❶ 低碳鋼與鑄鐵試樣扭轉破壞情況有何不同,為什麼
1、低碳鋼試來件受扭轉時沿橫截面破源壞,此破壞是由橫截面上的切應力造成的,說明低碳鋼的抗剪強度較差;鑄鐵試件受扭轉時沿大約45度斜截面破壞,斷口粗糙,此破壞是由斜截面上的拉應力造的,說明鑄鐵的抗拉強度較差。
2、碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低;
3、鑄鐵塑性較差,鑄鐵試件受扭轉時沿大約45度斜截面破壞,斷口粗糙。低碳鋼試件受扭轉時沿橫截面破壞,此破壞是由橫截面上的切應力造成的,說明低碳鋼的抗剪強度較差,塑性和韌性較好
低碳鋼由於含碳量低,材料本身有一定的韌性,試件在扭轉試驗時產生塑性變形,會形成麻花狀,最後斷裂;鑄鐵由於含碳量高,沒有韌性,但是脆性大,試件在扭轉試驗時,基本上不產生變形,以脆斷結束。
❷ 低碳鋼與鑄鐵試樣扭轉破壞情況有何不同,為什麼
1、斷裂情況不同:扭轉試驗時低碳鋼試件會塑性變形,逐漸成麻花狀而斷裂;而鑄鐵試回件在扭轉答試驗時,基本上不產生變形,以脆斷結束。
2、兩者的含碳量不同,材料韌性不同,對扭曲的承受能力不同:兩種不同實驗結果的原因為低碳鋼含碳量低,材料有一定的韌性,對扭曲有一定的承受能力。而鑄鐵含碳量高,沒有韌性,同時脆性大,對扭曲沒有承受能力。
3、兩者的斷裂面情況不同:退火後的低碳鋼組織大部為為鐵素體同時含有少量珠光體,它的強度、硬度都比較低,而塑性、韌性較高。扭轉實驗時,低碳鋼試件會因為橫截面上的切應力而沿橫截面破壞,它的抗剪強度較差。
扭轉實驗時,因為塑性較差,鑄鐵試件因斜截面上的拉應力會沿大約45度斜截面被扭斷,斷口粗糙,它的抗拉強度較差。
(2)低碳鋼扭壞時先從哪個地方壞的擴展閱讀
脆性材料和塑性材料的強度和塑性可以通過扭轉試驗測定,扭轉試驗常用於需要經常承受扭矩的零件如軸、彈簧等材料上。
扭轉試驗需在扭轉試驗機上進行,材料性能和受力情況可以從扭轉試樣的斷口形狀中反映出來。
如切應力作用的結果表現為斷口的斷面與試樣軸線垂直,材料呈塑性;如正應力作用的結果表現為斷口斷面與試樣軸線約成45°角,材料呈脆性。
參考資料來源:網路-扭轉試驗
❸ 低碳鋼和鑄鐵在扭轉時的力學性能比較,並根據斷口特點分析其破壞原因
低碳鋼的扭轉角遠大於鑄鐵,因為低碳鋼是塑性材料,而鑄鐵是脆性的,低碳鋼斷面是沿橫截面被剪破壞的,然而鑄鐵是沿著45到55度不等的截面破壞的,說明低碳鋼是因為橫截面的剪切應力而破壞的,鑄鐵是因為斜截面的拉應力而破壞的。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。
這種鋼還具有良好的焊接性。含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造,焊接和切削, 常用於製造鏈條, 鉚釘, 螺栓, 軸等。
(3)低碳鋼扭壞時先從哪個地方壞的擴展閱讀:
低碳鋼由於強度較低,使用受到限制。適當增加碳鋼中錳含量,並加入微量釩、鈦、鈮等合金元素,可大大提高鋼的強度。若降低鋼中碳含量並加入少量鋁、少量硼和碳化物形成元素,則可得到超低碳貝氏體組夠其強度很高,並保持較好的塑性和韌性。
灰鑄鐵的熱處理僅能改變其基體組織,改變不了石墨形態,因此,熱處理不能明顯改變灰鑄鐵的力學性能,並且灰鑄鐵的低塑性又使快速冷卻的熱處理方法難以實施,所以灰鑄鐵的熱處理受大一定的局限性。其熱處理主要用於消除應力和改善切削加工性能等。
❹ 急,低碳鋼與鑄鐵在扭轉破壞時斷口不同,為什麼
低碳鋼拉伸和鑄鐵在扭轉破壞時斷裂方式不一樣,拉伸的斷裂方式是拉斷,試件受正應力,表現為斷裂截面收縮、斷裂後試件總長大於原試件長度。
鑄鐵在扭轉破壞使的斷裂方式是剪斷,試件受切應力,表現為試樣表面的橫向與縱向出現滑移線,最後沿橫截面被剪斷,斷裂截面面積不變。
鑄鐵壓縮破壞時,斷口方位角約為55°-60°,在該截面上存在較大的切應力,所以,其破壞方式是剪斷。扭轉時,所受的外力也是剪力,所以,破壞方式與壓縮時相同,為剪斷。
低碳鋼是韌性材料,鑄鐵是脆性材料
鑄鐵:
扭轉試驗——斷口與軸線成45度,屬於拉伸破壞
拉伸試驗——斷口是平面,屬於拉伸破壞
壓縮試驗——45度碎裂,只能剪切破壞
脆性材料的抗剪切強度大於抗拉伸強度。彈性變形很小,基本無塑性變形,屈服強度與抗拉強度基本相同。
低碳鋼:
扭轉試驗——變形很大,旋轉很多圈,斷口是平面,屬於剪切破壞
拉伸試驗——變形很大,斷口縮頸後,埠有45度茬口,屬於剪切破壞
壓縮試驗——呈腰鼓形塑性變形
韌性材料的抗剪切強度小於抗拉伸強度。彈性變形和塑性變形都很大。
低碳鋼與鑄鐵的比較
1、低碳鋼
低碳鋼為碳含量低於0.25%的碳素鋼,因其強度低、硬度低而軟,故又稱軟鋼。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。
因此,低碳鋼在拉斷時會表現出斷裂截面收縮,斷裂後試件的總長也會大於原試件的長度。
2、鑄鐵
含碳量在2%以上的鐵碳合金為鑄鐵。工業用鑄鐵一般含碳量為2.5%~3.5%。碳在鑄鐵中多以石墨形態存在,有時也以滲碳體形態存在。
除碳外,鑄鐵中還含有1%~3%的硅,以及錳、磷、硫等元素。合金鑄鐵還含有鎳、鉻、鉬、鋁、銅、硼、釩等元素。碳、硅是影響鑄鐵顯微組織和性能的主要元素。鑄鐵可分為:灰口鑄鐵。含碳量較高(2.7%~4.0%),白口鑄鐵,可鍛鑄鐵,蠕墨鑄鐵等。
由於鑄鐵具有較強的耐磨性和柔韌性,在做扭轉試驗時或壓縮試驗時,屬於拉伸破壞或剪切破壞。
❺ 低碳鋼和鑄鐵扭轉時變形和破壞情況有何不同試分析其破壞原因。
1、斷口的形狀不同:
鑄鐵破壞時斷口呈45º螺旋曲面,而低碳鋼破壞時斷口是與軸版線垂直的近似平權面。
2、斷裂的過程不同:
低碳鋼扭轉時發生屈服,加工硬化,最後斷裂。塑性變形量較大。鑄鐵扭轉時幾乎不發生塑性變形,直接斷裂。
原因:鑄鐵是被45º方向上主應力所拉斷,是由斜截面上的拉應力造成的,說明鑄鐵的抗拉強度較差;低碳鋼是由橫截面上的切應力造成的,說明低碳鋼的抗剪強度較差。
(5)低碳鋼扭壞時先從哪個地方壞的擴展閱讀:
低碳鋼和鑄鐵在拉伸試驗中的性能和特點
低碳鋼屬於塑性材料,拉伸過程中有明顯的屈服階段,有明顯的頸縮間斷(又稱斷裂階段)。(白口)鑄鐵屬於脆性材料,拉伸過程中沒有明顯的屈服階段,沒有明顯的頸縮間斷。
低碳鋼是典型的塑性材料,拉伸時會發生屈服,會產生很大的塑性變形,斷裂前有明顯的頸縮現象,拉斷後斷口呈凸凹狀,而鑄鐵拉伸時沒有屈服現象,變形也不明顯,拉斷後斷口基本沿橫截面,較粗糙。
❻ 低碳鋼和鑄鐵試件扭轉時沿著什麼方位破壞各是什麼應力引起的
鑄鐵為脆性材料,其壓縮圖在開始時接近於直線,與縱軸之夾角很小,以後曲率逐漸增大,最後至破壞,因此只確定其強度極限。
σbc=fbc/s
鑄鐵試件受壓力作用而縮短,表明有很少的塑性變形的存在。當載荷達到最大值時,試件即破壞,並在其表面上出現了傾斜的裂縫(裂縫一般大致在與橫截面成45°的平面上發生)鑄鐵受壓後的破壞是突然發生的,這是脆性材料的特徵。
從試驗結果與以前的拉伸試驗結果作一比較,可以看出,鑄鐵承受壓縮的能力遠遠大於承受拉伸的能力。抗壓強度遠遠超過抗拉強度,這是脆性材料的一般屬性。
❼ 低碳鋼與鑄鐵扭轉時的破壞情況有什麼不同
1、斷裂情況不同:扭轉試驗時低碳鋼試件會塑性變形,逐漸成麻花狀而斷裂;而鑄鐵試件版在扭轉試驗時,權基本上不產生變形,以脆斷結束。
2、兩者的含碳量不同,材料韌性不同,對扭曲的承受能力不同:兩種不同實驗結果的原因為低碳鋼含碳量低,材料有一定的韌性,對扭曲有一定的承受能力。而鑄鐵含碳量高,沒有韌性,同時脆性大,對扭曲沒有承受能力。
3、兩者的斷裂面情況不同:退火後的低碳鋼組織大部為為鐵素體同時含有少量珠光體,它的強度、硬度都比較低,而塑性、韌性較高。扭轉實驗時,低碳鋼試件會因為橫截面上的切應力而沿橫截面破壞,它的抗剪強度較差。
扭轉實驗時,因為塑性較差,鑄鐵試件因斜截面上的拉應力會沿大約45度斜截面被扭斷,斷口粗糙,它的抗拉強度較差。
(7)低碳鋼扭壞時先從哪個地方壞的擴展閱讀
脆性材料和塑性材料的強度和塑性可以通過扭轉試驗測定,扭轉試驗常用於需要經常承受扭矩的零件如軸、彈簧等材料上。
扭轉試驗需在扭轉試驗機上進行,材料性能和受力情況可以從扭轉試樣的斷口形狀中反映出來。
如切應力作用的結果表現為斷口的斷面與試樣軸線垂直,材料呈塑性;如正應力作用的結果表現為斷口斷面與試樣軸線約成45°角,材料呈脆性。
參考資料來源:網路-扭轉試驗
❽ 低碳鋼和鑄鐵試件扭轉時沿著什麼方位破壞各是什麼應力引起的
鑄鐵為脆性材料,其壓縮圖在開始時接近於直線,與縱軸之夾角很回小,以後曲率逐答漸增大,最後至破壞,因此只確定其強度極限。
σbc=fbc/s
鑄鐵試件受壓力作用而縮短,表明有很少的塑性變形的存在。當載荷達到最大值時,試件即破壞,並在其表面上出現了傾斜的裂縫(裂縫一般大致在與橫截面成45°的平面上發生)鑄鐵受壓後的破壞是突然發生的,這是脆性材料的特徵。
從試驗結果與以前的拉伸試驗結果作一比較,可以看出,鑄鐵承受壓縮的能力遠遠大於承受拉伸的能力。抗壓強度遠遠超過抗拉強度,這是脆性材料的一般屬性。
❾ 低碳鋼和鑄鐵拉伸破壞的主要原因
鑄鐵的拉伸破壞發生在橫截面上,是由最大拉應力造成的。壓縮破壞發生專在約50-55度斜截面上,屬是由最大切應力造成的。扭轉破壞發生在45度螺旋面上,是由最大拉應力造成的。
低碳鋼拉伸破壞的主要原因是最大切應力引起塑性屈服。引起鑄鐵斷裂的主要原因是最大拉應力引起脆性斷裂,這說明低碳鋼的抗能力大於抗剪能力,而鑄鐵抗剪能力大於抗拉能力。
(9)低碳鋼扭壞時先從哪個地方壞的擴展閱讀
鑄鐵的組織和機械性能:
灰鑄鐵的凝固形態隨著碳當量變化。在碳當量小於4.3%的亞共晶條件下,首先奧氏體樹枝晶析出(叫做初晶奧氏體),當殘留的鐵液變成共晶成分時,由石墨和奧氏體兩相層狀組織形成的共晶團形核、成長,凝固結束。
過共晶成分條件下,首先結晶出板狀石墨(叫做初生石墨),當殘留鐵液達到共晶成分時,共晶團形核、生長。灰鑄鐵由幾乎沒有強度的石墨和具有強度的鐵基體(鐵素體或者珠光體)組成,這二者的形狀和數量決定了機械性能。
❿ 分析低碳鋼、鑄鐵試件破壞的原因
低碳鋼受到扭轉時低碳鋼則可能發生變形,原因是低碳鋼內含有少量的碳,專其韌性比較好,低炭鋼拉屬伸實驗達到屈服強度之後有個頸縮階段,斷面會比原料料細,扭的時候會扭出螺旋截面來,而鑄鐵內含有大量的碳,
鑄鐵試件受扭轉時沿大約45度斜截面破壞,斷口粗糙,此破壞是由斜截面上的拉應力造成的,說明鑄鐵的抗拉強度較差。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。
低碳鋼一般軋成角鋼、槽鋼、工字鋼、鋼管、鋼帶或鋼板,用於製作各種建築構件、容器、箱體、爐體和農機具等。優質低碳鋼軋成薄板,製作汽車駕駛室、發動機罩等深沖製品;
還軋成棒材,用於製作強度要求不高的機械零件,低碳鋼在使用前一般不經熱處理,碳含量在0.15%以上的經滲碳或氰化處理,用於要求表層溫度高、耐磨性好的軸、軸套、鏈輪等零件。
低碳鋼由於強度較低,使用受到限制。適當增加碳鋼中錳含量,並加入微量釩、鈦、鈮等合金元素,可大大提高鋼的強度。若降低鋼中碳含量並加入少量鋁、少量硼和碳化物形成元素,則可得到超低碳貝氏體組夠其強度很高,並保持較好的塑性和韌性。