導航:首頁 > 合金材料 > 低合金鋼有什麼用

低合金鋼有什麼用

發布時間:2023-04-13 06:57:48

『壹』 合金鋼的作用

1、碳(C):鋼中含碳量增加,屈服點和抗拉強度升高,但塑性和沖擊性降低,當碳含量超過0.23%時,鋼的焊接性能變壞,因此用於焊接的低合金結構鋼,含碳量一般不超過0.20%。碳量高還會降低鋼的耐大氣腐蝕能力,在露天料場的高碳鋼就易銹蝕;此外,碳能增加鋼的冷脆性和時效敏感性。
2、硅(Si):在煉鋼過程中加硅作為還原劑和脫氧劑,所以鎮靜鋼含有0.15-0.30%的硅。如果鋼中含硅量超過0.50-0.60%,硅就算合金元素。硅能顯著提高鋼的彈性極限,屈服點和抗拉強度,故廣泛用於作彈簧鋼。在調質結構鋼中加入1.0-1.2%的硅,強度可提高15-20%。硅和鉬、鎢、鉻等結合,有提高抗腐蝕性和抗氧化的作用,可製造耐熱鋼。含硅1-4%的低碳鋼,具有極高的導磁率,用於電器工業做矽鋼片。硅量增加,會降低鋼的焊接性能。
3、錳(Mn):在煉鋼過程中,錳是良好的脫氧劑和脫硫劑,一般鋼中含錳0.30-0.50%。在碳素鋼中加入0.70%以上時就算「錳鋼」,較一般鋼量的鋼不但有足夠的韌性,且有較高的強度和硬度,提高鋼的淬性,改善鋼的熱加工性能,如16Mn鋼比A3屈服點高40%。含錳11-14%的鋼有極高的耐磨性,用於挖土機鏟斗,球磨機襯板等。錳量增高,減弱鋼的抗腐蝕能力,降低焊接性能。
4、磷(P):在一般情況下,磷是鋼中有害元素,增加鋼的冷脆性,使焊接性能變壞,降低塑性,使冷彎性能變壞。因此通常要求鋼中含磷量小於0.045%,優質鋼要求更低些。
5、硫(S):硫在通常情況下也是有害元素。使鋼產生熱脆性,降低鋼的延展性和韌性,在鍛造和軋制時造成裂紋。硫對焊接性能也不利,降低耐腐蝕性。所以通常要求硫含量小於0.055%,優質鋼要求小於0.040%。在鋼中加入0.08-0.20%的硫,可以改善切削加工性,通常稱易切削鋼。
6、鉻(Cr):在結構鋼和工具鋼中,鉻能顯著提高強度、硬度和耐磨性,但同時降低塑性和韌性。鉻又能提高鋼的抗氧化性和耐腐蝕性,因而是不銹鋼,耐熱鋼的重要合金元素。
7、鎳(Ni):鎳能提高鋼的強度,而又保持良好的塑性和韌性。鎳對酸鹼有較高的耐腐蝕能力,在高溫下有防銹和耐熱能力。但由於鎳是較稀缺的資源,故應盡量採用其他合金元素代用鎳鉻鋼。
8、 鉬(Mo):鉬能使鋼的晶粒細化,提高淬透性和熱強性能,在高溫時保持足夠的強度和抗蠕變能力(長期在高溫下受到應力,發生變形,稱蠕變)。結構鋼中加入鉬,能提高機械性能。 還可以抑制合金鋼由於淬火而引起的脆性。在工具鋼中可提高紅性。
9、鈦(Ti):鈦是鋼中強脫氧劑。它能使鋼的內部組織緻密,細化晶粒力;降低時效敏感性和冷脆性。改善焊接性能。在鉻18鎳9奧氏體不銹鋼中加入適當的鈦,可避免晶間腐蝕。
10、釩(V):釩是鋼的優良脫氧劑。鋼中加0.5%的釩可細化組織晶粒,提高強度和韌性。釩與碳形成的碳化物,在高溫高壓下可提高抗氫腐蝕能力。
11、鎢(W):鎢熔點高,比重大,是貴生的合金元素。鎢與碳形成碳化鎢有很高的硬度和耐磨性。在工具鋼加鎢,可顯著提高紅硬性和熱強性,作切削工具及鍛模具用。
12、鈮(Nb):鈮能細化晶粒和降低鋼的過熱敏感性及回火脆性,提高強度,但塑性和韌性有所下降。在普通低合金鋼中加鈮,可提高抗大氣腐蝕及高溫下抗氫、氮、氨腐蝕能力。鈮可改善焊接性能。在奧氏體不銹鋼中加鈮,可防止晶間腐蝕現象。
13、鈷(Co):鈷是稀有的貴重金屬,多用於特殊鋼和合金中,如熱強鋼和磁性材料。
14、銅(Cu):武鋼用大冶礦石所煉的鋼,往往含有銅。銅能提高強度和韌性,特別是大氣腐蝕性能。缺點是在熱加工時容易產生熱脆,銅含量超過0.5%塑性顯著降低。當銅含量小於0.50%對焊接性無影響。
15、鋁(Al):鋁是鋼中常用的脫氧劑。鋼中加入少量的鋁,可細化晶粒,提高沖擊韌性,如作深沖薄板的08Al鋼。鋁還具有抗氧化性和抗腐蝕性能,鋁與鉻、硅合用,可顯著提高鋼的高溫不起皮性能和耐高溫腐蝕的能力。鋁的缺點是影響鋼的熱加工性能、焊接性能和切削加工性能。
16、硼(B):鋼中加入微量的硼就可改善鋼的緻密性和熱軋性能,提高強度。
17、氮(N):氮能提高鋼的強度,低溫韌性和焊接性,增加時效敏感性。
18、稀土(Xt):稀土元素是指元素周期表中原子序數為57-71的15個鑭系元素。這些元素都是金屬,但他們的氧化物很象「土」,所以習慣上稱稀土。鋼中加入稀土,可以改變鋼中夾雜物的組成、形態、分布和性質,從而改善了鋼的各種性能,如韌性、焊接性,冷加工性能。在犁鏵鋼中加入稀土,可提高耐磨性。

『貳』 低合金鋼都有哪些性能用途

低合金鋼是指合金元素總量小於5%的合金鋼。低合金鋼是相對於碳鋼而言的,是在碳鋼的基礎上,為了改善鋼的性能,而有意向鋼中加入一種或幾種合金元素。加入的合金量超過碳鋼正常生產方法所具有的一般含量時,稱這種鋼為合金鋼。當合金總量低於5%時稱為低合金鋼,普通合金鋼一般在3.5%以下,合金含量在5-10%之間稱為中合金鋼,大於10%的稱為高合金鋼。
低合金鋼性能:
1、強度
鋼結構件的屈服點決定了結構所能承受的不發生永久變形的應力。典型碳素結構鋼的最小屈服點為235MPa。而典型低合金高強度鋼的最小屈服點為345MPa。因此,根據其屈服點的比例關系,低合金高強度鋼的使用允許應力比碳素結構鋼高1.4倍。
與碳素結構鋼相比,使用低合金高強度鋼可以減小結構件的尺寸,使重量減輕。必須注意,對於可能出現彎曲的構件,其許用應力必須修正,以達到保證結構的堅固性。有時用低合金高強度鋼取代碳素結構鋼但不改變斷面尺寸,其唯一的目的是在不增加重量的情況下而得到強度更高更耐久的結構。節約重量對運輸車輛的結構是最重要的,這樣就可以運輸更重的重量和減少能量消耗。
最新的發展是採用通過臨界退火和快速冷卻得到馬氏體和鐵素體二相顯微組織(或雙相顯微組織)的低合金高強度鋼。這種鋼的薄板產品有極好的成形性能,屈服點一般為310~345MPa,通過汽車部件壓力成形產生的應變,屈服點可以提高到550MPa或更高。
2、成形性能
為了容易地和經濟地進行熱或冷加工以製成工程結構的各種部件,低合金高強度鋼必需具有適當的成形性能。和碳素結構鋼一樣,低合金高強度鋼一般可以進行這樣的加工,以及如剪切、沖孔和機加工藝。雖然其屈服點高,即使成形操作變形相當劇烈也同樣可以使用用於碳素結構鋼成形的冷彎沖壓機、拉拔機、壓力機和其他設備,但是一些設備具需要修改。
低合金高強度鋼和碳素結構鋼的冷成形性能之間有固有的區別。首先,使低合金高強度鋼產生一定量的永久變形比同樣尺寸的碳素結構鋼需要更大的力。第二,當低合金高強度鋼成形時,對回彈應給出稍大些的允許量。
根據經驗,除非對低合金高強度鋼進行控制夾雜物形狀的處理,否則在進行冷成形時必須使用比碳素結構鋼更大的彎曲半徑。
3、焊接性能
由於鋼結構在製作加工過程中經常使用焊接工藝,因此對於這類用途的低合金高強度鋼來說,能夠採用在薄板和鋼帶這樣的厚度情況下廣泛使用的電弧焊工藝進行焊接是非常重要的,所製作的鋼結構的焊縫應具有要求的強度和韌性也同樣是非常重要的,這樣才能經受住預定用途出現的最不利的條件。
目前低合金高強度鋼的發展與各種焊接工藝的發展足同步進行的,要特別注意確保這些鋼能夠具有適當的焊接性能。如果焊接操作得當,大部分低合金高強度鋼是可以很好地進行焊接的。對於大型型鋼和較高碳和錳含量的牌號,需要預熱或採用低氫焊條。對於某些低合金高強度鋼無論厚度是多少,都應採用低氧焊條。
4、耐腐蝕性
當使用低合金高強度鋼時,都是希望取其強度高的優點而用較薄的截面,這不僅僅是為了節省重量而且也是為了盡可能的經濟。但是,必須要充分考慮腐蝕這一因素,鋼材截面愈薄就愈應注意防腐。任何鋼結構的防腐一般都是通過在適當准備的表面上塗防腐層並且對防腐層加以保護的方法來達到的。
一些低合金高強度鋼具有良好的耐大氣腐蝕性能,其不僅可以提高防腐塗層的效果,而且在某些情況下採取適當的預防措施甚至還可以在不塗層的狀態下暴露在大氣中使用。提高耐大氣腐蝕性能的元素是銅、磷、硅、鉻、鎳和鉬。一些低合金高強度鋼的優良的耐大氣腐蝕性能導致形成了建築、橋梁等結構設計的新概念,即這些結構選用適當的低合金高強度鋼的裸露構件來建造。
在正常暴露在大氣中的情況下,裸露的鋼在大氣腐蝕的最初幾個月形成一種緊密的保護性氧化膜。有時建築師選用裸露的鋼結構是因為希望得到鋼表面均勻的大氣氧化的外觀,而有時則是為了節省塗保護層以達到經濟的目的。在裸露狀態下使用這些低合金高強度鋼,設計上必須考慮鋼的表面不能長期是潮濕的,而且還應特別注意特殊的大氣環境,以保證在此條件下鋼的腐蝕速率是允許的。
例如在強化學或工業煙氣的條件下則顯然是不適宜的。為了驗證在某些環境下是否可以使用裸露的鋼結構。需要對大氣環境進行測定,甚至需要進行裸露試驗。
5、缺口韌性
低合金高強度鋼牌號在設計上具有對其預期的結構用途來說相當好的缺口韌性。具體牌號的低合金高強度鋼其缺口韌性的適用性,或是只根據已有的使用經驗,或是結合缺口試樣的沖擊試驗結果綜合考慮。為了滿足某些用途的極嚴格的要求,生產的一些低合金高強度鋼具有極好的缺口韌性。例如,通常採用控制熱軋技術生產用於製造焊接管線鋼管的低台金高強度鋼鋼板,這種鋼管需要符合有關標准對缺口韌性規定的要求。
低合金鋼用途和特性:
低合金鋼焊接結構的零部件通常需要經過加工成形—焊接—焊後熱處理等工序,這就要求鋼材具有良好的工藝性能。工藝性能包括金屬的焊接性,切削性能,冷、熱加工性能,熱處理性能,可鍛性,組織均勻穩定性及大截面的淬透性等。在考慮材料成本的同時還應考慮材料加工、焊接難易程度不同對製造費用的影響。
低合金鋼在工程機械、船舶、橋梁、高層建築、鍋爐及壓力容器、電力、各種車輛的製造中得到了廣泛的應用。這與它的特性(如:塑性、韌性、焊接性能)是分不開的。圖集中展示了一些常見的低合金鋼的用途和特性。

『叄』 鋼一般分為哪些類他們有什麼區別各有什麼特性和用途.

一 鋼材的種類
按用途可分為:結構鋼、工具鋼和特殊鋼;
按冶煉方法可分為:轉爐鋼和平爐鋼;
按脫氧方法可分為:沸騰鋼(F)、半鎮靜鋼(b)、鎮靜鋼(Z)和特殊鎮靜鋼(TZ),鎮靜鋼和特殊鎮靜鋼的代號可以省去;
按成型方法可分為:軋制鋼(熱軋、冷軋)、鍛鋼和鑄鋼;
按化學成分可分為:碳素鋼和合金鋼。
1.鋼材的牌號
鋼材的品種繁多,鋼結構中採用的鋼材主要有二類。
⑴碳素結構鋼
根據現行的國家標准《碳素結構鋼》(GB700)的規定,碳素結構鋼的牌號由代表屈服點的字母Q、屈服點的數值(N/mm2)、質量等級符號和脫氧方法符號等四個部分按順序組成。
碳素結構鋼分為Q195、Q215、Q235、Q255和Q275等五種,屈服強度越大,其含碳量、強度和硬度越大,塑性越低。其中Q235在使用、加工和焊接方面的性能都比較好,是鋼結構常用鋼材之一。

質量等級分為A、B、C、D四級,由A到D表示質量由低到高。不同質量等級鋼對化學成分和力學性能的要求不同。A級無沖擊功規定,對冷彎試驗只在需方有要求時才進行,其碳、錳、硅含量也可以不作為交貨條件;B級、C級、D級分別要求保證20℃、0℃、-20℃時夏比V形缺口沖擊功不小於27J(縱向),都要求提供冷彎試驗的合格保證,以及碳、錳、硅、硫和磷等含量的質保。所有鋼材交貨時供方應提供屈服點、極限強度和伸長率等力學性能的質保。
沸騰鋼、鎮靜鋼、半鎮靜鋼和特殊鎮靜鋼分別用漢字拼音字首F、Z、b和TZ表示。對Q235,A、B級鋼可以是Z、b或F,C級鋼只能是Z,D級鋼只能是TZ。Z和TZ可以省略不寫。
如Q235-AF表示屈服強度為235N/mm2的A級沸騰鋼;Q235-Bb表示屈服強度為235N/mm2的B級半鎮靜鋼;Q235-C表示屈服強度為235N/mm2的C級鎮靜鋼。
(2) 低合金高強度結構鋼
低合金鋼是指在煉鋼過程中添加一種或幾種少量合金元素,其總量低於5%的鋼材。低合金鋼因含有合金元素而具有較高的強度。根據現行國家標准《低合金高強度結構鋼》(GBT/l591)的規定,其牌號與碳素結構鋼牌號的表示方法相同,常用的低合金鋼有Q345、Q390、Q420等。
低合金鋼交貨時供方應提供屈服強度、極限強度、伸長率和冷彎試驗等力學性能質保;還要提供碳、錳、硅、硫、磷、釩、鋁和鐵等化學成分含量的質保。
低合金鋼的質量等級除與碳素結構鋼A、B、C、D四個等級相同外,增加E級,其要求提供-40℃時夏比V型缺口沖擊功不小於27J(縱向)。不同質量等級對碳、硫、磷、鋁的含量的要求也有區別。 低合金鋼的脫氧方法為鎮靜鋼或特殊鎮靜鋼。 Q345-B表示屈服強度為345N/mm2的B級鎮靜鋼;Q390-D表示屈服強度為390N/mm2的D級特殊鎮靜鋼。
碳素結構鋼和低合金鋼都可以採取適當的熱處理(如調質處理)進一步提高其強度。例如用於製造高強度螺栓的45號優質碳素鋼以及40硼(40B)、20錳鈦硼(20MnTiB)就是通過調質處理提高強度的。
注意:質量等級的劃分與要求:碳素鋼分(A、B、C、D) 四級,低合金鋼分(A、B、C、D、E)五級。各級鋼的保證條件為:
A級鋼-抗拉強度、屈服點和伸長率,冷彎試驗只在需方要求時進行,無沖擊韌性要求;
B級鋼-抗拉強度、屈服點和伸長率,冷彎試驗合格,常溫(20℃)沖擊試驗,要求沖擊功不小於27 J;
C級鋼-抗拉強度、屈服點和伸長率,冷彎試驗合格,0℃沖擊試驗,要求沖擊功不小於27 J;
D級鋼-抗拉強度、屈服點和伸長率,冷彎試驗合格,-20℃沖擊試驗,要求沖擊功不小於27 J;
E級鋼-抗拉強度、屈服點和伸長率,冷彎試驗合格,-40℃沖擊試驗,要求沖擊功不小於27 J.

二、鋼材的規格
鋼結構所用的鋼材主要為熱軋成型的鋼板、型鋼以及冷彎成型的薄壁型鋼。
1.鋼板
鋼板有薄鋼板(厚度0.35~4mm)、厚鋼板(厚度4.5~60mm)、特厚板(板厚>60mm)和扁鋼(厚度4~60mm,寬度為12~200mm)等。鋼板用「—寬×厚×長」或「—寬×厚」表示,單位為mm,如—450×8×3100,—450×8。
2.型鋼
鋼結構常用的型鋼是角鋼、工字型鋼、槽鋼和H型鋼、鋼管等。除H型鋼和鋼管有熱軋和焊接成型外,其餘型鋼均為熱軋成型。
(1)角鋼
角鋼有等邊角鋼和不等邊角鋼兩種。等邊角鋼以「L肢寬×肢厚」表示,不等邊角鋼以「L長肢寬×短肢寬×肢厚」表示,單位為mm,如L63×5,L100×80×8。
(2)工字鋼
工字鋼有普通工字鋼和輕型工字鋼兩種。普通工字鋼用「I截面高度的厘米數」表示,高度20mm以上的工字鋼,同一高度有三種腹板厚度,分別記為a、b、c,a類腹板最薄、冀緣最窄,b類較厚較寬,c類最厚最寬,如I20a。同樣高度的輕型工字鋼的翼緣要比普通工字鋼的冀緣寬而薄,腹板亦薄,輕型工字鋼可用漢語拼音符號「Q」表示,如QI40等。
(3)槽鋼
槽鋼也分普通槽鋼和輕型槽鋼兩種,以「[或Q[截面高度厘米數」表示,如[20 b, Q[22等。
(4)H型鋼
H型鋼分熱軋和焊接二種。熱軋H型鋼有寬翼緣(H W)、中翼緣 (HM)、窄翼緣 (HN)和H型鋼柱(HP)等四類。H型鋼用「高度×寬度×腹板厚度×翼緣厚度」表示,單位為mm,如HW250×250×9×14、HM294×200×8×12。
焊接H型鋼是由鋼板用高頻焊接組合而成,也用「高度×寬度×腹板厚度×翼緣厚度」表示,如H350×250×10×16。
(5)鋼管
鋼管有熱軋無縫鋼管和焊接鋼管兩種。無縫鋼管的外徑為32~630mm。鋼管用「φ外徑×壁厚」來表示,單位為mm,如φ273×5。
我國生產的各型鋼規格和截面特性見附錄三。對普通鋼結構的受力構件不宜採用厚度小於5mm的鋼板、壁厚小於3mm的鋼管、截面小於L45×4或L56×36×4的角鋼。
3.冷彎薄壁型鋼
冷彎薄壁型鋼採用薄鋼板冷軋製成。其壁厚一般為1.5~12mm,但承重結構受力構件的壁厚不宜小於2mm。薄壁型鋼能充分利用鋼材的強度以節約鋼材,在輕鋼結構中得到廣泛應用。常用冷彎薄壁型鋼截面型式有等邊角鋼(a)、卷邊等邊角鋼(b)、槽鋼(c)、卷邊槽鋼(d)、 Z型鋼、卷邊Z型鋼(C型鋼) (e)、鋼管[(f)、(g)、(h)]等。
表示方法為:按字母B、截面形狀符號和長邊寬度×短邊寬度×卷邊寬度×壁厚的順序表示,單位為mm,長、短邊相等時,只標一個邊寬,無卷邊時不標卷邊寬度,如B[ 120×40×2.5、BC160×60×20×3。
壓型鋼板是冷彎薄壁型鋼的另一種形式,它是用厚度為0.4~2mm的鋼板、鍍鋅鋼板或彩色塗層鋼板經冷軋成的波形板。

『肆』 合金鋼都有哪些主要元素,各有什麼作用

合金鋼的主要合金元素有硅、錳、鉻、鎳、鉬、鎢、釩、鈦、鈮、鋯、鈷、鋁、銅、硼、稀土等。其中釩、鈦、鈮、鋯等在鋼中是強碳化物形成元素,只要有足夠的碳,在適當條件下,就能形成各自的碳化物,當缺碳或在高溫條件下,則以原子狀態進入固溶體中;錳、鉻、鎢、鉬為碳化物形成元素,其中一部分以原子狀態進入固溶體中,另一部分形成置換式合金滲碳體;鋁、銅、鎳、鈷、硅等是不形成碳化物元素,一般以原子狀態存在於固溶體中。
合金元素的作用:
1、碳(C):鋼中含碳量增加,屈服點和抗拉強度升高,但塑性和沖擊性降低,當碳含量超過0.23%時,鋼的焊接性能變壞,因此用於焊接的低合金結構鋼,含碳量一般不超過0.20%。碳量高還會降低鋼的耐大氣腐蝕能力,在露天料場的高碳鋼就易銹蝕;此外,碳能增加鋼的冷脆性和時效敏感性。
2、硅(Si):在煉鋼過程中加硅作為還原劑和脫氧劑,所以鎮靜鋼含有0.15-0.30%的硅。如果鋼中含硅量超過0.50-0.60%,硅就算合金元素。硅能顯著提高鋼的彈性極限,屈服點和抗拉強度,故廣泛用於作彈簧鋼。在調質結構鋼中加入1.0-1.2%的硅,強度可提高15-20%。硅和鉬、鎢、鉻等結合,有提高抗腐蝕性和抗氧化的作用,可製造耐熱鋼。含硅1-4%的低碳鋼,具有極高的導磁率,用於電器工業做矽鋼片。硅量增加,會降低鋼的焊接性能。
3、錳(Mn):在煉鋼過程中,錳是良好的脫氧劑和脫硫劑,一般鋼中含錳0.30-0.50%。在碳素鋼中加入0.70%以上時就算「錳鋼」,較一般鋼量的鋼不但有足夠的韌性,且有較高的強度和硬度,提高鋼的淬性,改善鋼的熱加工性能,如16Mn鋼比A3屈服點高40%。含錳11-14%的鋼有極高的耐磨性,用於挖土機鏟斗,球磨機襯板等。錳量增高,減弱鋼的抗腐蝕能力,降低焊接性能。
4、磷(P):在一般情況下,磷是鋼中有害元素,增加鋼的冷脆性,使焊接性能變壞,降低塑性,使冷彎性能變壞。因此通常要求鋼中含磷量小於0.045%,優質鋼要求更低些。
5、硫(S):硫在通常情況下也是有害元素。使鋼產生熱脆性,降低鋼的延展性和韌性,在鍛造和軋制時造成裂紋。硫對焊接性能也不利,降低耐腐蝕性。所以通常要求硫含量小於0.055%,優質鋼要求小於0.040%。在鋼中加入0.08-0.20%的硫,可以改善切削加工性,通常稱易切削鋼。
6、鉻(Cr):在結構鋼和工具鋼中,鉻能顯著提高強度、硬度和耐磨性,但同時降低塑性和韌性。鉻又能提高鋼的抗氧化性和耐腐蝕性,因而是不銹鋼,耐熱鋼的重要合金元素。
7、鎳(Ni):鎳能提高鋼的強度,而又保持良好的塑性和韌性。鎳對酸鹼有較高的耐腐蝕能力,在高溫下有防銹和耐熱能力。但由於鎳是較稀缺的資源,故應盡量採用其他合金元素代用鎳鉻鋼。
8、鉬(Mo):鉬能使鋼的晶粒細化,提高淬透性和熱強性能,在高溫時保持足夠的強度和抗蠕變能力(長期在高溫下受到應力,發生變形,稱蠕變)。結構鋼中加入鉬,能提高機械性能。還可以抑制合金鋼由於淬火而引起的脆性。在工具鋼中可提高紅性。
9、鈦(Ti):鈦是鋼中強脫氧劑。它能使鋼的內部組織緻密,細化晶粒力;降低時效敏感性和冷脆性。改善焊接性能。在鉻18鎳9奧氏體不銹鋼中加入適當的鈦,可避免晶間腐蝕。
10、釩(V):釩是鋼的優良脫氧劑。鋼中加0.5%的釩可細化組織晶粒,提高強度和韌性。釩與碳形成的碳化物,在高溫高壓下可提高抗氫腐蝕能力。
11、鎢(W):鎢熔點高,比重大,是貴生的合金元素。鎢與碳形成碳化鎢有很高的硬度和耐磨性。在工具鋼加鎢,可顯著提高紅硬性和熱強性,作切削工具及鍛模具用。
12、鈮(Nb):鈮能細化晶粒和降低鋼的過熱敏感性及回火脆性,提高強度,但塑性和韌性有所下降。在普通低合金鋼中加鈮,可提高抗大氣腐蝕及高溫下抗氫、氮、氨腐蝕能力。鈮可改善焊接性能。在奧氏體不銹鋼中加鈮,可防止晶間腐蝕現象。
13、鈷(Co):鈷是稀有的貴重金屬,多用於特殊鋼和合金中,如熱強鋼和磁性材料。
14、銅(Cu):武鋼用大冶礦石所煉的鋼,往往含有銅。銅能提高強度和韌性,特別是大氣腐蝕性能。缺點是在熱加工時容易產生熱脆,銅含量超過0.5%塑性顯著降低。當銅含量小於0.50%對焊接性無影響。
15、鋁(Al):鋁是鋼中常用的脫氧劑。鋼中加入少量的鋁,可細化晶粒,提高沖擊韌性,如作深沖薄板的08Al鋼。鋁還具有抗氧化性和抗腐蝕性能,鋁與鉻、硅合用,可顯著提高鋼的高溫不起皮性能和耐高溫腐蝕的能力。鋁的缺點是影響鋼的熱加工性能、焊接性能和切削加工性能。
16、硼(B):鋼中加入微量的硼就可改善鋼的緻密性和熱軋性能,提高強度。
17、氮(N):氮能提高鋼的強度,低溫韌性和焊接性,增加時效敏感性。
18、稀土(Xt):稀土元素是指元素周期表中原子序數為57-71的15個鑭系元素。這些元素都是金屬,但他們的氧化物很象「土」,所以習慣上稱稀土。鋼中加入稀土,可以改變鋼中夾雜物的組成、形態、分布和性質,從而改善了鋼的各種性能,如韌性、焊接性,冷加工性能。在犁鏵鋼中加入稀土,可提高耐磨性。

『伍』 35CrNiMo16是什麼材料,有什麼用途

1.2766合金冷作鋼具有非常高的淬透性、延展性、抗壓性、耐磨性和高沖擊強度。該材料用於生產用於切割鋼板和型材的剪板機、沖壓模具、液壓鑿子、冷鍛模具、硬化刀具、沖壓機、沖頭或塑料生產模具。該牌號的特點是強度高、耐負荷、回火和抗疲勞。

德國料號:1.2766

德國牌號:X35NiCrMo4 / 35CrNiMo16

化學成分:

C:0,32 - 0,38

Si:0,15 - 0,30

Mn:0,40 - 0,60

P:max. 0,035

S:max. 0,035

Cr:1,20 - 1,50

Mo:0,15 - 0,35

Ni:3,80 - 4,30

1.2766的機沒派差械性能

R p0.2 (MPa) 436 (≥)

米(兆帕) 822(≥)

AKV(日) 44

一個(%) 13

Z (%) 23

硬度 HBW 123

這種合金通常在電弧爐 (EAF) 或 BEF + 電渣重熔 (ESR 或 VAR) 中熔煉。為提高質量,應採用真空羨空精煉和外精煉技術冶煉。枯皮

『陸』 碳素鋼和合金鋼在用途上的區別

一、用途不同

1、碳素鋼

1)Q195 用於製造承載較小的零件、鐵絲、鐵圈、墊鐵、開口銷、拉桿、沖壓件以及焊接件等。

2)Q215 A 用於製造拉桿、套圈、墊圈、滲圈、滲碳零件以及焊接件等。

3)Q235 A A、B級用於製造金屬結構件、心部強度要求不高的滲碳件或碳氮共滲件、拉桿、連桿、吊鉤、車鉤、螺栓、螺母、套筒、軸以及接件;C、D級用於製造重要的焊接結構件。

4)Q255 A 用於製造轉軸、心軸、吊鉤、拉桿、搖桿、楔等強度要求不高的零件。此負焊接性尚可。

5)Q275 用於製造軸類、鏈輪、齒輪、吊鉤等強度要求高的零件。

2、合金鋼

合金鋼是指鋼中除含硅和錳作為合金元素或脫氧元素外,還含有其他合金元素(如鉻、鎳 、鉬、釩、鈦、銅、鎢、鋁、鈷、鈮、鋯和其他元素等),有的還含有某些非金屬元素(如硼、氮等)的鋼。

合金鋼的分類方法有很多,最常用的方法有按鋼中合金元素總量進行分類和按鋼的用途進行分類的兩種方法,根據鋼中合金元素含量的多少,又可分為低合金鋼,中合金鋼和高合金鋼。

按鋼的用途分可以分為結構鋼、工具鋼、模具鋼、不銹鋼、耐酸鋼等等。合金鋼的硬度耐磨性 淬透性 耐腐蝕性等比碳素鋼優秀 在機械零件中應用比碳素鋼要廣。性能很突出。根據所添加的不同合金元素,可以具有各種不同的特殊性能。

二、包含元素不同

合金鋼與碳鋼相比含有較多其他元素。

1、合金鋼是指鋼中除含硅和錳作為合金元素或脫氧元素外,還含有其他合金元素,有的還含有某些非金屬元素的鋼。根據鋼中合金元素含量的多少,又可分為低合金鋼,中合金鋼和高合金鋼。

2、而碳鋼主要指力學性能取決於鋼中的碳含量,而一般不添加大量的合金元素的鋼,有時也稱為普碳鋼或碳素鋼。

三、化學性能不同

1、碳鋼中含有一定量的碳,硬度越大,強度也越高,但塑性較低 。

2、而合金鋼中則再加入另外元素,如錳、鎳、鉻、硅等,使其獲得不同的機械與化學性能,以達到更好的使用要求。

『柒』 5A合金鋼的簡介有什麼樣的力學性能有無磁性相對應牌號有什麼樣的用途3A不銹鋼的狀態是什麼樣的

低合金鋼的焊接工藝分析
參考文獻:
焊接冶金學-材料焊接性 機械工業出版社 李亞江
金屬焊接性基礎 化學工業出版社 孟慶森
金屬學與惹出了 機械工業出版社 崔忠圻 覃耀春
金屬工藝學 哈爾濱工業大學出版社 邢忠文 張學仁
金屬材料焊接工藝 機械工業出版社 李榮雪
金屬材料焊接工藝 化學工業出版社 雷玉成
結構鋼的焊接 冶金工業出版社 荊洪陽(譯)
1.低合金鋼的發展和應用
隨著科學的發展和技術的進步,焊接結構設計日趨向高參數、輕量化及大型化發展,對鋼材的性能提出可越來越高的要求。低合金鋼由於性能優異和經濟效益顯著,在焊接結構中得到了越來越廣泛的應用。
低合金鋼的發展大體經歷了三個階段。20世紀20年代以前,工程上鋼結構的製造主要採用鉚接,設計參數主要是抗拉強度。鋼的強化主要是靠碳以及單一合金元素,如Mn、Si、Cr等,總質量分數達到2%~3%,甚至更高一些。20世紀20~60年代,鋼結構製造中逐步採取了焊接技術,設計參數要考慮材料的屈服強度、韌性、和焊接性要求。為了防止焊接裂紋,剛的化學成分低碳多合金化發展方向,碳的質量分數一般在0.2%一下,含2~4個有利於焊接性的合金元素並鋪以熱處理強化等工藝措施。20世紀70年代以後,低合金高強度鋼得到快速發展,鋼中碳的質量分數降低到0.1%一下,有的鋼向超低碳含量方向發展。Ti、V、Nb等合金微量元素逐步引起關注,而且像多元復合合金化方向發展。
現代低合金鋼的重大進展,自20世紀70年代以來,世界范圍內低合金高強度鋼的發展進入了一個全新時期,以控制軋制技術和微合金化的冶金學為基礎,形成了現代低合金高強度鋼即微合金化鋼的新概念。進入80年代,一個涉及廣泛工業領域和專用材料門類的品種開發,藉助於冶金工藝技術方面的成就達到了頂峰。在鋼的化學成分—工藝—組織—性能的四位一體的關系中,第一次突出了鋼的組織和微觀精細結構的主導地位,也表明低合金鋼的基礎研究已趨於成熟,以前所未有的新的概念進行合金設計。
低合金鋼的應用,低合金鋼在建築、橋梁。工程機械等產業不能得到廣泛的應用。當合金鋼用於橋梁、海上建築和起重機械等重要焊接結構時,應根據結構的最低溫度提出沖擊韌度的要求。對於在大氣環境下工作的低合金結構鋼,沖擊吸收功(0℃、V形缺口沖擊試樣)至少應達到27J的最對要求。
對於車輛、船舶、工程機械的運動結構,減輕自重可以節約能源,提出運載能力和工業效率。因此採用焊接性好的低碳調質鋼可以促進工程結構向大量化、輕量化和高效能方向發展。由於壁厚減薄,重量減輕,從而減少了焊接工作量,為野外施工,吊裝創造了條件。這類鋼強韌性和綜合性能好,可以大大提高設備的耐用性,延長期使用壽命。WCF-80鋼是我國繼WCF-62之後開發的焊接裂紋敏感性小的高強度焊接結構鋼,這種鋼具有很高的抗冷裂紋和低溫韌性,主要用於大型水電站、石化和露天煤礦等。
抗拉強度700MPa的低碳調質鋼又較好的缺口沖擊韌度,可用於低溫下服役的焊接結構,如露天煤礦的大型挖掘機及電動輪自卸車等。抗拉強度800MPa低碳調質鋼主要用於工程機械、礦山機械的製造中,如推土機、工程起重機、重型汽車和牙輪鑽機等。抗拉強度10000MPa以上的低碳調質鋼主要用於工程機械高強耐磨件、核動力裝置及航海航天裝備上。
2.低碳鋼簡介
低合金鋼是在碳素鋼的基礎上添加一定量的合金化元素而成,其合金元素的質量分數一般不超過5%,用以提高鋼的強度並保證其具有一定的塑性和韌性,或使鋼具有某些特殊性能,如耐低溫、耐高溫或耐腐蝕等。常用來製作焊接結構的低合金鋼可分為高強度鋼、低溫用鋼、耐腐蝕用鋼及珠光體耐熱鋼四種。其中高強度鋼應用最廣泛,按鋼材的屈服強度及使用時的熱處理狀態又可分以下三種:
a. 在熱軋、控冷控軋及正火(或正火加回火)狀態下焊接和使用,屈服強度為295~490MPa的低合金高強度結構鋼。
b. 在調質狀態下焊接和使用的,屈服強度為490~980Mpa的低碳低合金調質鋼。
c. w(C)為0.25~0.50%,屈服強度為880~1176Mpa的中碳調質鋼。
標准中鋼的分類是按照鋼的力學性能劃分的。鋼的牌號由代表屈服點的漢語拼音字母Q、屈服點數值、質量等級符號三個部分按順序排序排列。按照鋼的屈服強度,低合金高強度鋼分5個強度等級,分別是295MPa、345MPa、390MPa、420MPa及460MPa。每個強度等級又根據沖擊吸收功要求分成A、B、C、D、E、5個質量等級,分別代表不同的沖擊韌性要求。
低合金高強鋼中W(c)一般控制在0.20%以下,為了確保鋼的強度和韌性,通過添加適量的Mn、Mo等合金元素及V、Nb、Ti、Al、等微合金化元素,配合適當的軋制工藝或熱處理工藝來保證鋼材具有優良的綜合力學性能。由於低合金高強度鋼具有良好的焊接性、優良的可成形性及較低的製造成本,因此,被廣泛地用於壓力容器、車輛、橋梁、建築、機械、海洋結構、船舶等製造中,已成為大型焊接結構中最主要的結構材料之一。
低合金高強鋼的強化機理與碳素鋼不同,碳素鋼主要通過鋼中的碳含量形成珠光體、貝氏體和馬氏體來達到強化;而低合金高強鋼的強化主要是通過晶粒細化、沉澱硬化及亞結構的變化來實現。
屈服強度為295~390MPa的低合金鋼大多屬於熱軋鋼,是靠合金元素錳的固溶強化獲得高強度。如Q345,當Q345鋼作為低溫壓力容器用鋼或厚板結構時,為改善低溫韌性,也可在正火處理後使用。Q345、Q390等微合金化低合金鋼是在Q345鋼基礎上,加入少量可細化晶粒和沉澱強化的Nb(0.015%~0.06%)或V(0.02%~0.20%)。這些鋼在熱軋狀態下性能不穩定,正火處理使其晶粒細化和碳化物均勻彌散析出,從而獲得高的塑性和韌性。所以Q345、Q390鋼在正火狀態下使用更為合理。
屈服強度大於390MPa的低合金鋼一般需要在正火或正火加回火狀態下使用,如Q420等。正火處理後形成的碳、氮化合物以細小質點從固溶體沉澱析出,在提高鋼材強度的同時,保證具有一定的塑性和韌性。隨著鋼材強度的進一步提高,鋼中需要加入一定量Mo,Mo不僅可以細化組織、提高強度,而且還可提高鋼材的中溫性能。
低合金高強度鋼按其用途還可分為:鍋爐用鋼、管線用鋼、容器用鋼、造船用鋼及橋梁用鋼等,此外,在正火鋼中,還有具有良好的抗層狀撕裂性能Z向鋼,主要用於海上採油平台、核反應堆及潛艇等大型厚板結構。
3. 下面主要介紹低合金高強度鋼的焊接性
低合金高強度鋼含有一定量的合金元素及微合金化元素,其焊接性與碳鋼有差別,主要是焊接熱影響區組織與性能的變化對焊接熱輸入較敏感,熱影響區淬硬傾向增大,對氫致裂紋敏感性較大,含有碳、氮化合物形成元素的低合金高強度鋼還存在再熱裂紋的危險等。只有在掌握各種不同低合金高強度鋼焊接性特點和規律的基礎上,才能制訂正確的焊接工藝,保證低合金高強度鋼的焊接質量。
1)焊接熱影響區組織和性能
依據焊接熱影響區被加熱的峰值溫度不同,焊接熱影響區可分為熔合區(1350~1450℃)、粗晶區(1000~1300℃)、細晶區(800~1000℃)、不完全相變區(700~800℃)及回火區(500~700℃)。不同部位熱影響區組織與性能取決於鋼的化學成分和焊接時加熱和冷卻的速度。對於某些低合金高強鋼,如果焊接冷卻速度控制不當,焊接熱影響區局部區域將產生淬硬或脆性組織,導致抗裂性或韌性降低。
低合金高強度鋼焊接時,熱影響區中被加熱到1100℃以上的粗晶區及加熱溫度為700~800℃的不完全相變區是焊接接頭的兩個薄弱區。熱軋鋼焊接時,如果焊接熱輸入過大,粗晶區將因晶粒嚴重長大或出現魏氏組織等而降低韌性;如果焊接熱輸入過小,由於粗晶區組織中馬氏體比例增大而降低韌性。正火鋼焊接時,粗晶區組織性能受焊接熱輸入的影響更為顯著。焊接熱影響區的不完全相變區,在焊接加熱時,該區域內只有部分富碳組元發生奧氏體轉變,在隨後的焊接冷卻過程中,這部分富碳奧氏體將轉變成高碳孿晶馬氏體,而且這種高碳馬氏體的轉變終了溫度(Mf)低於室溫,相當一部分奧氏體殘留在馬氏體島的周圍,形成所謂的M-A組元。M-A組元的形成是該區域的組織脆化的主要原因。防止不完全相變區組織脆化的措施是控制焊接冷卻速度,避免脆硬的馬氏體產生。
焊接熱影響區軟化是控軋控冷鋼焊接時遇到的主要問題,當採用埋弧焊、電渣焊及閃光對焊等高熱輸入焊接工藝方法時,控軋控冷鋼焊接熱影響區軟化問題變得非常突出。焊接熱影響區的軟化使焊接接頭強度明顯低於母材,給焊接接頭的疲勞性能帶來損害。另外,焊接熱輸入還影響控軋控冷鋼熱影響區的組織和韌性,當採用較小的熱輸入焊接時,由於焊接冷卻速度較快,焊接熱影響區獲得下貝氏體組織,具有較優良的韌性,而隨著焊接熱輸入的增加,焊接冷卻速度降低,焊接熱影響區獲得上貝氏體或側板條鐵素體組織,韌性顯著降低。
2)熱應變脆化
在自由氮含量較高的C-Mn系低合金鋼中,焊接接頭熔合區及最高加熱溫度低於Ac1的亞臨界熱影響區,常常有熱應變脆化現象。一般認為,這種脆化是由於氮、碳原子聚集在位錯周圍,對位錯造成釘扎作用所造成的。熱應變脆化容易在最高加熱溫度范圍200~400℃的亞臨界熱影響區產生。如有缺口效應,則熱應變脆化更為嚴重,熔合區常常存在缺口性質的缺陷,當缺陷周圍受到連續的焊接熱應變作用後,由於存在應變集中和不利組織,熱應變脆化傾向就更大,所以熱應變脆化也容易發生在熔合區。在《國產低合金結構鋼Q345和Q420焊接區熱應變脆化研究》論文中分析了Q345和Q420鋼的熱應變脆化,發現Q345鋼具有較大的熱應變脆化傾向。分析認為,Q420鋼中的V與N形成氮化物,從而降低熱應變脆化傾向,而Q345鋼中不含有氮化物形成元素。試驗還發現,有熱應變脆化的Q345鋼經600℃×1h退火處理後,韌性得到很大恢復。
3)冷裂紋敏感性
焊接氫致裂紋(通常稱焊接冷裂紋或延遲裂紋)是低合金高強度鋼焊接時最容易產生,而且是危害最為嚴重的工藝缺陷,它常常是焊接結構失效破壞的主要原因。低合金高強度鋼焊接時產生的氫致裂紋主要發生在焊接熱影響區,有時也出現在焊縫金屬中。根據鋼種的類型、焊接區氫含量及應力水平的不同,氫致裂紋可能在焊後200℃以下立即產生,或在焊後一段時間內產生。
大量研究表明,當低合金高強度鋼焊接熱影響區中產生淬硬的M或M+B+F組織時,對氫致裂紋敏感;而產生B或B+F組織時,對氫致裂紋不敏感。熱影響區最高硬度可被用來粗略的評定焊接氫致裂紋敏感性。對一般低合金高強度鋼,為防止氫致裂紋的產生,焊接熱影響區硬度應控制在350HV以下。熱影響區淬硬傾向可以採用碳當量公式加以評定。
強度級別較低的熱扎鋼,由於其合金元素含量少,鋼的淬硬傾向比低碳鋼稍大。如Q345鋼、15MnV鋼焊接時,快速冷卻可能出現淬硬的馬氏體組織,冷裂傾向增大。但由於熱軋鋼的碳當量比較低,通常冷裂傾向不大。但在環境溫度很低或鋼板厚度大時應採取措施防止冷裂紋的產生。
控軋控冷鋼碳含量和碳當量都很低,其冷裂紋敏感性較低。除超厚焊接結構外,490MPa級的控軋控冷鋼焊接,一般不需要預熱。
正火鋼合金元素含量較高,焊接熱影響區的淬硬傾向有所增加。對強度級別及碳當量較低的正火鋼,冷裂傾向不大。但隨著強度級別及板厚的增加,其淬硬性及冷裂傾向都隨之增大,需要採取控制焊接熱輸入、降低含氫量、預熱和及時後熱等措施,以防止冷裂紋的產生。
4)熱裂紋敏感性
與碳素鋼相比,低合金高強度鋼的w(C)、w(S)較低,且w(Mn)較高,其熱裂紋傾向較小。但有時也會在焊縫中出現熱裂紋,如厚壁壓力容器焊接生產中,在多層多道埋弧焊焊縫的根部焊道或靠近坡口邊緣的高稀釋率焊道中易出現焊縫金屬熱裂紋;電渣焊時,如母材含碳量偏高並含Nb時,電渣焊焊縫可能出現八字形分布的熱裂紋。另外,焊接熱裂紋也常常在低碳的控軋控冷管線鋼根部焊縫中出現,這種熱裂紋產生的原因與根部焊縫基材的稀釋率大及焊接速度較快有關。採用Mn:Si含量較高的焊接材料,減小焊接熱輸入,減少母材在焊縫中的熔合比,增大焊縫成形系數(即焊縫寬度與高度之比),有利於防止焊縫金屬的熱裂紋。
5)再熱裂紋敏感性
低合金鋼焊接接頭中的再熱裂紋亦稱消除應力裂紋,出現在焊後消除應力熱處理過程中。再熱裂紋屬於沿晶斷裂,一般都出現在熱影響區的粗晶區,有時也在焊縫金屬中出現。其生產與雜質元素P、Sn、Sb、As在初生奧氏體晶界的偏聚導致的晶界脆化有關,也與V、Nb等元素的化合物強化晶內有關。
6)層狀撕裂傾向
大型厚板焊接結構(海洋工程、核反應堆及船舶等)焊接時,如在鋼材厚度方向承受較大的拉伸應力,可能沿鋼材軋制方向發生階梯狀的層狀撕裂。這種裂紋常出現於要求熔透的角接接頭或丁字接頭中。選用抗層狀撕裂鋼;改善接頭型式以減緩鋼板Z向的應力應變;在滿足產品使用要求的前提下,選用強度級別較低的焊接材料或採用低強焊材預堆邊;採用預熱及降氫等措施都有利於防止層狀撕裂。
4.具體焊接工藝,主要是Q345鋼焊接工藝介紹
一、材料介紹
(1)材料化學成分和力學性能分析
表1Q345(16Mn)的材料化學成分

鋼號 化學成分
備注
C Si Mn S P Cr Mo V Ni
Q345 ≤0.2 ≤0.55 1.00~1.60 ≤0.045 ≤0.045 _ _ 0.02~
0.15 _
表2 Q345(16Mn)的材料力學性能[2]

鋼號 力學性能
備注
δb/MPa δs/MPa δ(%) AKV /J
Q345A 470~630 345 21 _ GB/T1S91—94
(2)Q345鋼的焊接特點
碳當量(Ceq)的計算:
Ceq=C+Mn/6+Ni/15+Cu/15+Cr/5+Mo/5+V/5
計算Ceq=0.49%,大於0.45%,可見Q345鋼焊接性能不是很好,需要在焊接時制定嚴格的工藝措施。
(3)Q345鋼在焊接時易出現的問題
1. Q345鋼在焊接冷卻過程中,熱影響區容易形成淬火組織-馬氏體,使近縫區的硬度提高,塑性下降。結果導致焊後發生裂紋。
2. Q345鋼的焊接裂紋主要是冷裂紋。
二、焊接施工流程
坡口准備→點固焊→預熱→里口施焊→背部清根(碳弧氣刨)→外口施焊 →里口施焊→自檢/專檢→焊後熱處理→無損檢驗(焊縫質量一級合格)
三、焊接工藝參數的選擇
通過對Q345鋼的焊接性分析,制定措施如下:
1. 焊接材料的選用:
根據產品對焊縫性能要求選擇焊接材料,低合金高強度鋼焊接材料的選擇首先應保證焊縫金屬的強度、塑性、韌性達到產品的技術要求,同時還應該考慮抗裂性及焊接生產效率等。由於低合金高強度氫致裂紋敏感性較強,因此,選擇焊接材料時應優先採用低氫焊條和鹼度適中的埋弧焊焊劑。焊條、焊劑使用前應按製造廠或工藝規程規定進行烘乾。焊縫金屬強度過高,將導致焊縫韌性、塑性以致抗裂性能的下降,從而降低焊接結構生產及使用的安全性,這對與焊接接頭的韌性要求高,且基材的抗裂性差的低合金鋼結構的焊接尤為重要。為了保證焊接接頭具有與母材相當的沖擊韌性,正火鋼與控軋控冷鋼焊接材料優先選用高韌性焊材,配以正確的焊接工藝以保證焊縫金屬和熱影響區具有優良的沖擊韌性。海洋工程、超高強鋼殼體及壓力容器選用的焊接材料,還應保證焊縫金屬具有相應的低溫、高溫及耐蝕等特殊性能。由於Q345鋼的冷裂紋傾向較大,應選用低氫型的焊接材料,同時考慮到焊接接頭應與母材等強的原則,選用E5015 (J507)型電焊條。
2. 坡口形式:

採用同一焊接材料焊同一鋼種時,如過坡口形式不同,則焊縫性能各異。如用HJ431焊劑進行Q345鋼埋弧焊不開坡口直邊對接焊時,由於母材溶入焊縫金屬較多,此時採用合金成分較低的H08A焊絲配合HJ431,即可滿足焊縫力學性能要求;但如焊接Q345鋼厚板開坡口對接接頭時,如仍用 H08—HJ431組合,則因母材熔合比小,而使焊縫強度偏低,此時應採用合金成分較高的H08MnA、H10Mn2等焊絲與HJ431組合。角接接頭焊接時冷卻速度要大於對接接頭,因此Q345鋼角接時,應採用合金成分較低的H08A焊絲與HJ431焊劑組合,以獲得綜合力學性能較好的焊縫金屬;如採用合金成分偏高的H08MnA或H10Mn2焊絲,則該角焊縫的塑性偏低。
3.焊接方法的選擇:
低合金高強度鋼可採用焊條電弧焊、熔化極氣體保護焊、埋弧焊、鎢極氬弧焊、氣電立焊、電渣焊等所有常用的熔焊及壓焊方法焊接。具體選用何種焊接方法取決於所焊產品的結構、板厚、堆性能的要求及生產條件等。其中焊條電弧焊、埋弧焊、實心焊絲及葯芯焊絲氣體保護電弧焊是常用的焊接方法。對於氫致裂紋敏感性較強的低合金高強度鋼的焊接,無論採用那種焊接工藝,都應採取低氫的工藝措施。厚度大於100mm低合金高強度鋼結構的環形和長直線焊縫,常常採用單絲或雙絲載間隙埋弧焊。當採用高熱輸入的焊接工藝方法,如電渣焊、氣電立焊及多絲埋弧焊焊接低合金高強度鋼時,在使用前應對焊縫金屬和熱影響區的韌性能夠滿足使用要求。Q345鋼焊接時可採用電弧焊、CO 氣體保護焊和電渣焊,但本次設計採用手工電弧焊。
4.焊接熱輸入的控制:
焊接熱輸入的變化將改變焊接冷卻速度,從而影響焊縫金屬及熱影響區的組織組成,並最終影響焊接接頭的力學性能及抗裂性。屈服強度不超過500MPa的低合金高強度鋼焊縫金屬,如能獲得細小均勻針狀鐵素體組織,其焊縫金屬則具有優良的強韌性。而針狀鐵素體組織的形成需要控制焊接冷卻速度。因此為了確保焊縫金屬的韌性,不宜採用過大的焊接熱輸入。焊接操作上盡量不用橫向擺動和挑弧焊接,推薦採用多層窄焊道焊接。
熱輸入對焊接熱影響區的抗裂性及韌性也有顯著的影響。低合金高強度熱影響區組織的脆化或軟化都與焊接冷卻速度有關。由於低合金高強度鋼的強度及板厚范圍都較寬,合金體系及合金含量差別較大,焊接時鋼材的狀態各不相同,很難對焊接熱輸入作出統一的規定。各種低合金高強度鋼焊接時應根據其自身的焊接性特點,結合具體的結構形式及板厚,選擇合適的焊接熱輸入。與正火或正火加回火鋼及控軋控冷鋼相比,熱軋鋼可以適應較大的焊接熱輸入。含碳量較低的熱軋鋼(09Mn2、09MnNb等)以及含碳量偏下限的16Mn鋼焊接時,焊接熱輸入沒有嚴格的限制。因為這些鋼焊接熱影響區的脆化及冷裂紋傾向較小。但是,當焊接含碳量偏上限的16Mn鋼時,為降低淬硬傾向,防止冷裂紋的產生,焊接熱輸入應偏大一些。
碳及合金元素含量較高、屈服強度為490MPa的正火鋼,如18MnMoNb等。選擇熱輸入時既要考慮鋼種的淬硬傾向,同時也要兼顧熱影響區粗晶區的過熱傾向。一般為了確保熱影響區的韌性,應選擇較小的熱輸入,同時採用低氫焊接方法配合適當的預熱或及時的焊後消氫處理來防止焊接冷裂紋的產生。Q345鋼的含碳量和碳當量均較低,對氫致裂紋不敏感,為了防止焊接熱影響區的軟化,提高熱影響區韌性,應採用較小的熱輸入焊接,使焊接冷卻時間t8/5控制在10s以內為佳。
5.焊接接頭的力學性能
焊縫金屬和熱影響區的力學性能是影響街頭使用可靠性的基本性能,而其中強度與韌性又是關鍵的考核因素,特別是對合金結構鋼街頭更為重要,幾種典型熱軋及正火鋼焊接接頭的力學性能見下表。
鋼種

焊接工藝 焊縫金屬性能 過熱區

/MPa
/MPa
(%)
ψ
(%) /J.cm
-20℃ -40℃
-20℃ -40℃
Q345 埋弧焊(δ=16mm,V形對接)H08MnA+HJ250焊態 504 351 30.2 65.3 166 121 175
埋弧焊(δ=12mm,I形對接)H08MnA+HJ431焊態 576 400 30.7 67 84 33q 73
CO 氣體保護焊H08Mn2SiA焊態 540 390 24 61 78

6.焊接電流:
為了避免焊縫組織粗大,造成沖擊韌性下降,必須採用小規范焊接。具體措施為:選用小直徑焊條、窄焊道、薄焊層、多層多道的焊接工藝(焊接順序如圖一所示)。焊道的寬度不大於焊條的3倍,焊層厚度不大於5mm。第一層至第三層採用Ф3.2電焊條,焊接電流100-130A;第四層至第六層採用Ф4.0的電焊條,焊接電流120-180A。
7.預熱溫度:預熱及焊道層間溫度:
1)預熱溫度
預熱可以控制焊接冷卻速度,減少或避免熱影響區中淬硬馬氏體的產生,降低熱影響區硬度,同時預熱還可以降低焊接應力,並有助於氫從焊接接頭的逸出。因此,預熱是防止低合金高強度鋼焊接氫致裂紋產生的有效措施。但預熱常常惡化勞動條件,使生產工藝復雜化,不合理的、過高的預熱和焊道間溫度還會損害焊接接頭的性能。因此,焊前是否需要預熱及合理的預熱溫度,都需要認真考慮或通過試驗確定。
預熱溫度的確定取決於鋼材的成分(碳當量)、板厚、焊件結構形狀和拘束度、環境溫度以及所採用的焊接材料的含量等。隨著鋼材碳當量、板厚、結構拘束度、焊接材料的含氫量的增加和環境溫度的降低,焊前預熱溫度要相應提高。對於厚板多道多層焊,為了促進焊接區氫的逸出,防止焊接過程中氫致裂紋的產生,應控制焊道間溫度不低於預熱溫度和進行必要的中間消氫熱處理。因此下圖標為Q345的預熱條件
板厚(mm) 不同氣溫條件下的預熱溫度
≤10 不低於-26 oC不預熱
10~16 不低於-10oC不預熱,低於-10oC預熱100oC~150oC
16~14 不低於-5oC不預熱,低於-5oC預熱100oC~150oC
25~40 不低於0oC不預熱,低於0oC預熱100oC~150oC
≥40 均預熱100oC~150oC
2)層間溫度
層間溫度過高會引起熱影響區晶粒粗大,使焊縫強度及低溫沖擊韌性下降。如低於預熱溫度則可能在焊接過程中產生裂紋。因此規定道間溫度不得低於預熱溫度,最高不得大於某一界線的溫度。而對於Q345的層間溫度則選用:Ti≤400℃。
8.焊後熱處理參數:
除了電渣焊由於接頭區嚴重過熱而需要進行正火處理外,其他焊接條件應根據使用要求來判斷是佛需要焊後熱處理。低碳合金高強度鋼中熱軋鋼和正火鋼不需要焊後熱處理,但對要求抗應力腐蝕的焊接機構、低溫下使用的焊接結構和板厚結構等,焊後需要進行消除應力的高溫回火。確定焊後回火溫度的原則:
1) 不要超過木材原來的回火溫度,以免影響母材本身的性能。
2) 對於回火脆性材料,要避開出現回火脆性的溫度區間。例如,對含V或V+Mo的低合金鋼,回火時應提高冷卻速度,避免在600℃左右的溫度區間停留時間過長,以免因V的二次碳化物析出而造成脆化;
如焊後不能及時進行熱處理,應立即在200~350℃保溫2~6h,以便焊接區的氫擴散逸出。為了消除焊接應力,焊後應立即輕輕錘擊焊縫金屬表面,但這不是用於塑性較差的鋼件。強度級別較高或重要的焊接結構件,應用機械方法修正焊縫外形,使其平滑過渡到母材,較小應力集中。Q345焊後熱處理工藝參數見下表:
強度級別
δs/MPa 典型鋼種 預熱溫度/℃ 焊後處理工藝

電弧焊 電渣焊
345 Q345 100~150
δ≥16mm 一般不進行
或600~650℃回火 900~930℃正火
600~650℃回火
當我們懸著電弧焊時,為了降低焊接殘余應力,減小焊縫中的氫含量,改善焊縫的金屬組織和性能,在焊後應對焊縫進行熱處理。熱處理溫度為:600-640℃,恆溫時間為2小時(板厚40mm時),升降溫速度為125℃/h 。
9.焊接過程:
1)焊前預熱
在翼緣板焊接前,首先對翼緣板進行預熱,恆溫30分鍾後開始焊接。 焊接的預熱、層間溫度、熱處理由熱處理控溫櫃自動控制,採用遠紅外履帶式加熱爐片,微電腦自動設定曲線和記錄曲線,熱電偶測量溫度。預熱時熱電偶的測點距離坡口邊緣15mm-20mm。
2)焊接
①為了防止焊接變形,每個柱接頭採用二人對稱施焊,焊接方向由中間向兩邊施焊。在焊接里口時(里口為靠近腹板的坡口),第一層至第三層必須使用小規范操作,因為它的焊接是影響焊接變形的主要原因。在焊接一至三層結束後,背面進行清根。在使用碳弧氣刨清根結束後,必須對焊縫進行機械打磨,清理焊縫表面滲碳,露出金屬光澤,防止表層碳化嚴重造成裂紋。外口焊接應一次焊完,最後再焊接里口的剩餘部分。
② 當焊接第二層時,焊接方向應與第一層方向相反,以此類推。每層焊接接頭應錯開15-20mm。
③ 兩名焊工在焊接時的焊接電流、焊接速度和焊接層數應保持一致。
④ 在焊接中應從引弧板開始施焊,收弧板上結束。焊接完成後割掉並打磨干凈。
5.總結
通過對低碳鋼的了解以及對Q345鋼焊接工藝的研究,對其焊接工藝大體的認識,所以經過上面的敘述,對Q345的焊接工藝進行總結,如下表:
接頭形式 焊件厚度/mm 焊縫次序(層次) 焊絲直徑/mm 焊接電流/A 焊接電壓/mm 焊機速度/
焊絲加焊劑
不開破口(雙面焊) 8 正
反 4.0 550~580
600~650 34~36 34.5 H08A+HJ431
10~12 正
反 4.0 620~680
680~700 36~38 32 H08A+HJ431
V形坡口(雙面焊)α=60°~70° 14~16 正
反 4.0 600~640
620~680 34~36 29.5 H08A+HJ431
18~20 正
反 4.0 680~700
700~720 36~38 27.5 H08MnA+HJ431
22~25 正
反 4.0 700~720
720~740 36~38 21.5 H08MnA+HJ431
T形接頭不開坡口(雙面焊) 16~18 (2) 4.0 600~650
680~720 32~34
36~38 34~38
24~29 H08A+HJ431
20~25 (2) 4.0 600~700
720~760 32~34
36~36 30~36
21~26 H08A+HJ431

『捌』 Q345是鋼材什麼材質是什麼用途

舞鋼隆盛達——Q345是低合金高強度結構鋼,分為A、B、C、D、E五個質量等級等級作為章節附註回,該材料的耐答磨、耐蝕、低溫性能、冷沖壓性能、焊接性能和可切削性能都比較好。一般應用於較重要的鋼鐵結構製作,如橋梁、車輛、船舶、建築、壓力容器等。

2、Q345含碳量很低,平均為0.2%,但加入了微量的錳、硅、磷、銅、鈦、鈮等元素,大大提高了其性能指標,是根據我國的富產資源特點而研製的鋼種。

3、鋼的牌號由代表屈服強度的漢語拼音字母、屈服強度數值、質量等級符號三個部分組成。Q代表的是這種材質的屈服強度,後面的345,就是指這種材質的屈服值在345MPa左右。

『玖』 Q355和Q345的區別是什麼Q355的用途一般都是做什麼用的

Q345B和的區別
一、執行標準的區別
Q345B 牌號表示方法:鋼的牌號由代表屈服強度的漢語拼音字母,屈服強度數值,質量等級符號三個部分組成。例如Q345B:,其中:
Q—鋼的屈服強度的「屈」字漢語拼音的首位字母;
345—屈服強度數值,單位MPa;
B—質量等級為B級。
當需方要求鋼板具有厚度方向性能時,則在上述規定的牌號後面加上代表厚度方向(Z向)性能級別的符號,例如:Q345BZ15.
Q345B執行標准:執行GB/T1591-2008《低合金高強度結構鋼》。
鋼的牌號由代表屈服強度「屈」字的漢語拼音首字母 Q、規定的最小上屈服強度數值、交貨狀態代號、質量等級符號四個部分組成。
示例:Q355NB。其中:
Q ———鋼的屈服強度的「屈」字漢語拼音的首字母;
355———規定的最小上屈服強度數值,單位為兆帕(MPa);
N ———交貨狀態為正火或正火軋制;
B———質量等級為 B級。
Q355B執行標准:GB/T1591-2018 《低合金高強度結構鋼》。

二、化學成分的區別
Q345B化學成分

C

Si

Mn

P

S

Nb

V

Ti

Cr

Ni

Cu

N

Mo

Als

≤0.18

≤0.50

≤1.70

≤0.030

≤0.025

≤0.07

≤0.15

≤0.20

≤0.30

≤0.50

≤0.30

≤0.012

≤0.10

≥0.015

Q355B化學成分

C

Si

Mn

P

S

Nb

V

Ti

Cr

Ni

Cu

N

Mo

Als

≤0.24

≤0.55

0.9-1.60

≤0.035

≤0.035

0.005-0.05

0.01-0.12

0.006-0.05

≤0.30

≤0.30

≤0.40

≤0.012

≤0.10

≥0.015

三、力學性能的區別
Q345B力學性能
屈服強度:
≤16mm:≥345;
16—40mm:≥335;
40—63mm:≥325;
63—80mm:≥315;
80—100mm:≥305;
100—150mm:≥285;
150—200mm:≥275;
200—250mm:≥275;
250—400mm:≥265。
抗拉強度:450-630Mpa。
伸長率:≥21%。
沖擊試驗:20˚C
Q355B力學性能
屈服強度:
≤16mm:≥355;
16—40mm:≥345;
40—63mm:≥335;
63—80mm:≥325;
80—100mm:≥315;
100—150mm:≥295;
150—200mm:≥285;
200—250mm:≥275;
抗拉強度:450-630Mpa。
伸長率:≥21%。
沖擊溫度:20˚C

四、交貨狀態
Q345B 及Q355B鋼板以控扎、正火、正火+回火、熱機械軋制(TMCP)等狀態交貨,必要時根據客戶需要還需加做Z向性能試驗,如Q345D-Z15、Q345D-Z25、Q345D-Z35等。探傷等級有國標一探、二探、三探。

『拾』 合金元素在低合金高強度鋼中的作用是什麼

合金元素在鋼中的作用
隨著現代工業和科學技術的不斷發展,在機械製造中,對工件的強度、硬度、韌性、塑性、耐磨性以及其他各種物理化學性能的要求愈來愈高,碳鋼已不能完全滿足這些要求了。
原因 :
①由碳鋼製成的零件尺寸不能太大。否則,因淬透性不夠而不能滿足對強度與塑性、韌性的要求。加入合金元素可增大淬透性。
②用碳鋼製成的切削刀具不能滿足切削紅硬性的要求。用合金工具鋼、高速鋼和硬質合金。
③碳鋼不能滿足特殊性能的要求,如要求耐熱、耐低溫、抗腐蝕、有強烈磁性或無磁性等等,只有特種的合金鋼才能具有這些性能。
合金鋼是以碳鋼為基礎,金相組織和相應的碳鋼大體上是相似的。在鋼中加入合金元素,鋼的機械性能顯著提高。弄清楚各種合金元素對鋼材的影響對控制產品質量有非常大的作用。
1 合金元素在鋼中的存在方式
1.1 合金元素與鋼中的碳相互作用,形成碳化物存在於鋼中
按合金元素在鋼中與碳相互作用的情況,它們可以分為兩大類:
(1) 不形成碳化物的元素(稱為非碳化物形成元素),包括鎳、硅、鋁、鈷、銅等。由於這些元素與碳的結合力比鐵小,因此在鋼中它們不能與碳化合,它們對鋼中碳化物的結構也無明顯的影響。
(2) 形成碳化物的元素(稱為碳化物形成元素),根據其與碳結合力的強弱,可把碳化物形成元素分成三類。
1)弱碳化物形成元素:錳
錳對碳的結合力僅略強於鐵。錳加入鋼中,一般不形成特殊碳化物(結構與Fe3C不同的碳化物稱為特殊碳化物),而是溶入滲碳體中。
2)中強碳化物形成元素;鉻、鉬、鎢
3)強碳化物形成元素:釩、鈮、鈦
有極高的穩定性,例如TiC在淬火加熱時要到1000℃以上才開始緩慢的溶解,這些碳化物有極高的硬度,例如在高速鋼中加人釩,形成V4C,使之有更高的耐磨性。
1.2 合金元素溶解於鐵素體(或奧氏體)中,以固溶體形式存在於鋼中。
1.3 合金元素與鋼中的氮、氧、硫等化合,以氮化物、氧化物、硫化物和硅酸鹽等非金屬夾雜物的形式存在於鋼中。
1.4 游離態,即不溶於鐵,也不溶於化合物:鉛,銅
2 合金元素對鋼的平衡組織的影響
表現在改變鐵碳合金狀態圖。
2.1 合金元素對鋼臨界溫度的影響
錳、鎳、銅使A3線降低,鉬、鎢、硅、釩使A3線升高。同樣影響A1,影響程度更大。
2.2 合金元素對鋼共析點(S點)位置的影響
大多數合金使共析點左移,鉬鎢在質量分數大時使共析點右移。
2.3 合金元素對奧氏體相區大小的影響
2.3.1 擴大γ區
合金元素與γ-Fe、α-Fe形成固溶體,常溫下為奧氏體組織。Ni,Mn
2.3.2 減小γ區
抑制F向A轉變,Cr
3 合金元素對熱處理的影響
3.1 合金元素對奧氏體化的影響
奧氏體晶粒在鐵素體與碳化物邊界處生核並長大;剩餘碳化物的溶解;奧氏體成分的均勻化,在高溫停留時奧氏體晶粒的長大粗化等過程。在鋼中加入合金元素對後三個過程有較大的影響。
(1)含有碳化物形成元素的合金鋼,其組織中的碳化物,是比滲碳體更穩定的合金滲碳體或特殊碳化物,因此,在奧氏體化加熱時碳化物較難溶解,即需要較高的溫度和較長的時間。一般來說,合金元素形成碳化物的傾向愈強,其碳化物也愈難溶解。
(2)合金元素在奧氏體中的均勻化,也需要較長時間,因為合金元素的擴散速度,均遠低於碳的擴散速度。
(3)某些合金元素強烈地阻礙著奧氏體晶粒的粗化過程,這主要與合金碳化物很難溶解有關,未溶解的碳化物阻礙了奧氏體晶界的遷移,因此,含有較強的碳化物形成元素(如鉬、鎢,釩,鈮、鈦等)的鋼,在奧氏體化加熱時,易於獲得細晶粒的組織。
各合金元素對奧氏體晶粒粗化過程的影響,一般可歸納如下:
1)強烈阻止晶粒粗化的元素:鈦、鈮、釩、鋁等,其中以鈦的作用最強。
2)鎢、鉬、鉻等中強碳化物形成元素,也顯著地阻礙奧氏體晶粒粗化過程。
3)一般認為硅和鎳也能阻礙奧氏體晶粒的粗化,但作用不明顯。
4)錳和磷是促使奧氏體晶粒粗化的元素。
3.2 合金元素對奧氏體分解轉變的影響
多數合金元素使奧氏體分解轉變的速度減慢,即C曲線向右移,也就是提高了鋼的淬透性。
3.3 合金元素對馬氏體轉變的影響
增加冷卻時間,降低冷卻速度。另外,合金元素對馬氏體開始轉變溫度(Ms點)也有明顯的影響。多數合金元素均使馬氏體開始轉變溫度(Ms點)降低,其中錳、鉻、鎳的作用最為強烈,只有鋁、鈷是提高Ms點。
3.3 合金元素對回火轉變的影響
合金元素對淬火鋼回火轉變的影響主要有下列三個方面:
(1)提高鋼的回火穩定性
這主要表現為合金元素在回火過程中推遲了馬氏體的分解和殘余奧氏體的轉變,提高了鐵素體的再結晶溫度,使碳化物難以聚集長大而保持較大的彌散度,從而提高了鋼對回火軟化的抗力,即提高了鋼的回火穩定性。
(2)產生二次硬化
一些合金元素加入鋼中,在回火時,鋼的硬度並不是隨回火溫度的升高一直降低的,而是在達到某一溫度後,硬度開始增加,並隨著回火溫度的進一步提高,硬度也進一步增大,直至達到峰值。這種現象稱為回火過程的二次硬化。回火二次硬化現象與合金鋼回火時析出物的性質有關。當回火溫度低於約450℃時,鋼中析出滲碳體,在450℃以上滲碳體溶解,鋼中開始沉澱析出彌散穩定的難熔碳化物Mo2C、
VC等,使鋼的硬度開始升高,而在550~600℃左右沉澱析出過程完成,鋼的硬度達到峰值。
(3)增大回火脆性
鋼在回火過程中出現的第一類回火脆性(250~400℃回火),即回火馬氏體脆性和第二類回火脆性(450~600℃回火),即高溫回火脆性均與鋼中存在的合金元素有關。
4 合金元素對氧化與腐蝕的影響
一些合金元素加入鋼中能在鋼的表面形成一層完整的、緻密而穩定的氧化保護膜,從而提高了鋼的抗氧化能力。最有效的合金元素是鉻、硅和鋁。但鋼中硅、鋁的質量分數較多時鋼材變脆,因而它們只能作為輔加元素,一般都以鉻為主加元素,以提高鋼的抗氧化性。鋼中加入少量的銅、磷等元素,可提高低合金高強度鋼的耐大氣腐蝕。
5 合金元素對機械性能的影響
5.1 金屬材料的強化方法
金屬材料的強化途徑,主要有以下幾個方面;
(1)結晶強化。結晶強化就是通過控制結晶條件,在凝固結晶以後獲得良好的宏觀組織和顯微組織,從而提高金屬材料的性能。它包括:
1)細化晶粒。細化晶粒可以使金屬組織中包含較多的晶界,由於晶界具有阻礙滑移變形作用,因而可使金屬材料得到強化。同時也改善了韌性,這是其它強化機制不可能做到的。
2)提純強化。在澆注過程中,把液態金屬充分地提純,盡量減少夾雜物,能顯著提高固態金屬的性能。夾雜物對金屬材料的性能有很大的影響。在損壞的構件中,常可發現有大量的夾雜物。採用真空冶煉等方法,可以獲得高純度的金屬材料。
(2)形變強化。金屬材料經冷加工塑性變形可以提高其強度。這是由於材料在塑性變形後位錯運動的阻力增加所致。
(3)固溶強化。通過合金化(加入合金元素)組成固溶體,使金屬材料得到強化稱為固溶強化。
(4)相變強化。合金化的金屬材料,通過熱處理等手段發生固態相變,獲得需要的組織結構,使金屬材料得到強化,稱為相變強化.
相變強化可以分為兩類:
1) 沉澱強化(或稱彌散強化)。在金屬材料中能形成穩定化合物的合金元素,在一定條件下,使之生成的第二相化合物從固溶體中沉澱析出,彌散地分布在組織中,從而有效地提高材料的強度,通常析出的合金化合物是碳化物相。
在低合金鋼(低合金結構鋼和低合金熱強鋼)中,沉澱相主要是各種碳化物,大致可分為三類。一是立方晶系,如TiC、V4C3,NbC等,二是六方晶系,如MO2、W2C、WC等,三是正菱形,如Fe3C。對低合金熱強鋼高溫強化最有效的是體心立方晶系的碳化物。
2) 馬氏體強化。金屬材料經過淬火和隨後回火的熱處理工藝後,可獲得馬氏體組織,使材料強化。但是,馬氏體強化只能適用於在不太高的溫度下工作的元件,工作於高溫條件下的元件不能採用這種強化方法。
(5)晶界強化。晶界部位的自由能較高,而且存在著大量的缺陷和空穴,在低溫時,晶界阻礙了位錯的運動,因而晶界強度高於晶粒本身;但在高溫時,沿晶界的擴散速度比晶內擴散速度大得多,晶界強度顯著降低。因此強化晶界對提高鋼的熱強性是很有效的。
硼對晶界的強化作用,是由於硼偏集於晶界上,使晶界區域的晶格缺位和空穴減少,晶界自由能降低;硼還減緩了合金元素沿晶界的擴散過程;硼能使沿晶界的析出物降低,改善了晶界狀態,加入微量硼、鋯或硼+鋯能延遲晶界上的裂紋形成過程;此外,它們還有利於碳化物相的穩定。
(6)綜合強化。在實際生產上,強化金屬材料大都是同時採用幾種強化方法的綜合強化,以充分發揮強化能力。例如:
1)固溶強化十形變強化,常用於固溶體系合金的強化。
2)結晶強化+沉澱強化,用於鑄件強化。
3)馬氏體強化+表面形變強化。對一些承受疲勞載荷的構件,常在調質處理後再進行噴丸或滾壓處理。
4)固溶強化+沉澱強化。對於高溫承壓元件常採用這種方法,以提高材料的高溫性能。
有時還採用硼的強化晶界作用,進一步提高材料的高溫強度。
5.2 合金元素對正火(或退火)狀態鋼機械性能的影響
正火狀態下鋼有鐵素體和珠光體組織。固溶強化,結晶強化,沉澱強化。合金元素不僅影響鋼材的強度,同時也影響其韌性。
5.3 合金元素對調質鋼機械性能的影響
合金元素對調質鋼機械性能的影響,主要是通過它們對淬透性和回火性的影響而起作用的。主要表現於下列幾方面:
(1) 由於合金元素增加了鋼的淬透性,使截面較大的零件也可淬透,在調質狀態下可獲得綜合機械性能優良的回火索氏體。
(2) 許多合金元素可使回火轉變過程緩慢,因而在高溫回火後,碳化物保持較細小的顆粒,使調質處理的合金鋼能夠得到較好的強度與韌性的配合。
(3)高溫回火後,鋼的組織是由鐵素體和碳化物組成,合金元素對鐵素體的固溶強化作用可提高調質鋼的強度。
6 合金元素對鋼的工藝性能的影響
6.1 合金元素對焊接性能的影響 :
鋼的焊接性能,主要取決於它的淬透性、回火性和碳的質量分數。
合金元素對鋼材焊接性能的影響,可用焊接碳當量來估算。我國目前所廣泛應用的普通低合金鋼,其焊接碳當量可按下述經驗公式計算。
公式 Cd=C+1/6Mn+1/5Cr+1/15Ni+1/4Mo+1/5V+1/24Si+1/2P+1/13Cu
近年來,對厚度為15~50mm的200個鋼種(從碳鋼到強度等級為1000MPa級的高強度合金鋼),以低氫焊條進行常溫下的Y型坡口拘束焊接裂紋試驗。在試驗基礎上,提出了一個用以估計鋼材出現焊接裂紋可能性的指標,稱為鋼材焊接裂紋敏感性指數戶,其計算公式為 Pc=C+1/30Si+1/20Mn+1/20Cu+1/60Ni+1/20Cr+1/15Mo+1/10V+5B+1/600t+1/60H%,與碳當量公式相比增加了板厚和含氫量。
6.2 合金元素對切削加工的影響
金屬的切削性能是指金屬被切削的難易程度和加工表面的質量。為了提高鋼的切削性能,可在鋼中加入一些能改善切削性能的合金元素,最常用的元素是硫,其次是鉛和磷。
由於硫在鋼中與錳形成球狀或點狀硫化錳夾雜,破壞了金屬基體的連續性,使切削抗力降低,切屑易於碎斷,在易切削鋼中硫的質量分數可達0.08%~0.30%。
鉛在鋼中完全不溶,以2~3pm的極細質點均勻分布於鋼中,使切屑易斷,同時起潤滑作用,改善了鋼的切削性能,在易切削鋼中鉛的質量分數控制在0.10%~0.30%。
少量的磷溶入鐵素體中,可提高其硬度和脆性,有利於獲得良好的加工表面質量。
6.3 合金元素對塑性加工性能的影響
鋼的塑性加工分為熱加工和冷加工兩種。
熱加工工藝性能通常由熱加工時鋼的塑性和變形抗力,可加工溫度范圍、抗氧化能力、對鍛造加熱和鍛後冷卻的要求等來評價。合金元素溶入固溶體中,或在鋼中形成碳化物,都能使鋼的熱變形抗力提高和塑性明顯降低,容易發生鍛裂現象。但有些元素(如釩+鈮,鈦等),其碳化物在鋼中呈彌散狀分布時,對鋼的脆性影響不大。另外,合金元素一般都降低鋼的導熱性和提高鋼的淬透性,因此為了防止開裂,合金鋼鍛造時的加熱和冷卻都必須緩慢。
冷加工工藝性能主要包括鋼的冷態變形能力和鋼件的表面質量兩方面。
溶解在固溶體中的合金元素,一般將提高鋼的冷加工硬化程度,使鋼承受塑性變形後很快地變硬變脆,這對鋼的冷加工是很不利的。因此,對於那些需要經受大量塑性變形加工的鋼材,在冶煉時應限制其中各種殘存合金元素的量,特別要嚴格控制硫、磷等。另一方面,碳、硅、磷、硫、鎳、鉻、釩、銅等元索還會使鋼材的冷態壓延性能惡化。
6.4 合金元素對鑄造性能的影響
鋼的鑄造性能主要由鑄造時金屬的流動性、收縮特點、偏析傾向等來綜合評定。它們與鋼的固相線和液相線溫度的高低及結晶溫度區間的大小有關。固、液相線的溫度愈低和結晶溫度區間愈窄,鑄造性能愈好。因此,合金元素的作用主要取決於其對狀態圖的影響。另外,一些元素如鉻、鉬、釩、鈦、鋁等,在鋼中形成高熔點碳化物或氧化物質點,增大了鋼液的粘度,降低其流動性,使鑄造性能惡化。
7 幾種常用合金元素在鋼中的作用
為了合金化而加入的合金元素,最常用的有硅、錳、鉻、鎳、鉬、鎢、釩,鈦,鈮、硼、鋁等。現分別說明它們在鋼中的作用。
7.1 硅在鋼中的作用
(1)提高鋼中固溶體的強度和冷加工硬化程度使鋼的韌性和塑性降低。
(2) 硅能顯著地提高鋼的彈性極限、屈服極限和屈強比。這是一般彈簧鋼。
(3)耐腐蝕性。硅的質量分數為15%~20%的高硅鑄鐵,是很好的耐酸材料。含有硅的鋼在氧化氣氛中加熱時,表面也將形成一層SiO2薄膜,從而提高鋼在高溫時的抗氧化性。
缺點:(4)使鋼的焊接性能惡化。
7.2 錳在鋼中的作用
(1)錳對提高鋼的淬透性。
(2)錳對提高低碳和中碳珠光體鋼的強度有顯著的作用。
(3)錳對鋼的高溫瞬時強度有所提高。
錳鋼的主要缺點是,①含錳較高時,有較明顯的回火脆性現象;②錳有促進晶粒長大的作用,因此錳鋼對過熱較敏感t在熱處理工藝上必須注意。這種缺點可用加入細化晶粒元素如鉬、釩、鈦等來克服:⑧當錳的質量分數超過1%時,會使鋼的焊接性能變壞,④錳會使鋼的耐銹蝕性能降低
合金元素影響鋼的組織和性能。其主要作用表示在:提高鋼的淬透性,提高鋼的強度,增強鋼的回火抗力和提高斷面組織均一性等。合金元素的綜合作用使得鋼的機械性能提高,鑄造生產上所用的低合金結構鋼中,大多數是加入兩種以上合金元素的多元素鑄造低合金結構鋼。但是應該適當掌握合金元素的加入量,加入量過少時,不能起到有效的強化作用,而加入量過多時,又會使鋼的塑性和沖擊韌性降低。依據有關資料分析,單合金元素的適宜含量控制在1~2%以下,多合金元素總含量為3~5%。合金元素在鑄鋼中的作用見表。
元 素
作 用
錳(Mn)
1. 強化基體作用很大,提高強度、硬度和耐磨性。
2. 在低合金範圍內增加回火脆性。
3. 縮小結晶范圍,提高流動性。
4. 增加體收縮和線收縮,增加冷、熱裂傾向。
硅(Si)
1. 強化鐵素體,提高耐熱性和耐蝕性,降低韌性和塑性。
2. 降低熔點,改善流動性。
3. 含量在0.40%范圍內,改善熱裂傾向。含量高時,易形成柱狀晶,增加熱裂傾向。
磷(P)
1. 強化鐵素體能力最大。
2. 改善切削性能。
3. 鋼中含碳較高時,磷導致冷脆性。
4. 有抗大氣腐蝕作用,有銅時,尤為顯著。
5. 改善流動性,但增加冷、熱裂傾向。
鉻(Cr)

1. 強化基體能力很大。
2. 含量高時,提高抗氧化和耐蝕性。
3. 生成夾雜物,生成氧化膜,使鋼水變稠,降低流動性,高鉻鋼鑄件易形成皺紋及冷隔。
4. 減少導熱性,增加熱裂傾向。
5. 增加體收縮量,增大縮孔傾向。
鉬(Mo)
1. 強化鐵素體。
2. 提高高溫性能,改善回火脆性。
3. 低合金範圍內,降低流動性。
4. 含量在1%以下時,降低導熱性,並增大收縮,增大冷、熱裂傾向。
鋁(Al)
1. 良好的脫氧作用,細化晶粒。
2. 提高抗氧化性能及抗氧化酸類的腐蝕能力。
3. 作脫氧劑時,改善流動性。
4. 作合金加入時,形成鋁的夾雜物和氧化膜,降低流動性。
鈦(Ti)
1. 脫氧、細化晶粒。
2. 強化鐵素體。
3. 顯著降低流動性。

鎳(Ni)
1.擴大奧氏體區,是奧氏體化有效元素。
2.提高強度而不顯著降低塑性。
3.對一些酸類(硫酸、鹽酸)有良好耐腐蝕能力。
4. 改善流動性。
5. 易生成枝晶,增大熱裂傾向。
硫(S)
1. 改善切削性能。
2. 生成夾雜物,使鑄件延展性及韌性降低。
3. 含量高時,將損害鋼的抗蝕性,使鋼表面產生抗蝕。
4. 以FeS形式存在於鋼時,容易在晶界上形成連續的網狀組織,易導致鑄件產生裂紋。
稀土元素(Re)
1. 脫硫、去氣、凈化鋼水。
2. 細化晶粒,改善鑄態組織。
3. 脫氧脫硫、改善流動性,減少熱裂傾向。

一般來說對於碳鋼和低合金鋼,稀土元素對鋼材的強度影響不大,但可使塑性和韌性、延性和展性有顯著提高,還縮小材料的各向異性,提高冷彎合格率,降低脆性轉變溫度。

合金元素對鋼的鑄造性能的影響
合金元素對鋼的鑄造性能的影響,反映在鑄件的一次結晶、鋼液的流動性、收縮及熱裂等方面。
3.1流動性
在合金元素中,一些高熔點的合金元素(如Mo、W)使鋼水流動性降低,而低熔點的合金元素(Mn、Ca)使鋼水流動性提高。錳降鋼的液相線和固相線,硅使液相線降低的傾斜度更大,因此,錳鋼中加入硅後,具有更好的流動性。
3.2收縮
線收縮率和縮孔率方面,低合金鋼與具有相同含碳量的碳鋼相似。
3.3熱裂錳、硅、鉻顯著降低鋼的導熱性,見圖1所示。因此,鑄件在凝固和冷卻過程中各部位的溫度差異較大,產生較大的內應力,容易出現裂紋。隨著含碳量的增加,低合金鋼的熱裂和冷裂傾向加大。

由於錳、硅、鉻等元素降低鋼的導熱性,並在一定程度上增加結晶溫度范圍,從而降低冷卻速度,促使產生粗大的晶粒,晶內偏析也較大。
4. 生產工藝措施
為了克服低合金鋼的一次晶粒較粗大,熱裂和回火脆性傾向較大等缺點,鑄造過程應嚴格控制好生產各工序的工藝技術操作,採取有效的措施,防止或降低鑄件缺陷的產生。尤其是對冶煉過程的控制和鑄件熱割的過程式控制制,是低合金鋼鑄件生產的關鍵性環節。

1、合金元素對鋼中的基本相的影響
合金鋼中常用的合金元素很多,按照其與碳結合的傾向大小,可分:
非碳化物形成元素(CO、Ni、Si、Cu、B等)
碳化物形成元素(Ti、V、W、Mo、Cr、Mn等)。
合金元素在鋼中的存在形式有:
溶解於鋼中的基本相(鐵素體、奧氏體和滲碳體)
形成特殊碳化物(如VC、TiC、Cr23C6等)
非碳化物形成元素和大部分的錳基本上都溶解於鐵素體(或奧氏體)中而形成合金鐵素體(或合金奧氏體),並產生固溶強化的作用,使合金鐵素體的強度、硬度升高,塑性和韌性下降(Cr、Ni、Mn含量少時略有上升)。其中,Si、Mn、Ni的強化作用較大。
碳化物形成元素(除錳外),當含量較低時,主要是溶入Fe3C中而形成合金滲碳體。合金元素的溶入大大地提高了滲碳體的穩定性。當一些強碳化物形成元素如Cr 、Ti、V、W、Mo等的含量較高時,它們還會形成新的穩定性較高或很高的特殊碳化物,如Cr23C6、WC、VC、TiC等。這一類特殊碳化物的特點是高熔點、高硬度。是鋼中常用的強化相,對提高鋼的強度、硬度和耐磨性有十分重要的意義。
2、合金元素對Fe-Fe3C相圖的影響
合金元素的影響主要表現在擴大或縮小γ相區。一些合金元素如Mn、Ni、等將擴大γ相區使A3線下降,而另一些合金元素如Cr、Mo、W、V、Ti、Si等則縮小γ相區並導致A3線上升。
擴大或縮小γ相區的結果,必然使Fe-Fe3C相圖中的S點、E點和C點的成分和溫度發生變化。幾乎所有的合金元素都使鐵碳相圖中S點、E點左移,其中以強碳化物形成元素的作用最為顯著。
3、合金元素對熱處理相變過程的影響
合金元素對熱處理相變過程的影響主要在於對奧氏體形成速度和奧氏體晶粒長大的影響。
合金元素對過冷奧氏體轉變的最突出的作用是使C曲線向右移(除鈷外),增加過冷奧氏體的穩定性,因而,提高了鋼的淬透性。常用的元素有:Cr、Mn、SI、NI和B。
合金元素對回火轉變過程的影響表現在三個方面:
提高回火穩定性。
產生二次硬化,提高鋼的紅硬性和高溫強度。常用的元素有W、Mo、 V。
使回火脆傾向增大,但一些元素如W、Mn能減弱或防止第二類脆性。

閱讀全文

與低合金鋼有什麼用相關的資料

熱點內容
手機電芯電烙鐵焊接完怎麼沖電慢 瀏覽:610
現在建房鋼材材料價格是多少 瀏覽:237
如何用八寸模具變成十二寸 瀏覽:318
昊宇不銹鋼鐵藝鋼結構加工廠怎麼樣 瀏覽:81
鋁合金廁所門一般價格多少 瀏覽:92
多星不銹鋼電煎鍋怎麼清洗 瀏覽:756
防眩景區圍牆護欄怎麼賣 瀏覽:720
一張15厚不銹鋼板多少錢一張 瀏覽:628
圓型鋼板漏斗怎麼下料 瀏覽:161
136鋼材是多少度 瀏覽:94
pp模具收縮率是多少錢 瀏覽:153
不銹鋼切菜神器多少錢 瀏覽:995
土工膜和鋼管怎麼粘合 瀏覽:693
水泥模具尺寸一般多少 瀏覽:528
焊接強度能保持多少 瀏覽:691
一桶油漆可以噴多少平方鋼管 瀏覽:309
焊接鋼管dn25每米重量多少 瀏覽:429
鋼鐵大師大招r怎麼放 瀏覽:554
直徑25鋼管的外徑是多少 瀏覽:531
鑄造模具芯頭覆膜破是什麼 瀏覽:45