A. 冬季零下30℃左右对铸铝的机械强度会不会有很大影响
有影响但不是很大,只有在零下40度以上才需要考虑机械的脆性故障。何况还有低温铝合金,更适应低温下的工作。常用的低温铝合金是:Al-4.5Mg(5083),还有其它多种。
B. 铝合金强度是多少
工业纯铝的抗拉强度:80~100MPa;
常见铝合金:
防锈铝5A50的抗拉强度:265MPa;
3A21的抗拉强度:<167MPa;
硬铝2A11的抗拉强度:370MPa;
2A12的抗拉强度:390~420MPa;
2A13的抗拉强度:315~345MPa;
铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。目前铝合金是应用最多的合金。
(2)铝合金冷焊的机械强度如何扩展阅读:
铝合金焊接保护措施
1、焊前用化学+机械的方法清除工件坡口及周围部分和焊丝表面的氧化物,顺序是先化学清洗,后机械打磨;
2、焊接过程中要采用合格的保护气体进行保护;
3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
焊接难点
(1)焊缝变形和形成裂纹倾向大。铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。
(2)铝的导热系数大(纯铝0.538卡/Cm.s.℃)。约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。
(3)合金元素的蒸发的烧损。铝合金中含有低沸点的元素(如镁、锌、锰等),在高温电弧作用下,极易蒸发烧损,从而改变焊缝金属的化学成分,使焊缝性能下降。
(4)高温强度和塑性低。高温时铝的强度和塑性很低,破坏了焊缝金属的成形,有时还容易造成焊缝金属塌落和焊穿现象。
(5)无色彩变化。铝及铝合金从固态转为液态时,无明显的颜色变化,使操作者难以掌握加热温度。
C. 你好,请问焊接后抗拉要求。假如铝合金焊接后不做任何处理(焊态),那么其抗拉是不是必须得与母材一致呢
焊接后抗拉一般比母材的强度低,析出强化型铝合金焊接后其强度是会损伤的,也就是常说的软化现象。
在钢材中焊后其强度虽然有高匹配,焊缝强度大于母材强度,但在铝合金的焊接中一般达不到。
常规熔焊,铝合金焊缝的强度一般为60%-70%母材的 强度,压力焊中铝合金焊缝的强度一般为-70%-90%母材的 强度。
D. 铝合金强度等级是怎么划分的
铝合金强度等级是按照拉伸、屈服、硬度等指标来划分的。
铝合金没有7005型,具体的铝合金数据如下表。
(4)铝合金冷焊的机械强度如何扩展阅读:
铝合金焊接保护措施
1、焊前用化学+机械的方法清除工件坡口及周围部分和焊丝表面的氧化物,顺序是先化学清洗,后机械打磨。
2、焊接过程中要采用合格的保护气体进行保护。
3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
E. 铝合金的机械强度
工业纯铝的抗拉强度:80~100MPa;
防锈铝5A50的抗拉强度:265MPa;
3A21的抗拉强度:<167MPa;
硬铝2A11的抗拉强度:370MPa;
2A12的抗拉强度:390~420MPa;
2A13的抗拉强度:315~345MPa;
F. 什么是铝合金机械变形中的冷焊现象
冷焊
读音:lěng hàn
定义:应用机械力、分子力或电力使得焊材扩散到器具表面的一种工艺(方法)。常用于修复超差,涂层。在物理学中纳米尺寸下必须考虑的一种负效应。
拓展:现随着冷焊技术应用的成熟,高分子复合材料类冷焊应用较为稳定广泛。
冷焊机是通过微电瞬间放电产生的高热能将专用焊丝熔覆到工件的破损部位,与原有基材牢固熔接的焊接设备。冷焊后只需经过很少打磨抛光的后期处理。
多功能冷焊机原理是利用充电电容,以10-3~10–1秒的周期,10-6~10–5秒的超短时间放电。电极材料与工件接触部位瞬间会被加热到8000°C~10000°C,等离子化状态的熔融金属以冶金的方式过渡到工件的表层。堆焊到工件表面的涂层或堆焊层,由于与母材之间产生了合金化作用,向工件内部扩散,熔渗,形成了扩散层,得到了高强度的结合。
由于脉冲放电相对于放电间隔时间极短,焊接热量可充分扩散而不会积蓄,工件基本不升温,实现冷焊。
G. 铝合金材料的缺点
铝合金在生产过程中,容易出现缩孔、砂眼、气孔和夹渣等铸造缺陷。如果用电焊、氩焊等设备来修补,由于放热量大,容易产生热变形等副作用,无法满足补焊要求。
缺陷修复:
冷焊修复机是利用高频电火花瞬间放电、无热堆焊原理来修复铸件缺陷。由于冷焊热影响区域小,不会造成基材退火变形,不产生裂纹、没有硬点、硬化现象。
而且熔接强度高,补材与基体同时熔化后的再凝固,结合牢固,可进行磨、铣、锉等加工,致密不脱落。冷焊修复机是修补铝合金气孔、砂眼等细小缺陷的理想方法。
(7)铝合金冷焊的机械强度如何扩展阅读:
为了获得各种形状与规格的优质精密铸件,用于铸造的铝合金一般具有以下特性。
1、有填充狭槽窄缝部分的良好流动性。
2、有比一般金属低的熔点,但能满足极大部分情况的要求。
3、导热性能好,熔融铝的热量能快速向铸模传递,铸造周期较短。
4、熔体中的氢气和其他有害气体可通过处理得到有效的控制。
5、铝合金铸造时,没有热脆开裂和撕裂的倾向。
6、化学稳定性好,抗蚀性能强。
7、不易产生表面缺陷,铸件表面有良好的表面光洁度和光泽,而且易于进行表面处理。
8、铸造铝合金的加工性能好,可用压模、硬模、生砂和干砂模、熔模石膏型铸造模进行铸造生产,也可用真空铸造、低压和高压铸造、挤压铸造、半固态铸造、离心铸造等方法成形,生产不同用途、不同品种规格、不同性能的各种铸件。
铸造铝合金在轿车上是得到了广泛应用,如发动机的缸盖、进气歧管、活塞、轮毂、转向助力器壳体等。
H. 铝合金1350、2014、2018、3003、6061代号含义,机械性能、焊接性能怎样
这些都是按照欧洲标准给的代号。一般应该是EN AW1350,……EN AW6061等。
铝合金现在的焊接性都还好,MIG或TIG几乎都能满足要求了。机械性能您可以查看相关材料的质保书。
I. 铝合金的焊接性怎么样
铝合金的可焊性极差,乙炔氧气焊的可能性基本没有,只能使用氩弧焊和手工电焊。
铝合金的焊接方法:
1、铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
2、铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
3、铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
4、铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。
5、铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。
6、合金元素易蒸发、烧损,使焊缝性能下降。
7、母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
8、 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)
J. 铝合金焊接困难吗
看看下面的文章你就知道了。
铝及铝合金零件的焊接工艺方法
【摘要】铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。长期以来,由于焊接方法及焊接工艺参数的选取不当,焊接时的常出现缺陷,本文介绍了此类金属零件焊接时的工艺步骤及其焊接参数的选取。
【关键词】铝合金 焊接 加工工艺
铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。长期以来,由于焊接方法及焊接工艺参数的选取不当,造成铝合金零件焊接后因应力过于集中产生严重变形,或因为焊缝气孔、夹渣、未焊透等缺陷,导致焊缝金属裂纹或材质疏松,严重影响了产品质量及性能。
1 铝合金材料特点
铝是银白色的轻金属,具有良好的塑性、较高的导电性和导热性,同时还具有抗氧化和抗腐蚀的能力。铝极易氧化产生三氧化二铝薄膜,在焊缝中容易产生夹杂物,从而破坏金属的连续性和均匀性,降低其机械性能和耐腐蚀性能。
2 铝合金材料的焊接难点
(1)极易氧化。在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
(2)易产生气孔。铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。氢气孔目前难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面吸附空气中的水分等。实践证明,即使氩气按GB/T4842标准要求,纯度达到99.99% 以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,焊缝就会明显出现气孔。
3 铝合金材料焊接的工艺方法
(1)焊前准备
采用化学或机械方法,严格清理焊缝坡口两侧的表面氧化膜。
化学清洗是使用碱或酸清洗工件表面,该法既可去除氧化膜,还可除油污,具体工艺过程如下:体积分数为6%~10%的氢氧化钠溶液,在70℃左右浸泡0.5min→水洗→体积分数为15%的硝酸在常温下浸泡1min进行中和处理→水洗→温水洗→干燥。洗好后的铝合金表面为无光泽的银白色。
机械清理可采用风动或电动铣刀,还可采用刮刀、锉刀等工具,对于较薄的氧化膜也可用0.25mm的铜丝刷打磨清除氧化膜。
清理好后立即施焊,如果放置时间超过4h,应重新清理。
(2)确定装配间隙及定位焊间距
施焊过程中,铝板受热膨胀,致使焊缝坡口间隙减少,焊前装配间隙如果留得太小,焊接过程中就会引起两板的坡口重叠,增加焊后板面不平度和变形量;相反,装配间隙过大,则施焊困难,并有烧穿的可能。合适的定位焊间距能保证所需的定位焊间隙,因此,选择合适的装配间隙及定位焊间距,是减少变形的一项有效措施。根据经验,不同板厚对接缝较合理的装配工艺参数。
(3)选择焊接设备
目前市场上焊接产品种类较多,一般情况下宜采用交流钨极氩弧焊(即TIG焊)。它是在氩气的保护下,利用钨电极与工件问产生的电弧热熔化母材和填充焊丝的一种焊接方法。该焊机工作时,由于交流电流的极性是在周期性的变换,在每个周期里半波为直流正接,半波为直流反接。正接的半波期间钨极可以发射足够的电子而又不致于过热,有利于电弧的稳定。反接的半波期间工件表面生成的氧化膜很容易被清理掉而获得表面光亮美观、成形良好的焊缝。
(4)选择焊丝
一般选用301纯铝焊丝及311铝硅焊丝。
(5)选取焊接方法和参数
一般以左焊法进行,焊炬和工件成60°角。焊接厚度15mm以上时,以右焊法进行,焊炬和工件成90°角。
焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,间隙不得大于1mm,以多层焊完成。壁厚在1.5mm以下时,不开坡口,不留间隙,不加填充丝。焊固定管子对接接头时,当管径为200mm,壁厚为6mm时,应采用直径为3~4mm的钨极,以220~240A的焊接电流,直径为4mm的填充焊丝,以1~2层焊完。
根据经验,在铝及铝合金焊接时,应选择其适用的焊接参数。