㈠ 为什么有时候焊道有裂纹
3、裂纹 焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。
A、.裂纹的分类
根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。(2)微观裂纹:在显微镜下才能发现。(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。
从产生温度上看,裂纹分为两类:
(1)热裂纹:产生于Ac3线附近的裂纹。一般是焊接完毕即出现,又称结晶裂纹。这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。
(2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。
按裂纹产生的原因分,又可把裂纹分为: (1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。
(2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。
(3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。
B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。
C、.热裂纹(结晶裂纹)
(1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。弧坑裂纹是另一种形态的,常见的热裂纹。
作者:61.162.131.*2007-2-1 09:58 回复此发言
--------------------------------------------------------------------------------
3 焊接缺陷及对策
热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中
(2)影响结晶裂纹的因素
a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。
b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会;
c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。
(3)防止结晶裂纹的措施a.减小硫、磷等有害元素的含量,用含碳量较低的材料焊接。b.加入一定的合金元素,减小柱状晶和偏析。如铝、锐、铁、镜等可以细化晶粒。,c.采用熔深较浅的焊缝,改善散热条件使低熔点物质上浮在焊缝表面而不存在于焊缝中。d.合理选用焊接规范,并采用预热和后热,减小冷却速度。e.采用合理的装配次序,减小焊接应力。
D、.再热裂纹
(1)再热裂纹的特征
a.再热裂纹产生于焊接热影响区的过热粗晶区。产生于焊后热处理等再次加热的过程中。
b.再热裂纹的产生温度:碳钢与合金钢550~650℃奥氏体不锈钢约300℃
c.再热裂纹为晶界开裂(沿晶开裂)。
d.最易产生于沉淀强化的钢种中。
e.与焊接残余应力有关。
(2)再热裂纹的产生机理
a.再热裂纹的产生机理有多种解释,其中模形开裂理论的解释如下:近缝区金属在高温热循环作用下,强化相碳化物(如碳化铁、碳化饥、碳化镜、碳化错等)沉积在晶内的位错区上,使晶内强化强度大大高于晶界强化,尤其是当强化相弥散分布在晶粒内时, 阻碍晶粒内部的局部调整,又会阻碍晶粒的整体变形,这样,由于应力松弛而带来的塑性变形就主要由晶界金属来承担,于是,晶界应力集中,就会产生裂纹,即所谓的模形开裂。
(3)再热裂纹的防止a.注意冶金元素的强化作用及其对再热裂纹的影响。b.合理预热或采用后热,控制冷却速度。c.降低残余应力避免应力集中。d.回火处理时尽量避开再热裂纹的敏感温度区或缩短在此温度区内的停留时间。
E、.冷裂纹.
(1)冷裂纹的特征 a.产生于较低温度,且产生于焊后一段时间以后,故又称延迟裂纹。b.主要产生于热影响区,也有发生在焊缝区的。c.冷裂纹可能是沿晶开裂,穿晶开裂或两者混合出现。d.冷裂纹引起的构件破坏是典型的脆断。
(2)冷裂纹产生机理a.瘁硬组织(马氏体)减小了金属的塑性储备。b.接头的残余应力使焊缝受拉。c.接头内有一定的含氢量。
含氢量和拉应力是冷裂纹(这里指氢致裂纹)产生的两个重要因素。一般来说,金属内部原子的排列并非完全有序的,而是有许多微观缺陷。在拉应力的作用下,氢向高应力区(缺陷部位)扩散聚集。当氢聚集到一定浓度时,就会破坏金属中原子的结合键,金属内就出现一些微观裂纹。应力不断作用,氢不断地聚集,微观裂纹不断地扩展,直致发展为宏观裂纹,最后断裂。决定冷裂纹的产生与否,有一个临界的含氢量和一个临界的应力值o当接头内氢的浓度小于临界含氢量,或所受应力小于临界应力时,将不会产生冷裂纹(即延迟时间无限长)。在所有的裂纹中,冷裂纹的危害性最大。
(3)防止冷裂纹的措施 a.采用低氢型碱性焊条,严格烘干,在100~150℃下保存,随取随用。b.提高预热温度,采用后热措施,并保证层间温度不小于预热温度,选择合理的焊接规范,避免焊缝中出现洋硬组织c.选用合理的焊接顺序,减少焊接变形和焊接应力d.焊后及时进行消氢热处理。
㈡ 不锈钢焊接开裂的原因是什么
不锈钢是指主加元素Cr高于12%,能使钢处于钝化状态、又具有不锈钢特性的钢。奥氏体不锈钢的焊缝在高温(375-875 度)加热一段时间以后,常会出现冲击韧性下降的现象,称为脆化。不锈钢焊接容易出现热裂纹,主要原因是:
1、奥氏体不锈钢的导热系数大约是低碳钢的一半,而线膨胀系数却大得多,所以焊后在接头中会产生较大的焊接内应力。
2、奥氏体不锈钢中的成分如碳、硫、磷、镍等会在熔池中形成低熔点共晶。
3、奥氏体不锈钢的液、固相线的距离较大,共晶时间较长,且奥氏体结晶的枝晶方向性强,所以杂志偏析现象比较严重。
(2)刚焊接的碳钢焊缝裂口是什么问题扩展阅读
奥氏体不锈钢的焊接性比较好,但在焊接过程中,奥氏体从高温冷却到室温时,随着C、Cr、Ni、Mo含量的不同,金相组织转变的差异及稳定化元素Ti、Nb的变化,焊接材料与工艺的不同,焊接接头各部位可能出现一些热裂纹、耐蚀性差以及焊接接头脆化等问题。
在焊接的持续加热过程中,0Cr25Ni20钢的焊接接头会发生σ相脆变,其在800~850℃温度下σ相析出的敏感性最大。加速σ相形成的元素有Mo、Si、Nb等,故在选择时应选择这些元素含量较低的焊材,还应适当控制焊接热输入,不预热、控制层温不过高,以减少高温停留时间。
奥氏体不锈钢焊接时,如果不能有效避免焊接缺陷,焊后对这些缺陷进行返修时则极易出现焊接热裂纹,主要是奥氏体材料导热差,且返修处应力比一次焊接时应力大,多次返修则应力更大。
多层焊接时即使层间温度得到有效控制,焊接时输入的热量加上拘束应力,则足以在焊缝区或热影响区出现热裂纹,控制热裂纹的措施除了焊缝成形以外,最重要的就是温度和应力。
当温度也能得到有效控制后,应力就是最主要的原因,这一点在多次返修易出裂纹特别是纵缝和环缝相交的丁字口附近最易出现,返修难度大,足以说明应力对热裂纹的影响,应严格控制温度。
㈢ 焊接冷裂纹产生的原因
问题一:产生冷裂纹的因素有哪些 冷裂纹产生的原因是:
(1)焊缝中的氢在结晶过程中要向热影响区扩散、聚集。
(2)如果被焊材料的淬透性较大,则焊后冷却下来时,在热影响区形成马氏体组织,其性脆而硬。
(3)焊接时的残余应力。
这三个因素(氢、淬硬组织和应力)的综合作用,就会导致冷裂纹的产生。氢在金属里的扩散速度有快有慢,因此冷裂纹产生的时间也不同。有的在焊后冷却过程中产生,有的甚至放置一段时间后才产生,故又称为延迟裂纹。
防止冷裂纹的措施有:
(l)焊前预热和焊后缓冷。
(2)采用减少氢的工艺措施。
(3)合理选用焊接材料。
(4)采用适当的工艺参数。
(5)选用合理的装焊顺序。
(6)进行焊后热处理。
问题二:冷裂纹的产生原因 金属材料焊接产生裂纹的原因,谈谈我自己的看法 1、就是焊缝组织冷却过程中收缩产生的应力超过了熔池金属的抗拉强度 2、焊缝表面结晶过程中,由于析出低熔点共晶物,脆性较大,焊缝收缩过程产生裂纹 预防措施: 1、坡口制备,必须严格按照WPS要求,有时候为了弥补工人的失误,把坡口间隙调整到很大,显然,这样的坡口待焊接完一层后,由于面积过大,热量散失很快,凝固速度很快,容易产生裂纹 2、预热,严格按照WPS要求,温度比较低及厚板环境下,热量散失也很快,必要的预热是需要的 3、焊材匹配,尽量选用同母材强度匹配的焊接材料; 4、焊材烘烤,严格按照公司焊接材料管理制度要求进行烘烤,避免潮湿状态下的H致裂纹 5、打磨去除表面的裂纹,不得试图用熔合的方式去除裂纹 6、焊接到一定厚度时应使用锤击的方式部分消除应力,防止最终应力过大导致裂纹产生 个人总结,不全面。。。个人以为够用了。。。
问题三:焊接时冷裂纹和热裂纹的产生 1、冷裂纹
冷裂纹的特征
多出现在焊道与母材熔合线附近的热影响区中,多为穿晶裂纹。
冷裂纹无氧化色彩。
冷裂纹发生于碳钢或合金钢,高的含碳量和合金含量。
冷裂纹具有延迟性质,主要是延迟裂纹。
冷裂纹产生原因
焊接接头(焊缝和热影响区及熔合区)的淬火倾向严重,产生淬火组织,导致接头性能脆化。
焊接接头含氢量较高,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力,使接头脆化;磷含量过高同样产生冷裂纹。
存在较大的拉应力。因氢的扩散需要时间,所以冷裂纹在焊后需延迟一段时间才出现。由于是氢所诱发的,也叫氢致裂纹。
防止冷裂纹的措施
选用碱性焊条或焊剂,减少焊缝金属中氢的含量,提高焊缝金属塑性。
焊条焊剂要烘干,焊缝坡口及附近母材要去油、水、除锈,减少氢的来源。
工件焊前预热,焊后缓冷(大部分材料的温度可查表),可降低焊后冷却速度,避免产生淬硬组织,并可减少焊接残余应力。
采取减小焊接应力的工艺措施,如对称焊,小线能量的多层多道焊等,焊后进行清除应力的退火处理。
焊后立即进行去氢(后热)处理,加热到250℃,保温2~6h,使焊缝金属中的散氢逸出金属表面。
2、热裂纹(又称结晶裂纹)
热裂纹的特征
热裂纹可发生在焊缝区或热影响区,沿焊缝长度方向分布。
热裂纹的微观特征是沿晶界开裂,所以又称晶间裂纹。因热裂纹在高温下形成,
有氧化色彩。
焊后立即可见。
热裂纹产生原因。
焊缝金属的晶界上存在低熔点共晶体(含硫、磷、铜等杂质)。
接头中存在拉应力。
防止措施
选用适宜的焊接材料,严格控制有害杂质碳、硫、磷的含量。Fe和FeS易形成低熔点共晶,其熔点为988℃,很容易产生热裂纹。
严格控制焊缝截面形状,避免突高,扁平圆弧过渡。
缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性减少偏析。
确定合理的焊接工艺参数,减缓焊缝的冷却速度,以减小焊接应力。如采用小线能量,焊前预热,合理的焊缝布置等。
问题四:简述焊接热裂纹和焊接冷裂纹的形成机理 并比较它们各自的特点。 1)热裂纹。在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹就是热裂纹。
?形成:由于被焊接的材料大多数都是合金,而合金凝固自开始到最终结束,是在一定的温度区间内进行的,这是热裂纹产生的基本原因。焊缝中的许多杂质的凝固温度都低于焊缝金属的凝固温度,这样首先凝固的焊缝金属把低熔点的杂质推挤到凝固结晶的晶粒边界,形成了一层液体薄膜,又因为焊接时熔池的冷却速度很大,焊缝金属在冷却的过程中发生收缩,使焊缝金属内部产生拉应力,拉应力把凝固的焊缝金属沿晶粒边界拉开,又没有足够的液体金属补充时,就会形成微小的裂纹,随着温度的继续下降,拉应力增大,裂纹不断扩大。当焊缝金属中含有较多的低熔点杂质时,焊缝金属极易产生裂纹。母材和焊接材料中含有的有害杂质,特别是硫元素,它是引起钢材焊缝金属中发生凝固裂纹的最主要元素。另外,钢材中含碳量较高时,有利于硫在晶界处富集,因而也是促进形成凝固裂纹的原因,所以采用含碳量低的焊接材料有利于防止凝固裂纹的产生。
?热裂纹的特征:断口呈蓝黑色,即金属在高温被氧化的颜色,有时在热裂纹里流入熔渣的迹象。再者,弧坑裂纹多为热裂纹。
2)冷裂纹。冷裂纹指焊接接头冷却到较低温度时产生的焊接裂纹。
?冷裂纹产生的原因:钢材的淬火倾向,残余应力,焊缝金属和热影响区的扩散氢含量。其中氢的作用是形成冷裂纹的重要因素。当焊缝和热影响区的含量较高时,焊缝中的氢在结晶过程中向热影响区扩散,当这些氢不能逸出时,就聚集在离熔合线不远的热影响区中;如果被焊材料的淬火倾向较大,焊后冷却下来,在热影响区可能形成马氏体组织,该种组织脆而硬;在加上焊后的焊接残余应力,在上述几种因素的作用下,导致了冷裂纹的产生。
?冷裂纹与热裂纹的主要区别就是:冷裂纹在较低的温度下形成,一般在200-300℃以下形成;冷裂纹不是在焊接过程中产生的,而是在焊后延续一定的时间后才产生,如果钢的焊接接头冷却到湿温后并在一定的时间(几小时、几天、甚至十几天以后)才出现的冷裂纹称为延迟裂纹;冷裂纹多在焊接热影响区内产生,如沿应力集中的焊缝根部形成的冷裂纹称为焊根裂纹。沿应力集中的焊趾处形成的冷裂纹称为焊趾裂纹。在靠近堆焊焊道的热影响区内所形成的裂纹称为焊道下裂纹。冷裂纹有时也在焊缝金属内发生。一般焊缝金属的横向裂纹多为冷裂纹。冷裂纹与热裂纹相比,冷裂纹的断口无氧化色。
问题五:什么叫焊接冷裂纹 冷裂纹又称氢致裂纹,主要发生在焊接热影响区淬硬区,有事也发生在焊缝金属内部。冷裂纹一般在冷却到环境温度下产生,有的则在焊后几天或几十天才出现,所以亦称延迟裂纹。
产生的原因:1淬硬组织。
2.氢。 3.拘束应力。
控制措施:1.焊材用低氢焊条。
2.预热。
3.消氢。
4.焊后热处理。
个人意见仅供参考
问题六:焊接缺陷(裂纹)概念 、形成缺陷原因、解决措施!!!(字越多越好、越详细越好!) 5分 1、产生裂纹的概念:
焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
a.热裂纹(又称结晶裂纹):
产生于焊缝形成后的冷却结晶过程中,主要发生在晶界上,金相学中称为沿晶裂纹,其位置多在焊缝金属的中心和电弧焊的起弧与熄弧的弧坑处,呈纵向或横向辐射状,严重时能贯穿到表面和热影响区。热裂纹的成因与焊接时产生的偏析、冷热不均以及焊条(填充金属)或母材中的硫含量过高有关。
b.冷裂纹:
焊接完成后冷却到低温或室温时出现的裂纹,或者焊接完成后经过一段时间才出现的裂纹(这种冷裂纹称为延迟裂纹,特别是诸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金钢种容易产生此类延迟裂纹,也称之为延迟裂纹敏感性钢)。冷裂纹多出现在焊道与母材熔合线附近的热影响区中,其取向多与熔合线平行,但也有与焊道轴线呈纵向或横向的冷裂纹。冷裂纹多为穿晶裂纹(裂纹穿过晶界进入晶粒),其成因与焊道热影响区的低塑性组织承受不了冷却时体积变化及组织转变产生的应力而开裂,或者焊缝中的氢原子相互结合形成分子状态进入金属的细微孔隙中时将造成很大的压应力连同焊接应力的共同作用导致开裂(称为氢脆裂纹),以及焊条(填充金属)或母材中的磷含量过高等因素有关。
c.再热裂纹:
焊接完成后,如果在一定温度范围耿对焊件再次加热(例如为消除焊接应力而采取的热处理或者其他加热过程,以及返修补焊等)时有可能产生的裂纹,多发生在焊结过热区,属于沿晶裂纹,其成因与显微组织变化产生的应变有关。
2、产生裂纹的原因:
(1)焊件含有过高的碳、锰等合金元素。
(2)焊条品质不良或潮湿。
(3)焊缝拘束应力过大。
(4)母条材质含硫过高不适于焊接。
(5)施工准备不足。
(6)母材厚度较大,冷却过速。
(7)电流太强。
(8)首道焊道不足抵抗收缩应力。
3、解决措施:
(1)使用低氢系焊条。
(2)使用适宜焊条,并注意干燥。
(3)改良结构设计,注意焊接顺序,焊接后进行热处理。
(4)避免使用不良钢材。
(5)焊接时需考虑预热或后热。
(6)预热母材,焊后缓冷。
(7)使用适当电流。
(8)首道焊接之焊着金属须充分抵抗收缩应力。
问题七:焊接热、冷裂纹各有哪些基本特点? 热裂纹:沿晶开裂,一般发生在近焊缝或焊缝区。有氧化色彩,五金属光泽。主要分为结晶裂纹,高温液化裂纹和多变化裂纹三类。
冷裂纹:有时穿晶开裂有时沿晶开裂,一般发生在焊接热恭响区的熔合区或物理化学不均匀的氢聚集的局部地带。冷裂纹是具有金属光泽的脆性断口。主要分为延迟裂纹,淬硬脆化裂纹和低塑性脆化裂纹三类。
问题八:热裂纹和冷裂纹产生的原因 1)热裂纹的特征
热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。
特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。
(2)热裂纹产生原因:
① 晶间存在液态间层
焊缝:存在低熔点杂质偏析 } 形成液态间层
热影响区:过热区晶界存在低熔点杂质
② 存在焊接拉应力
(3)热裂纹的防止措施:
冶金因素
} 热裂纹
拉应力
① 限制钢材和焊材的低熔点杂质,如S、P含量。
② 控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。
③ 调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。
④ 减少焊接拉应力
⑤ 操作上填满弧坑
4.3.2.2 冷裂纹
(1)冷裂纹的形态和特征
焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种,如图6-2-17
冷裂纹形态 { 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展
焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展
焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展
图5-2-17 焊接冷裂纹
a-焊道下裂纹; b-焊趾裂纹;c-焊根裂纹
特征:无分支、穿晶开裂、断口表面无氧化色。
最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-------因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。
(2)延迟裂纹的产生原因
① 焊接接头存在淬硬组织,性能脆化。
② 扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)
③ 存在较大的焊接拉应力
(3)防止延迟裂纹的措施
① 选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性
② 减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水)
③ 避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度)
④ 降低焊接应力枣采用合理的工艺规范,焊后热处理等
⑤ 焊后立即进行消氢处理(即加热到250℃,保温2~6左右,使焊缝金属中的扩散氢逸出金属表面)。
问题九:冷裂纹产生的原因是什么 产生原因
① 焊接接头存在淬硬组织,性能脆化。
② 扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)
③ 存在较大的焊接拉应力
㈣ 什么是焊接冷裂纹,特点和产生的原因及裂纹的防止措施
什么是冷裂纹
冷裂纹是指焊接接头冷却到较低温度(对钢来说在温度以下)时,产生的焊接裂纹。
冷裂纹的特点:
(1)冷裂纹发生在焊接之后,形成的温度约在200一300℃以下,即马氏体转变温度范围。
(2)冷裂纹大多产生在基本金属上或基本金属与焊缝交界的熔合线上。
(3)露在接头金属表面的冷裂纹裂口发亮,裂纹断面上无明显的氧化痕迹。
(4)冷裂纹可能发生在晶界上,也可能贯穿晶粒内部。
碳当量等于或大于0.40%的低合金钢、中高碳钢、合金钢、工具钢和超高强度钢等钢种在焊接时易产生冷裂倾向,而形成冷裂纹。
冷裂纹产生的原因:
(1)焊缝中的氢在结晶过程中要向热影响区扩散、聚集。
(2)如果被焊材料的淬透性较大,则焊后冷却下来时,在热影响区形成马氏体组织,其性脆而硬。
(3)焊接时的残余应力。
这三个因素(氢、淬硬组织和应力)的综合作用,就会导致冷裂纹的产生。氢在金属里的扩散速度有快有慢,因此冷裂纹产生的时间也不同。有的在焊后冷却过程中产生,有的甚至放置一段时间后才产生,故又称为延迟裂纹。
防止冷裂纹的措施:
(l)焊前预热和焊后缓冷。
(2)采用减少氢的工艺措施。
(3)合理选用焊接材料。
(4)采用适当的工艺参数。
(5)选用合理的装焊顺序。
(6)进行焊后热处理。
㈤ 焊接中碳钢产生裂纹的主要原因
1.钢材中硫磷含量较高,可导致冷热裂纹的产生。
2.焊接电流太大,导致回焊接接头局部应力集中,答从而导致裂纹的产生。
3.焊条质量低劣、偏心,亦可导致裂纹的产生。
4.焊接收弧时,弧坑未填满,在弧坑沿焊缝方向产生裂纹。
5.环境温度太低,也可导致裂纹的产生。
㈥ 焊接时裂纹产生的原因
问题一:焊接缺陷(裂纹)概念 、形成缺陷原因、解决措施!!!(字越多越好、越详细越好!) 5分 1、产生裂纹的概念:
焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
a.热裂纹(又称结晶裂纹):
产生于焊缝形成后的冷却结晶过程中,主要发生在晶界上,金相学中称为沿晶裂纹,其位置多在焊缝金属的中心和电弧焊的起弧与熄弧的弧坑处,呈纵向或横向辐射状,严重时能贯穿到表面和热影响区。热裂纹的成因与焊接时产生的偏析、冷热不均以及焊条(填充金属)或母材中的硫含量过高有关。
b.冷裂纹:
焊接完成后冷却到低温或室温时出现的裂纹,或者焊接完成后经过一段时间才出现的裂纹(这种冷裂纹称为延迟裂纹,特别是诸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金钢种容易产生此类延迟裂纹,也称之为延迟裂纹敏感性钢)。冷裂纹多出现在焊道与母材熔合线附近的热影响区中,其取向多与熔合线平行,但也有与焊道轴线呈纵向或横向的冷裂纹。冷裂纹多为穿晶裂纹(裂纹穿过晶界进入晶粒),其成因与焊道热影响区的低塑性组织承受不了冷却时体积变化及组织转变产生的应力而开裂,或者焊缝中的氢原子相互结合形成分子状态进入金属的细微孔隙中时将造成很大的压应力连同焊接应力的共同作用导致开裂(称为氢脆裂纹),以及焊条(填充金属)或母材中的磷含量过高等因素有关。
c.再热裂纹:
焊接完成后,如果在一定温度范围耿对焊件再次加热(例如为消除焊接应力而采取的热处理或者其他加热过程,以及返修补焊等)时有可能产生的裂纹,多发生在焊结过热区,属于沿晶裂纹,其成因与显微组织变化产生的应变有关。
2、产生裂纹的原因:
(1)焊件含有过高的碳、锰等合金元素。
(2)焊条品质不良或潮湿。
(3)焊缝拘束应力过大。
(4)母条材质含硫过高不适于焊接。
(5)施工准备不足。
(6)母材厚度较大,冷却过速。
(7)电流太强。
(8)首道焊道不足抵抗收缩应力。
3、解决措施:
(1)使用低氢系焊条。
(2)使用适宜焊条,并注意干燥。
(3)改良结构设计,注意焊接顺序,焊接后进行热处理。
(4)避免使用不良钢材。
(5)焊接时需考虑预热或后热。
(6)预热母材,焊后缓冷。
(7)使用适当电流。
(8)首道焊接之焊着金属须充分抵抗收缩应力。
问题二:钢材在焊接时产生裂纹是什么原因 裂纹是多种原因造成的.比如预热温度不够、层间温度过高、母材自身不合格、焊材和母材不匹配、焊接速度过快、焊接产生变形等等都可能引起焊接裂纹的产生.具体是什么原因要示你当时的情况来决定了
问题三:焊接时冷裂纹和热裂纹的产生 1、冷裂纹
冷裂纹的特征
多出现在焊道与母材熔合线附近的热影响区中,多为穿晶裂纹。
冷裂纹无氧化色彩。
冷裂纹发生于碳钢或合金钢,高的含碳量和合金含量。
冷裂纹具有延迟性质,主要是延迟裂纹。
冷裂纹产生原因
焊接接头(焊缝和热影响区及熔合区)的淬火倾向严重,产生淬火组织,导致接头性能脆化。
焊接接头含氢量较高,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力,使接头脆化;磷含量过高同样产生冷裂纹。
存在较大的拉应力。因氢的扩散需要时间,所以冷裂纹在焊后需延迟一段时间才出现。由于是氢所诱发的,也叫氢致裂纹。
防止冷裂纹的措施
选用碱性焊条或焊剂,减少焊缝金属中氢的含量,提高焊缝金属塑性。
焊条焊剂要烘干,焊缝坡口及附近母材要去油、水、除锈,减少氢的来源。
工件焊前预热,焊后缓冷(大部分材料的温度可查表),可降低焊后冷却速度,避免产生淬硬组织,并可减少焊接残余应力。
采取减小焊接应力的工艺措施,如对称焊,小线能量的多层多道焊等,焊后进行清除应力的退火处理。
焊后立即进行去氢(后热)处理,加热到250℃,保温2~6h,使焊缝金属中的散氢逸出金属表面。
2、热裂纹(又称结晶裂纹)
热裂纹的特征
热裂纹可发生在焊缝区或热影响区,沿焊缝长度方向分布。
热裂纹的微观特征是沿晶界开裂,所以又称晶间裂纹。因热裂纹在高温下形成,
有氧化色彩。
焊后立即可见。
热裂纹产生原因。
焊缝金属的晶界上存在低熔点共晶体(含硫、磷、铜等杂质)。
接头中存在拉应力。
防止措施
选用适宜的焊接材料,严格控制有害杂质碳、硫、磷的含量。Fe和FeS易形成低熔点共晶,其熔点为988℃,很容易产生热裂纹。
严格控制焊缝截面形状,避免突高,扁平圆弧过渡。
缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性减少偏析。
确定合理的焊接工艺参数,减缓焊缝的冷却速度,以减小焊接应力。如采用小线能量,焊前预热,合理的焊缝布置等。
问题四:产生冷裂纹的因素有哪些 冷裂纹产生的原因是:
(1)焊缝中的氢在结晶过程中要向热影响区扩散、聚集。
(2)如果被焊材料的淬透性较大,则焊后冷却下来时,在热影响区形成马氏体组织,其性脆而硬。
(3)焊接时的残余应力。
这三个因素(氢、淬硬组织和应力)的综合作用,就会导致冷裂纹的产生。氢在金属里的扩散速度有快有慢,因此冷裂纹产生的时间也不同。有的在焊后冷却过程中产生,有的甚至放置一段时间后才产生,故又称为延迟裂纹。
防止冷裂纹的措施有:
(l)焊前预热和焊后缓冷。
(2)采用减少氢的工艺措施。
(3)合理选用焊接材料。
(4)采用适当的工艺参数。
(5)选用合理的装焊顺序。
(6)进行焊后热处理。
问题五:焊接口出现裂纹是什么原因造成的? 你也说的不是很详细,焊接裂纹产生的具体原因是有很多的,比如说焊接参数,焊材等等。据我猜测你是不是两种异型钢材进行的焊接啊,具体选择什么类型的焊条是有讲究的,应该是按照材料强度要求高的那种类型进行焊接,你是不是焊条选择错了呢?
问题六:常见的焊接缺陷有哪几种?产生原因有哪些 ①气孔:焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为条虫状气孔、针孔、柱孔,按分布可分为密集气孔,链孔等。
气孔的生成有工艺因素,也有冶金因素。工艺因素主要是焊接规范、电流种类、电弧长短和操作技巧。冶金因素,是由于在凝固界面上排出的氮、氢、氧、一氧化碳和水蒸汽等所造成的。
②夹渣:焊后残留在焊缝中的溶渣,有点状和条状之分。产生原因是熔池中熔化金属的凝固速度大于熔渣的流动速度,当熔化金属凝固时,熔渣未能及时浮出熔池而形成。它主要存于焊道之间和焊道与母材之间。
③未熔合:熔焊时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;点焊时母材与母材之间未完全熔化结合的部分,称之。
未熔合可分为坡口未熔合、焊道之间未熔合(包括层间未熔合)、焊缝根部未熔合。按其间成分不同,可分为白色未熔合(纯气隙、不含夹渣)、黑色未熔合(含夹渣的)。
产生机理:a.电流太小或焊速过快(线能量不够);b.电流太大,使焊条大半根发红而熔化太快,母材还未到熔化温度便覆盖上去。C.坡口有油污、锈蚀;d.焊件散热速度太快,或起焊处温度低;e.操作不当或磁偏吹,焊条偏弧等。
④未焊透:焊接时接头根部未完全熔透的现象,也就是焊件的间隙或钝边未被熔化而留下的间隙,或是母材金属之间没有熔化,焊缝熔敷金属没有进入接头的根部造成的缺陷。
产生原因:焊接电流太小,速度过快。坡口角度太小,根部钝边尺寸太大,间隙太小。焊接时焊条摆动角度不当,电弧太长或偏吹(偏弧)
⑤裂纹(焊接裂纹):在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面而产生缝隙,称为焊接裂纹。它具有尖锐的缺口和大的长宽比特征。按其方向可分为纵向裂纹、横向裂纹,辐射状(星状)裂纹。按发生的部位可分为根部裂纹、弧坑裂纹,熔合区裂纹、焊趾裂纹及热响裂纹。按产生的温度可分为热裂纹(如结晶裂纹、液化裂纹等)、冷裂纹(如氢致裂纹、层状撕裂等)以及再热裂纹。
产生机理:一是冶金因素,另一是力学因素。冶金因素是由于焊缝产生不同程度的物理与化学状态的不均匀,如低熔共晶组成元素S、P、Si等发生偏析、富集导致的热裂纹。此外,在热影响区金属中,快速加热和冷却使金属中的空位浓度增加,同时由于材料的淬硬倾向,降低材料的抗裂性能,在一定的力学因素下,这些都是生成裂纹的冶金因素。力学因素是由于快热快冷产生了不均匀的组织区域,由于热应变不均匀而导至不同区域产生不同的应力联系,造成焊接接头金属处于复杂的应力――应变状态。内在的热应力、组织应力和外加的拘束应力,以及应力集中相叠加构成了导致接头金属开裂的力学条件。
⑥形状缺陷
焊缝的形状缺陷是指焊缝表面形状可以反映出来的不良状态。如咬边、焊瘤、烧穿、凹坑(内凹)、未焊满、塌漏等。
产生原因:主要是焊接参数选择不当,操作工艺不正确,焊接技能差造成。
问题七:焊接后焊件出现裂纹是什么原因 你说的材料应该是0cr13吧。复合钢管应该先焊接基层,再过渡层、再复层。你管子多大?要是打得话,开内坡口,先j507焊基层,然后用A302焊过渡层,不预热,控制层温小于60摄氏度,采用小规范操作。一直焊至盖面。
问题八:J421电焊条焊接时出现裂纹。 10分 你好,从你的图片看,裂纹很长,基本贯通,而且都基本在焊缝的中间,没有什么好疑问的,就是热裂纹。最好焊前预热,预热的时候范围稍微大一点,保证温度场的均匀。
望采纳,谢谢。
㈦ 经渗碳热处理的钢件与45#钢焊接时焊缝开裂的问题如何解决
一、焊接时低合金钢出现焊接问题
强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是:
1、热影响区的淬硬倾向 含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。
2、冷裂纹 低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟的性质,危害性很大。例如,材料为18MnMoNb钢壁厚 115mm 的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。
低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。
3、热裂纹 一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。
强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。
4、粗晶区脆化 热影响区中被加热至 1100℃ 以上的粗晶区,当焊接线能量过大时,粗晶区的晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。
13 试述低合金高强钢焊接时的主要工艺措施。
⑴预热 预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。
⑵焊接线能量的选择 含碳低的热轧钢(09Mn2、09MnNb钢等)以及含碳量偏下限的16Mn钢焊接时,因为这些钢的冷裂淬硬、脆化等倾向小,所以对焊接线能量没有严格的限制。焊接含碳量偏高的16Mn钢时,为降低淬硬倾向,焊接线能量应偏大一点。对于含V、Nb、Ti的钢种,为降低热影响区粗晶脆化所造成的不利影响,应选择较小的焊接线能量。如15MnVN钢的焊接线能量应控制在40~45kJ/cm以下。
对于碳及合金元素含量较高而屈服点为490MPa的正火钢(如18MnMoNb钢等),因淬硬倾向大,应选择较大的焊接线能量,但当采用焊前预热时,为了避免过热倾向,可以适当地减少线能量。
⑶后热及焊后热处理 后热是指焊接结束或焊完一条焊缝后,将焊件立即加热至150~250℃范围内,并保温一段时间,使接头中的氢扩散逸出,防止延迟裂纹产生。
对于厚壁容器、高刚性的焊接结构以及一些在低温、耐蚀条件下工作的构件,焊后应及时进行消除应力的高温回火,其目的是消除焊接残余应力,改善组织。
焊后立即进行高温回火的焊件,无需再进行后热处理。
二、16Mn钢的焊接工艺
16Mn钢属于碳锰钢,碳当量为0.345%~0.491%,屈服点等于343MPa(强度级别属于343MPa级)。16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。不同板厚及不同环境温度下16Mn钢的预热温度,见表8。
16Mn钢手弧焊时应选用E50型焊条,如碱性焊条E5015、E5016,对于不重要的结构,也可选用酸性焊条E5003、E5001。对厚度小、坡口窄的焊件,可选用E4315、E4316焊条。
焊接16Mn钢的预热温度
焊件厚度 (mm) 不同气温下的预热温度计(℃)
16以上 不低于- 10℃ 不预热,- 10℃ 以下预热100~150℃
16~24 不低于- 5℃ 不预热,- 5℃ 以下预热100~150℃
25~40 不低于 0℃ 不预热, 0℃ 以下预热100~150℃
40以上 均预热100~150℃
16Mn钢埋弧焊时H08MnA焊丝配合焊剂HJ431(开I形坡口对接)或H10Mn2焊丝配合焊剂HJ431(中板开坡口对接),当需焊接厚板深坡口焊缝时,应选用H08MnMoA焊丝配合焊剂HJ431。
16Mn钢是目前我国应用最广的低合金钢,用于制造焊接结构的16Mn钢均为16MnR和16Mng钢。
三、18MnMoNb钢的焊接工艺
18MnMoNb钢的屈服点等于490MPa(属于490MPa级钢),由于碳及合金钢元素的含量都较高,所以淬火硬倾向及冷裂倾向均比16Mn钢大。焊接工艺要点:
1)除电渣焊外,焊前对焊件应采取预热措施,预热温度控制在150~ 180℃ 。对于刚度较大的接头,预热温度应提高至180~ 230℃ 。焊后或中断焊接时,应立即进行250~ 350℃ 的后热处理。
2)为保证接头性能和质量,应适当控制焊接线能量,如手弧焊时,焊接线能量应控制在24kJ/cm以下;埋弧焊时,焊接线能量应控制在35kJ/cm以下。但焊接线能量不能过小,否则焊接接头易出现淬硬组织和降低韧性。同时,层间温度应控制在预热温度和 300℃ 之间。
4)焊后应进行热处理。电渣焊接头热处理的方式是900~ 980℃ 正火加630~ 670℃ 回火。手弧焊及埋弧焊接头进行消除焊接残余应力的高温回火处理,回火温度比一般钢材回火温度低 30℃ 左右。
18MnMoNb钢手弧焊时应选用E60型焊条,如碱性焊条E6015、E6016,
18MnMoNb钢埋弧焊时H08Mn2MoA焊丝配合焊剂HJ431。
以上是两种典型的低合金钢的焊接方法,焊接工艺参数、焊接材料选择的焊接要点望阅读后能得到一些启发,以后在焊接低合金钢是能派上用处。