元素的影響①鐵,鐵是鋁合金中的主要雜質元素,在6063合金中,國家標准中規定不大於0.35,如果生產中用一級工業鋁錠,一般鐵含量可控制在0.25以下,但如果為了降低生產成本,大量使用回收廢鋁或等外鋁,鐵就根容易超標。Fe在鋁中的存在形態有兩種,一種是針狀(或稱片狀)結構的β相(Al9Fe2Si2),一種為粒狀結構的α相(Al12Fe3Si),不同的相結構,對鋁合金有不同的影響,片狀結構的β相要比粒狀結構α相破壞性大的多,β相可使鋁型材表面粗糙、機械性能、抗蝕性能變差,氧化後的型材表面發青,光澤下降,著色後得不到純正色調,因此,鐵含量必須加以控制。為了減少鐵的有害影響可採取如下措施。a)熔煉、鑄造用所有工具在使用前塗涮塗料,盡可能減少鐵溶人鋁液。b)細化晶粒,使鐵相變細,變小,減少其有害作用。c)加入適量的鍶,使β相轉變成α相,減少其有害作用。d)對廢雜料細心挑選,盡可能的減少鐵絲、鐵釘、鐵屑等雜物進入熔鋁爐造成鐵含量升高。②其它雜質元素其它雜質元素在電解鋁錠中都很少,遠遠低於國家標准,在使用回收廢雜鋁時就可能超過標准;在生產中,不但要控制每個元素不能超標,而且要控制雜質元素總量也不能超標,當單個元素含量不超標,但總量超標時,這些雜質元素同樣對型材質量有很大影響。特別需要提出強調的是,實踐證明,鋅含量到0.05時(國標中不大於0.1)型材氧化後表面就出現白色斑點,因此鋅含量要控制到0.05以下。三.6063鋁合金的熔煉1.控制好熔煉溫度鋁合金熔煉是生產優質鑄棒的最重要工藝環節之一,若工藝控制不當,會在鑄捧中產生夾渣、氣孔,晶粒粗大,羽毛晶等多種鑄造缺陷,因此必須嚴加控制。6063鋁合金的熔煉溫度控制在750-760℃之間為佳,過低會增大夾渣的產生,過高會增大吸氫、氧化、氮化燒損。研究表明,鋁液中氫氣的溶解度在760℃以上急劇上升,當熱減少吸氫的途徑還有許多,如烘乾溶煉爐和熔煉工具,防止使用熔劑受潮變質等。但熔煉溫度是最敏感因素之一,過離的熔煉溫度不但浪費能源,增加成本,而且是造成氣孔,晶粒粗大,羽毛晶等缺陷的直接成因。2.選用優良的熔劑和適當的精煉工藝熔劑是鋁合金熔煉中使用的重要輔助材料,目前市場上所售熔劑中主要成份為氯化物,氟化物,其中氯化物吸水性強,容易受潮,因此,熔劑的生產中必須烘乾所用原料,徹底除去水份,包裝要密封,運輸、保管中要防止破損,還要注意生產日期,如保管日期過長,同樣會發生吸潮現象,在6063鋁合金的熔煉中,使用的除渣劑、精煉劑、覆蓋劑等熔劑如果吸潮,都會使鋁液產生不同程度的吸氫。選擇好的精煉劑,選擇合適的精練工藝也是非常重要的,目前6063鋁合金的精煉絕大多數採用噴粉精煉,這種精煉方法能使精煉劑與鋁液充分接觸,可使精煉劑發揮最大效能。雖然這個特點是顯而易見的,但是精煉工藝也必須注意,否則得不到應有效果,噴粉精煉中所用氮氣壓力以小為好,能滿足吹出粉劑為佳,精煉中如果使用的氮氣不是高純氯(99.99%N2),吹入鋁液的氮氣越多,氟氣中的水份使鋁液產生的氧化和吸氫越多。另外,氟氣壓力高,侶液產生的翻卷波浪大,增大產生氧化夾渣的可能性。如果精煉中使用的是高純氮,精煉壓力大,產生的氣泡大,大氣泡在鋁液中的浮力大,氣泡迅速上浮,在鋁液中的停留時間短,除氫效果並不好,浪費氮氣,增加成本。因此氮氣應少用,精煉劑應多用,多用精煉劑只有好處,沒有壞處。噴粉精煉的工藝要點是用盡可能少的氣體,噴進鋁液盡可能多的精煉劑。3.晶粒細化晶粒細化是鋁合金熔鑄中暈重要的工藝之一,也是解決氣孔、晶粒粗大、光亮晶、羽毛晶、裂紋等鑄造缺陷的最有效措施之一。在合金鑄造中,均是非平衡結晶,所有的雜質元素(當然也包括合金元素)絕大部分集中分布在晶界,晶粒越小,晶界面積就越大,雜質元素(或合金元素)的均勻度就越高。對雜質元素而言,均勻度高,可減少它的有害作用,甚至將少量雜質元素的有害變為有益;對合金元素麵言,均勻度高,可發揮合金元素更大的合金化艘能,達到充分利用資源的目的。細化晶粒、增大晶界面積、增大元素均勻度的作用可通過下面的計算加以說明。假設金屬塊1與2有同樣的體積V,均由立方體晶粒構成,金屬塊1的晶粒邊長為2a,2的邊長為a,那麼金屬塊1的晶界面積為:金屬塊2的晶界面積為:金屬塊2的晶界面積是金屬塊1的2倍。由此可見合金晶粒直徑減小一倍,晶界面積就要增大—倍,晶界單位面積上的雜質元素將減少一倍。在6063鋁合金的生產中,對磨砂料來說,由於要通過腐蝕使型材產生均勻砂面,那麼合金元素及雜質元素的均勻分布就顯得尤為重要。晶粒越細,合金元素(雜質元素)的分布越均勻,腐蝕後得到的砂面就越均勻。四.6063鋁合金的澆鑄1.選擇合理的澆鑄溫度合理的澆鑄溫度也是生產出優質鋁棒的重要因素,溫度過低,易產生夾渣、針孔等鑄造缺陷。溫度過高,易產生晶粒粗大、羽毛晶等鑄造缺陷。做了晶粒細化處理後的6063鋁合金液,鑄造溫度可適當提高,一般可控制在720-740℃之間,這是因為:①鋁液經晶粒細化處理後變粘,容易凝固結晶。②鋁棒在鑄造中結晶前沿有一個液固兩相過度帶,較高的鑄造溫度有較窄的過度帶,過度帶窄有利於結晶前沿排出的氣體逸出,當然溫度不可過高,過高的鑄造溫度會縮短晶粒細化劑的有效時間,使晶粒變得相對較大。2.有條件時,充分預熱,烘幹流槽、分流盤等澆鑄系統,防止水分與鋁液反應造成吸氫。3.鑄造中,盡可能的避免鋁液的紊流和翻卷,不要輕易用工具攪動流槽及分流盤中的鋁液,讓鋁液在表面氧化膜的保護下平穩流人結晶器結晶,這是因為工具攪動鋁液和液流翻卷都會使鋁液表面氧化膜破裂,造成新的氧化,同時將氧化膜捲入鋁液。經研究表明,氧化膜有極強的吸附能力,它含有2%的水份,當氧化膜捲入鋁液後,氧化膜中的水份與鋁液反應,造成吸氫和夾渣。4.對鋁液進行過濾,過濾是除去鋁液中非金屬夾渣最有效的方法,在6063鋁合金的鑄造中,一般用多層玻璃絲布過濾或陶瓷過濾板過濾,無論是採取何種過濾方法,為了保證鋁液能正常的過濾,鋁液在過濾前應除去表面浮渣,因為表面浮渣易堵塞過濾材料的過濾網孔,使過濾不能正常進行,除去鋁液表面浮渣的最簡單方法是在流槽中設置一擋渣板,使鋁液在過濾前除去浮渣。五.6063鋁合金的均化處理1.非平衡結晶如圖三所示,是由A、B兩種元素構成的二元相圖的一部分,成份為F的合金凝固結晶,當溫度下降到T1時,固相平衡成份應為G,實際成份為G』,這是因為在鑄造生產中,冷卻凝固速度快,合金元素的擴散速度小於結晶速度,即固相成份不是按CD變化,而是按CD』變化,從而產生了晶粒內化學成份的不平衡現象,造成了非平衡結晶。2.非平衡結晶產生的問題鑄造生產出的鋁合金棒其內部組織存在兩方面的問題:①晶粒間存在鑄造應力;②非平衡結晶引起的晶粒內化學成份的不平衡。由於這兩個問題的存在,會使擠壓變得困難,同時,擠壓出的產品在機械性能、表面處理性能方面都有所下降。因此,鋁棒在擠壓前必須進行均勻化處理,消除鑄造應力和晶粒內化學成份不平衡。3.均勻化處理均勻化處理就是鋁棒在高溫(低於過燒溫度)下通過保溫,消除鑄造應力和晶粒內化學成份不平衡的熱處理。Al-Mg-Si系列的合金過燒溫度應該是595℃,但由於雜質元素的存在,實際的6063鋁合金不是三元系,而是一個多元系,因此,實際的過燒溫度要比595℃低一些,6063鋁合金的均勻化溫度可選在530-550℃之間,溫度高,可縮短保溫時間,節約能源,提高爐子的生產率。4.晶粒大小對均勻化處理的影響由於固體原子之間的結合力很大,均勻化處理是在高溫下合金元素從晶界(或邊沿)擴散到晶內的過程,這個過程是很慢的。容易理解,粗大晶粒的均化時間要比細晶粒的均勻化時間長得多,因而晶粒越細,均勻化時間就越短。5.均勻化處理的節能措施均勻化處理需要在高溫下通過較長時間保溫,對能源需求大,處理成本高,因此,目前絕大多數型材廠對鋁棒未進行均勻化處理。其最重要的原因就是均勻化處理需要較高成本所致。降低均勻化處理成本的主要措施有:①細化晶粒細化晶粒可有效的縮短保溫時間,晶粒越細越好。②加長鋁棒加熱爐,按均勻化和擠壓溫度分段控制,滿足不同工藝要求。這一工藝主要好處是:a)不增加均勻化處理爐。b)充分利用鋁捧均勻化後的熱能,避免擠壓時再次加熱鋁棒。c)鋁捧加熱保溫時間長,內外溫度均勻,有利於擠壓和隨後的熱處理。綜上所述,生產出優質6063鋁合金鑄棒,首先是根據生產的型材選擇合理的成分,其次是嚴格控制熔煉溫度、澆鑄溫度,做好晶粒細化處理、合金液的精煉、過濾等工藝措施,細心操作,避免氧化膜的破裂與捲入。最後,對鋁棒進行均勻化處理,這樣就可生產出優質鋁棒,為生產優質型材提供一個可靠的物質基礎。
8. C、Mn、Si、S、P、Cr、Mo元素在鋼中的作用和熱處理時的影響
1、碳(C):鋼中碳含量增加,屈服點和抗拉強度增加,但塑性和抗沖擊性下降。當碳含量超過0.23%時,鋼的可焊性劣化,因此用於焊接。對於低合金結構鋼,碳含量通常不超過0.20%。
高碳含量也降低了鋼的耐大氣腐蝕性。露天堆場的高碳鋼容易腐蝕;此外,碳可以增加鋼的冷脆性和年齡敏感性。典型的例子是低碳鋼,高碳鋼和高碳鋼的機械性能的變化。
2、錳(Mn):錳是一種良好的脫氧劑和脫硫劑。鋼一般含有一定量的錳,可以消除或減少由硫引起的鋼的熱脆性,從而提高鋼的熱加工性。
錳和鐵形成固溶體,增加鋼中鐵素體和奧氏體的硬度和強度;同時,它是一種碳化物形成元素,並進入滲碳體中以取代一部分鐵原子。鋼中的錳是由於降低了臨界轉變溫度。起到提煉珠光體的作用。
它還間接地起到提高珠光體鋼強度的作用;錳穩定奧氏體結構的能力僅次於鎳,並且還強烈地提高了鋼的淬透性。含量不大於2%的錳已與其它元素組合使用以形成多種合金鋼。
3、硅(Si):硅可以溶解在鐵素體和奧氏體中,提高鋼的硬度和強度,其作用僅次於磷,強於錳,鎳,鉻,鎢,鉬和釩。
然而,當硅含量超過3%時,鋼的可塑性和韌性將顯著降低。硅可以提高鋼的彈性極限,屈服強度和屈服比(σs/σb),以及疲勞強度和疲勞比(σ-1 /σb)。這就是硅或硅錳鋼可用作彈簧鋼的原因。
硅可以降低鋼的密度,導熱性和導電性。它可以促進鐵素體晶粒的粗化。降低矯頑力。它具有降低晶體各向異性,使磁化容易,並且磁阻減小的趨勢。它可用於生產電工鋼,因此硅鋼片的磁滯損耗低,硅可以提高鐵氧體的磁導率,使硅鋼片在較弱的磁場下具有較高的磁感應強度領域。然而,在強磁場下,硅降低了鋼的磁感應強度。硅具有很強的脫氧力,可以降低鐵的磁老化效應。
4、硫(S):增加硫和錳的含量可以提高鋼的切削性能。硫作為易切削鋼中的有益元素添加。
硫在鋼中嚴重分離,會降低鋼的質量。在高溫下,降低鋼的延展性是一種有害元素,以熔點較低的FeS形式存在;僅FeS的熔點僅為1190℃,鋼中鐵與共晶的共晶溫度較低,僅為988℃,當鋼凝固時,硫化鐵在初級晶界處集中。當鋼在1100-1200℃下軋制時,晶界上的FeS將熔化,大大削弱了晶粒之間的結合力,導致鋼的熱脆性。
5、磷(P):磷在鋼中具有強固溶強化和冷加工硬化效果。作為添加到低合金結構鋼中的合金元素,它可以提高鋼的強度和耐大氣腐蝕性,但降低其冷沖壓性能。
磷與硫和錳的結合可以提高鋼的切削性能,提高加工零件的表面質量,用於易切削鋼,因此易切削鋼的磷含量也很高。
磷可溶於鐵素體。雖然它可以提高鋼的強度和硬度,但最大的危害是嚴重的偏析,增加回火脆性,並顯著降低鋼的塑性和韌性,這使得鋼在冷加工過程中易於變脆。脆弱現象。磷對可焊性也有不利影響。磷是一種有害元素,應嚴格控制。一般含量不超過0.030%-0.040%。
6、鉻(Cr):鉻可以提高鋼的淬透性並具有二次硬化效果。
它可以提高高碳鋼的硬度和耐磨性,而不會使鋼脆;當含量超過12%時。該鋼具有良好的高溫抗氧化性和抗氧化介質腐蝕性。它還提高了鋼的熱強度,鋼是不銹耐酸鋼和耐熱鋼的主要合金元素。
7、鉬(Mo):鉬提高鋼的淬透性和熱強度。在某些介質中防止回火脆性,提高剩磁和矯頑力以及耐腐蝕性。在淬火和回火鋼中,鉬可以加深和硬化較大截面的部分,提高鋼的回火抗力或回火穩定性,使零件在較高溫度下回火,從而更有效地(或減少)殘余應力,提高塑性。
9. 碳素鋼在冶煉和軋制過程中有什麼缺陷
碳素鋼在冶煉和軋制(鍛造)加工過程中,由於設備、工藝和操作等原因造成鋼的欠缺。主要包括結疤、裂紋、縮孔殘余、分層、白點、偏析、非金屬夾雜、疏鬆和帶狀組織等。
一、結疤
鋼材表面未與基體焊合的金屬或非金屬疤塊。有的部分與基體相連,呈舌狀;有的與基體不連接,呈鱗片狀。後者有時在加工時脫落,形成凹坑。煉鋼(澆鑄)造成的結疤,疤下一般有肉眼可見的非金屬夾雜。軋鋼造成的結疤一般稱「軋疤」,疤下一般僅有氧化鐵皮。
煉鋼(澆鑄)造成結疤的主要原因有:
(1)上鑄錠未採取防濺措施或下鑄錠開鑄過猛造成飛濺結疤。
(2)下鑄錠保護渣性能不佳或模子不清潔、不幹燥,造成鋼錠(連鑄坯)表面或皮下夾雜、氣泡和重皮。
(3)模壁嚴重缺陷或鑄溫過高造成凸疤和粘模,經軋制或鍛壓加工演變為結疤。
軋鋼方面造成結疤的原因有:
(1)成品前某道(架)軋輥或導衛裝置缺陷或操作不當造成軋件凸包、耳子、劃疤,經再軋形成結疤。
(2)鋼坯火焰清理清痕過陡或殘渣未除凈,外物落在鋼坯上被軋成結疤。
結疤缺陷直接影響鋼材外觀質量和力學性能。在成品鋼材上不允許結疤存在。對結疤部位可進行磨修,磨修後鋼材尺寸應符合標准規定。為了減少和消除結疤,一是煉鋼、軋鋼要改進有關工藝和操作,二是對鋼坯表面缺陷部位進行重點清理或全面扒皮清理。
二、裂紋
按裂紋形狀和形成原因有多種名稱,如拉裂、橫裂、裂縫、裂紋、發紋、炸裂(響裂)、脆裂(矯裂)、軋裂和剪裂等。從煉鋼、軋鋼到鋼材深加工幾乎每道工序都有造成裂紋的因素。
(1)煉鋼方面
鋼中硫、磷含量高,鋼的強度、塑性低;鑄錠澆鑄(模鑄、連鑄)溫度過高,澆鑄速度過快,鑄流不正;鋼錠模、結晶器設計不合理;冷卻強度不足或冷卻不均,造成激冷層薄或局部應力過大;鋼錠模有嚴重缺陷或保溫帽安裝不良造成鋼錠凝固過程懸掛;保護渣性能不佳,模子潮和各種澆鑄操作不良都能造成鋼錠表面質量不佳,在鋼材上形成裂紋。
(2)軋鋼(鍛造)方面
鋼錠、鋼坯加熱溫度不均或過燒造成裂紋;高碳鋼加熱或冷卻過快,火焰清理或火焰切割鋼材溫度過低造成炸裂;鋼材矯直應力過大,矯直次數過多而又未進行適當熱處理時易產生矯裂;冷拔管、線鋼料熱處理不良或過酸洗造成裂紋;鋼件在藍脆區剪切易剪裂;焊接工藝不當造成焊縫或熱影響區裂紋。
裂紋直接影響鋼材的力學性能和耐腐蝕性能,成品鋼材不允許裂紋存在。對於裂紋可以進行磨修,磨修後鋼材尺寸應符合標准規定。為了防止或減少鋼材裂紋,一是要改進煉鋼、軋鋼和鋼材深加工及有關工序工藝操作;二是對鋼坯缺陷部位要進行重點清理,對重要用途鋼坯可以進行扒皮處理。
三、縮孔殘余
鋼水凝固過程中,由於體積收縮,在鋼錠或連鑄坯心部未能得到充分填充而形成的管狀或分散孔洞。在熱加工前,因為切頭量過小或縮孔較深,造成切除不盡,其殘留部分稱為縮孔殘余。
縮孔殘余分布在鋼錠上部中心處,並與鋼錠頂部貫通的叫一次縮孔。由於設計的鋼錠模細長或上小下大,在澆鑄凝固過程中,鋼錠截口以下錠中心仍有未凝固的鋼水,凝固後期不能充分填充,形成的孔洞叫二次縮孔。一次縮孔和二次縮孔有本質差別,前者只出現在鋼錠頭部,後者在鋼錠上、中、下部位都有可能出現。一次縮孔酸洗試片中心區域呈不規則的折皺裂縫或空洞。在其上或附近常伴有嚴重的夾渣、成分偏析和疏鬆。二次縮孔孔洞中或附近沒有夾渣,但有偏析生成碳物。一次縮孔殘余和空氣貫通的二次縮孔在軋制(鍛造)過程中不能焊合,與空氣隔絕的二次縮孔和連鑄坯縮孔在軋制時一般能夠焊合,不影響鋼材使用性能。
縮孔殘余嚴重地破壞鋼材的連續性,是鋼材不允許存在的缺陷,軋制(鍛造)時必然在鋼坯上產生裂紋。為了防止縮孔的產生,要求正確設計鋼錠模和保溫帽尺寸,並採用性能優良的保護渣、保溫劑(發熱劑)和絕熱板,把縮孔控制在鋼錠頭部,以保證在開坯時切掉。控制澆鑄速度不要太快,溫度不要過高可以防止縮孔產生。
四、分層
鋼材基體上出現的互不結合的兩層結構。分層一般都平行於壓力加工表面,在縱、橫向斷面低倍試片上均有黑線。分層嚴重時有裂縫發生,在裂縫中往往有氧化鐵、非金屬夾雜和嚴重的偏析物質。
鎮靜鋼鋼錠的縮孔和沸騰鋼錠的氣囊及尾孔經軋制(鍛造)不能焊合產生分層。鋼中大型夾雜和嚴重成分偏析也能產生分層。分層是鋼材中不允許存在的缺陷,嚴重影響鋼材的使用。
防止分層缺陷的措施有:
(1)煉鋼方面,要凈化鋼質,減少偏析、縮孔、氣囊和大型非金屬夾雜,防止連鑄坯產生中間裂紋。
(2)軋鋼方面,在鋼錠加熱時要嚴防內裂,初軋坯要切凈縮孔和尾孔。
五、白點
在鋼材縱、橫斷面酸浸試片上,出現的不同長度無規則的發紋。它在橫向低倍試片上呈放射狀、同心圓或不規則分布,多距鋼件中心或與表面有一定距離。型鋼在橫向或縱向斷口上,呈圓形或橢圓形白亮點。直徑一般為3~10mm。
板鋼在縱向、橫向斷口上白點特徵不明顯,而在z向斷口上呈現長條狀或橢圓狀白色斑點。採用斷口檢查白點時,最好把試樣先進行淬火和調質處理。
鋼坯上出現白點,經壓力加工後可變形或延伸,壓下率較大時也能焊合。
白點缺陷對鋼材力學性能(韌性和塑性)影響很大,當白點平面垂直方向受應力作用時,會導致鋼件突然斷裂。因此,鋼材不允許白點存在。
白點產生的原因,一般認為是鋼中氫含量偏高和組織應力共同作用的結果。奧氏體中溶解的氫,在冷卻相變過程中,其溶解度顯著降低,所析出的氫原子聚集在鋼材微孔中或晶間偏析區或夾雜物周圍,結合成氫分子,產生巨大局部壓力,當這種壓力與相變組織應力相結合超過鋼的強度時,則產生裂紋,形成白點。
白點多在高碳鋼,馬氏體鋼和貝氏體鋼中出現。奧氏體鋼和低碳鐵素體鋼一般不出現白點。
消除白點的措施主要是改進冶煉操作,採用真空處理,降低鋼水氫含量和採用鋼坯(鋼材)緩冷工藝。
六、偏析
鋼材成分的嚴重不均勻。這種現象不僅包括常見的元素(如碳、錳、硅、硫、磷)分布的不均勻性,還包括氣體和非金屬夾雜分布的不均勻性。
偏析產生的原因是鋼水在凝固過程中,由於選分結晶造成的。首先結晶出來的晶核純度較高,雜質遺留在後結晶的鋼水中。因此,結晶前沿的鋼水為碳、硫、磷等雜質富集。隨著溫度降低,雜質凝固在樹枝晶間,或形成不同程度的偏析帶。此外,隨著溫度降低,氣體在鋼水中溶解度下降,在結晶前沿析出並形成氣泡上浮,富集雜質的鋼水沿上山軌跡形成條狀偏析帶。由於偏析在鋼錠上出現部位不同和在低倍試片上表現出形式各異,偏析可分為方形偏析、「V」、「^」形偏析、點狀偏析、中心偏析和晶間偏析等。
另外,脫氧合金化工藝操作不當,可以造成嚴重的成分不均。保護渣捲入到鋼水中造成局部增碳。這些因素使鋼材產生偏析的程度往往超過由於選分結晶造成的偏析。
偏析影響鋼材的力學性能和耐蝕性能。嚴重偏析可能造成鋼材脆斷,冷加工時還會損壞機械,故超過允許級別的偏析是不允許存在的。
偏析程度往往與錠型、鋼種、冶煉操作和澆鑄條件有關。合金元素、雜質和氣體的偏析,隨澆鑄溫度升高和澆鑄速度加快,偏析程度愈嚴重。連鑄鋼採用電磁攪拌可以減輕偏析程度。另外,增加鋼水潔凈度是減輕偏析的重要措施。
七、非金屬夾雜
鋼中含有與基體金屬成分不同的非金屬物質。它破壞了金屬基體的連續性和各向同性性能。
按非金屬夾雜的來源可分為內生夾雜、外來夾雜及兩者混合物。
(1)內生夾雜是由脫氧和結晶時進行的各種物理化學反應形成的,主要是鋼中氧、硫、氮同其他成分間的反應產物,如Al2O3等。內生夾雜的特點是顆粒小,在鋼內分布均勻,它與脫氧方法和化學成分有密切關系。
(2)外來夾雜是指鋼中混入耐火材料、爐渣、鋼包渣和模內保護渣等外來物質。外來夾雜的特點是尺寸大,成分結構復雜,分布不規則,具有很大的偶然性。空氣對鋼水的二次氧化會形成外來夾雜。在煉鋼過程中,外來夾雜與內生夾雜往往會形成兩者的混合物,具有兩者的共同特點,使檢驗者難以分辨其來源。非金屬夾雜按顆粒大小可分為亞顯微、顯微和大顆粒夾雜三種,其顆粒尺寸分別為<1μm、1~100μm和>100μm。大顆粒夾雜往往出現在鋼錠沉澱晶區和皮下位置。連鑄鋼上弧區有時也發現大顆粒夾雜。
按非金屬夾雜本身性質,可以分為塑性夾雜和脆性夾雜兩種。
(1)塑性夾雜在熱加工過程中,隨金屬一起發生變形,如MnS;而脆性夾雜,隨熱加工金屬的變彤發生破碎,如Al2O3。當非金屬夾雜熔點特別高時,在鋼中一生成就以固態形式存在,這類非金屬夾雜物在熱加工時既不變形,也不破碎,保持其原來形狀,如TiN。對於熔點很低的夾雜,從最後結晶母液中排除,此時多沿初生奧氏體晶界呈網狀薄膜析出,如FeS。
鋼中非金屬夾雜對鋼材的強度、伸長率、韌性和疲勞強度有不同程度的影響。按使用要求,根據中國國家非金屬夾雜標准評定鋼材夾雜級別。鋼材中不允許存在嚴重危害鋼材性能的大顆粒夾雜。
保證出鋼和澆鑄系統清潔,採用吹氬、渣洗、噴粉、真空處理等爐外精煉措施及保護澆鑄措施,可以減少鋼中非金屬夾雜。
八、疏鬆
鋼材截面熱酸蝕試片上組織不緻密的現象。在鋼材橫斷面熱酸蝕試片上,存在許多孔隙和小黑點子,呈現組織不緻密現象,當這些孔隙和小黑點子分布在整個試片上時叫一股疏鬆,集中分布在中心的叫做中心疏鬆。在縱向熱酸蝕試片上,疏鬆表現為不同長度的條紋,但仔細觀察或用8~10倍放大鏡觀察,條紋沒有深度。用掃描電子顯微鏡觀察孔隙或條紋,可以發現樹枝晶末梢有金屬結晶的自由表面特徵。
疏鬆的成因與鋼水冷凝收縮和選分結晶有關。鋼水在結晶時,先結晶的樹枝晶晶軸比較純凈,而枝晶問富集偏析元素、氣體、非金屬夾雜和少量未凝固的鋼水,最後凝固時,不能夠全部充滿枝晶間,因而形成一些細小微孔。
鋼材在熱加工過程中,疏鬆可大大改善,但當鋼錠疏鬆嚴重時,壓縮比不足或孔型設計不當時,熱加工後疏鬆還會存在。嚴重的疏鬆視為鋼材缺陷,當疏鬆嚴重時,鋼材的力學性能會受到一定影響。但根據鋼材使用要求,可以按標准圖片評定鋼材疏鬆級別。
採用提高鋼水純凈度、加快冷卻速度、連鑄用電磁攪拌和減少枝晶等措施,可以減少疏鬆。
九、帶狀組織
熱加工後的低碳結構鋼,其顯微組織鐵素體和珠光體沿軋向平行排列,呈帶狀分布,形成鋼材帶狀組織。
帶狀組織形成的機制一般有3種:
(1)通常,在低碳鋼中,當樹枝晶間富集磷、硫等雜質,鋼材經熱加工後,非金屬夾雜被拉長。如硫化物,而奧氏體在冷卻過程中先共析鐵素體沿硫化物夾雜形核和長大,形成鐵素體條帶。同時,鐵素體形成時向鐵素體條帶兩側排碳,也形成了珠光體條帶。
(2)當低碳鋼中含錳較高時,先凝固的樹枝晶晶干成分較純,形成鐵素體條帶。而枝晶間含錳、碳、硫、磷等雜質,而且鐵素體條帶也向枝晶間排碳,形成珠光體條帶。
(3)當熱加工終軋溫度較低時,在雙相區軋制也能形成帶狀組織。
帶狀組織實質上是鋼材組織不均勻的一種表現,影響鋼材性能,產生備向異性。帶狀組織降低鋼材塑性、沖擊韌性和斷面收縮率,特別是對橫向力學性能影響較大。
根據鋼材的使用要求,可以按中國國家帶狀組織評級標准圖片來評定鋼材帶狀組織的級別。
降低鋼中夾雜和樹枝晶成分偏析是減輕鋼中帶狀組織的主要措施。
注意事項:
碳素鋼淬火時通常採用水冷,但對小尺寸的中碳鋼,尤其是直徑為8—12mm的45號鋼淬火時容易產生裂紋,這是一個較為復雜的問題。採取的措施是淬火時試樣在水中快速攪動,或者採用油冷,可避免出現裂紋。包裝,裸裝,國產鋼按鋼號在端部進行塗色,詳見GB/T699-88標准規定。
10. 請教下:鋅合金成份里Mg少0.01了對產品會有什麼影響嗎
鎂是鋅壓鑄合金另一個重要元素,它的存在可提高合金的抗蠕變性能;同時鎂也是改善鋅鋁合金耐蝕性能的比較有效的元素之一;有資料指出鎂含量為0.05%左右時,對雜質有害作用的抑制效果最佳。也有資料指出,合金中鎂含量偏高是導致其發脆的原因之一;例如我國南方某地的一些鄉鎮企業他們採用雜料生產的鋅壓鑄合金中不專門加鎂,鎂的含量只有0.001%左右,合金硬度低而不易發脆,壓鑄過程走水性能較好,特別適合用來製造低成本、低檔次的玩具產品。由此可見,鎂低的話硬度會比較軟,鎂在合金中起清潔作用,鎂含量過低容對於控制雜質造成的晶間腐蝕的效果會降低