A. 激光焊接工艺
可以。
一、激光焊接工艺参数:
1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。
2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。
3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。
二、激光焊接工艺方法:
1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。
2、丝与丝的焊接。包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。
3、金属丝与块状元件的焊接。采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。三、采用激光软钎焊与其它方式相比有以下优点:
1、由于是局部加热,元件不易产生热损伤,热影响区小,因此可在热敏元件附近施行软钎焊。
2、用非接触加热,熔化带宽,不需要任何辅助工具,可在双面印刷电路板上双面元件装备后加工。
3、重复操作稳定性好。焊剂对焊接工具污染小,且激光照射时间和输出功率易于控制,激光钎焊成品率高。
4、激光束易于实现分光,可用半透镜、反射镜、棱镜、扫描镜等光学元件进行时间与空间分割,能实现多点同时对称焊。
5、激光钎焊多用波长1.06um的激光作为热源,可用光纤传输,因此可在常规方式不易焊接的部位进行加工,灵活性好。
6、聚焦性好,易于实现多工位装置的自动化。
盈云光电作为山东激光塑料焊接设备生产厂家,生产的塑料激光焊接设备主要应用于汽车后尾灯、车载摄像头、汽车胎压监测计、医用流体器件。
四、激光深熔焊:
1、冶金过程及工艺理论。 激光深熔焊冶金物理过程与电子束焊极为相似,即能量转换机制是通过“小孔”结构来完成的。这个充满蒸汽的小孔犹如一个黑体,几乎全部吸收入射光线的能量,孔腔内平衡温度达25000度左右。热量从这个高温孔腔外壁传递出来,使包围着这个孔腔的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周即围着固体材料。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属填充着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
B. 如何调整激光焊接机光路
激光焊接机光路调整
激光焊接机激光器以及光路的调整必须由经过专门培训的人员进行,否则会因激光器失调或调偏造成光路上其它组件的损坏。
激光谐振腔的调整步骤如下:
1.检查基准光源
红色的半导体激光是整个光路的基准,必须首先确保其准确性。用一个简易的高度规检查红光是否与光具座导轨顶面平行,并处于光具座两条导轨间的中心线上,如出现偏差,可以通过6个紧固螺钉进行调整。调整好后注意再检查一遍所有紧固螺钉是否已经完全拧紧。
2.调整输出镜(输出介质膜片)位置
调整输出镜前,应将装有YAG棒的聚光腔拿开,以免因光路中YAG棒的折射偏差影响调整的准确性。
输出介质膜片的准确位置应该是使红光位于其中心位置并能将红光完全反射回红光的出射孔,否则应通过膜片架的旋钮进行仔细调整。注意调整完后应将膜片架调节旋钮上的锁紧圈完全锁紧,确保其位置的稳定性,然后再一次检查其反射光的位置是否保持在原位。
3.检查YAG棒的安装位置
用透明胶纸分别贴在YAG棒套的两端,观察红光光斑是否在两个棒套管的正中间位置,如有偏差,应通过调整聚光腔的位置加以修正。然后观察YAG棒的反射光位置,应与红光的出射孔重合,否则在兼顾红光尽可能保持在棒套管中心位置的前提下调整聚光腔的位置,使反射光尽量与出射孔靠拢,至少应保证调整到与出射孔的偏差小于1mm。
4.调整全反镜(全反介质膜片)位置
第一步:检查红光是否在介质膜片的中间位置,否则应调整介质膜片架的安装位置使红光在介质膜片的中心。
第二步:粗调介质膜片架旋钮,使红光反射回出射孔。
第三步:开启激光,200A左右,脉宽调整到约2ms,重复频率调整到0Hz,踩一下脚踏开关使脉冲氙灯闪光,此时用完全暴光的全黑像纸放在输出镜前,可以观察到有激光输出,反复调整膜片架的两个旋钮,使输出光斑最圆且均匀,然后逐渐降低电流至120A左右,进一步反复仔细地微调旋钮,尽可能使打到像纸上的光斑最圆且最强部分集中在光斑中心。
第四步:检查激光是否与红光重合,将像纸固定在激光输出镜的前端并尽量远离输出镜的位置,发出一个激光脉冲,观察像纸上的光斑中心是否与红光中心重合,如不重合,可以微调输出镜和全反镜,使光斑与红光重合,然后再将像纸固定在离激光器输出镜800~1000mm的地方,再次检查光斑是否与红光重合。如能较好地重合,激光器即调整到了最佳状态。
第五步:锁紧各个调节旋钮,再一次检查像纸上的光斑是否良好,并与红光同轴。否则应重新调整。
5.检查光闸的位置
人工旋转反射镜片支架,将光闸推至挡光位置,观察红光是否在镜片的中间,其反射光是否位于光束终止器中心的吸收锥体上,如位置不正确可稍加调整,最后,应特别注意仔细检查一下光闸反射镜片是否清洁,受污染的镜片在使用中很快会炸裂。
C. 影响激光焊接质量的原因是什么
影响激光焊接质量的因素很多.其中一些极易波动,具有相当的不稳定性。如何正确设定和控制这些参数,使其在高速连续的激光焊接过程中控制在合适的范围内,以保证焊接质量首先是焊缝成形的可靠性和稳定性,是关系到激光焊接技术实用化、产业化的重要问题。 以板材对接单面焊双面成形工艺为例,影响激光焊接质量的主要因素分焊接设备,工件状况和工艺参数三方面,如图11所示。
图11 影响激光焊接质量的主要因素 1 焊接设备
对激光器的质量要求最主要的是光束模式和输出功率及其稳定性。光束模式是光束质量的主要指标,光束模式阶数越低,光束聚焦性能越好,光斑越小,相同激光功率下功率密度越高,焊缝深宽越大。一般要求基模(TEM00)或低阶模,否则难以满足高质量激光焊接的要求。虽然目前国产激光器在光束质量和功率输出稳定性方面用于激光焊接还有一定困难。但从国外情况来看,激光器的光束质量和输出功率稳定性已相当高,不会成为激光焊接的问题。
光学系统中影响焊接质量最大的因素是聚焦镜,所用焦距一般在127mm(5in)到200mm(7.9in)之间,焦距小对减小聚焦光束腰斑直径有好处,但过小容易在焊接过程中受污染和飞溅损伤。 2.工件状况
激光焊接要求对工件的边缘进行加工,装配有很高的精度,光斑与焊缝严格对中,而且工件原始装配精度和光斑对中情况在焊接过程中不能因焊接热变形而变化。这是因为激光光斑小,焊缝窄,一般不加填充金属,如装配不严间隙过大,光束能穿过间隙不能熔化母材,或者引起明显的咬边、凹陷,如光斑对缝的偏差稍大就有可能造成未熔合或未焊透。所以,一般板材对接装配间隙和光斑对缝偏差均不应大于0.1mm,错边不应大于0.2mm。当焊缝较长时,焊前的准备难度很大,普通剪床F料一般不能满足要求.必须经过机械加工或用高精度剪床剪切,还必须根据具体工件情况设计合适的精密胎夹具。实际生产中,有时因不能满足这些要求,而无法采用激光焊接技术。 3.焊接参数
(1)对激光焊接模式和焊缝成形稳定件的影响焊接参数中最主要的是激光光斑的功率密度,它对焊接模式和焊缝成形稳定性影响如下:随激光光斑功率密度由小变大依次为稳定热导焊、模式不稳定焊和稳定深熔焊[1][2],其产生条件和焊缝成形特征如表2所示。 表2 三种激光焊接过程的基本特征
焊接过程 稳定热导焊(HCW) 模式不稳定焊(UMW) 稳定深熔焊(DPW) 产生条件 低功率密度 功率密度介于HCW和DPW之间 高功率密度 焊接模式 热导焊 热导焊和深熔焊随机出现 深熔焊
小孔特点 不形成小孔 小孔间断性地产生和消失 小孔稳定存在
等离子体特点 不产生等离子体 等离子体间断性地产生和消失 稳定的等离子体 焊缝成形特征 熔深和熔宽均很小的近半圆形焊缝 焊缝成形极不狗宝,熔深和熔宽在大小两给跳变 熔深较大的指状焊缝
激光光斑的功率密度,在光束模式和聚焦镜焦距一定的情况下,主要由激光功率和光束焦
点位置决定。激光功率密度与激光功率成正比。而焦点位置的影响则存在一个最佳值;当光束焦点处于工件表面下某一位置(1~2mm范围内,依板厚和参数而异)时,即可获得最理想的焊缝。偏离这个最佳焦点位置,工件表面光斑即变大,引起功率密度变小,到一定范围,就会引起焊接过程形式的变化。
焊接速度对焊接过程形式和稳定件的影响不如激光功率和焦点位置那样显著,只有焊接速度太大时,由于热输入过小而出现无法维持稳定深熔焊过程的情况。
实际焊接时,应根据焊件对熔深的要求选择稳定深熔焊或稳定热导焊,而要绝对避免模式不稳定焊。
(2)在深熔焊范围内,焊接参数对熔深的影响1][3] 在稳定深熔焊范围内,激光功率越高,熔深越大,约为0.7次方的关系;而焊接速变越高,熔深越浅。在一定激光功率和焊接速度条件下焦点处于最佳位置时熔深最大,偏离这个位置,熔深则下降,甚至变为模式不稳定焊接或稳定热导焊。
(3)保护气体的影响 保护气体通常采用氩气或氦气.它们产生等离子体的倾向显著 不同:氦气因其电离电体高,导热快.在同样条件下,比氩气产生等离子体的倾向小,因而可获得更大的熔深。
在一定范围内,随着保护气体流量的增加,抑制等离子体的倾向增大,因而熔深增加,但增至一定范围即趋于平稳。
(4)各参数的可监控性分析在四种焊接参数中,焊接速度和保护气体流量属于容易监控和保持稳定的参数,而激光功率和焦点位置则是焊接过程中可能发生波动而难于监控的参数。
虽然从激光器输出的激光功率稳定性很高且容易监控,但由于有导光和聚焦系统的损耗,到达工件的激光功率会发生变化,而这种损耗与光学工件的质量、使用时间及表面污染情况有关,故不易监测,成为焊接质量的不确定因素。
D. 激光焊接原理
激光焊接原理是激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料。
而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
(4)激光光斑半径增大焊接温度怎么变扩展阅读
工艺参数:
(1)功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。
因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在10^4~10^6W/CM^2。
(2)激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。
(3)激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
E. 激光焊字机的焊接质量参数
影响激光焊接机焊接质量的参数包括:激光脉冲的能量、激光束光斑直径、激光脉冲的频率、激光的脉宽、激光的脉冲波形、被焊材料的相对光吸收率、焊接速度、保护气体等。 对于采用脉冲激光进行焊接的加工,激光脉冲波形在脉冲激光焊接中是一个重要的问题。当高强度的激光入射至材料的表面时,金属表面会将60%~98%的激光能量反射掉,且反射率随表面温度变化。因此,不同的金属对于激光的反射率和激光的利用率都不一样,要进行有效的焊接就必须输入不同波形的激光,这样焊缝处的金属组织才能在最佳的方式结晶,形成与基体金属一致的组织,才能形成高质量的焊缝。国内一般的机器都采用廉价的单波形激光电源,因此,其焊接的柔性较低,难以适应多种金属字的焊接,并且由于设备细节做不好经常要进行返工,大大浪费了焊接材料的时间,并可能造成产品的报废。不同的金属材料表面对激光的反射和吸收程度差别很大,而同一束激光对不同的金属会产生不同的焊接效果,并影响其熔深、焊接速度、结晶速度和硬度,因此单一的矩形波焊接并不能解决不同的广告字金属焊接的要求。焊接广告金属字必须具有良好激光焊接控制系统,高度柔性化,能根据不同的应用场合而调整波形,使焊缝的金属组织与基体金属一致,大部分广告金属字焊缝硬度达到HRC50-HRC58,才能真正达到无损焊接,才能提高了产品的质量。
F. 激光焊接机光斑直径能调吗
激光焊接机的光斑直径是可以调整的,以下两种方法供参考;
1)更换聚焦镜、准直镜(激光焊接头);
2)离焦。
G. 激光焊接机在焊接过程中要掌握哪些要点
1、在激光焊接的过程中,有两种情况下,由于填充材料很少被使用,被焊接的部分的处理是很必要的。在对接和缝焊,激光能量被施加到材料的交界处,减少热量输入和失真,并允许较高的处理速度。然而,这些对接接头必须符合准确,这往往限制了激光对接焊到圆形部件,它可以打开,关闭的公差和压装前的焊接在一起。
2、光纤激光焊接机的激光束提供了多种方式来连接金属的:它可以在表面连接的工件或产生深焊缝。它可以结合常规的焊接方法,此外,可用于钎焊。
3、光纤激光焊接机通过适当的脉冲时间电能变化,可以对铝、铜、合金等高反射材料实现高质量焊接。
4、光纤激光焊接机将激光参数与脉冲成形技术相结合,可实现广泛的异种材料焊接。利用脉冲成形技术,并非所有材料的焊接问题均能解决,但随着脉冲激光技术的不断提高,异种材料的焊接技术必将不断进步。
5、光纤激光焊接机的激光焊接可以代替许多不同的标准方法,如电阻(点焊或缝)的使用,埋弧焊,射频感应,高频电阻,超声波和电子束。虽然这些技术已在全球制造业建立了独立的基础,但是多功能激光焊接的方法将在许多不同应用中被高效和经济地运行。其通用性,即使将允许在焊接系统可用于其它机械加工的功能,例如切割,钻孔,划线,密封和串行化。