Ⅰ 防止焊接变形的措施都有哪些
1、进行合理的焊接结构设计:
①合理安排焊缝位置。焊缝尽量以构件截面的中性轴对称;焊缝不宜过于集中。
②合理选择焊缝尺寸和形状。在保证结构有足够承载力的前提下,应尽量选择较小的焊缝尺寸,同时选用对称的坡口。
③尽可能减少焊缝数量,减小焊缝长度。
2、采取合理的装配工艺措施:
①预留收缩余量法。
②反变形法。
③刚性固定法。
此法在焊接大型储罐底板时采用较多。装配压力容器及球罐时,往往采用弧形加强板、日字形夹具进行刚性固定。
④合理选择装配程序。如储罐底板焊接,可以先焊短焊缝,再焊长焊缝。
3、采取合理的焊接工艺措施:
①合理的焊接方法。
②合理的焊接规范。
③合理的焊接顺序和方向。
④进行层间锤击(打底层不适于锤击)。
(1)怎么有效的避免焊接缺陷扩展阅读:
焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。
在熔焊的过程中,如果大气与高温的熔池直接接触的话,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。
Ⅱ 焊接接头容易出现哪些缺陷如何防止
一、焊缝成形差 焊缝成形差主要表现在焊缝波纹不美观,且不光亮;焊缝弯曲不直,宽窄不一,接头太多;焊缝中心突起,两边平坦或凹陷;焊缝满溢等。 1.产生原因 ⑴焊接规范选择不当; ⑵焊枪角度不正确; ⑶焊工操作不熟练; ⑷导电嘴孔径太大; ⑸焊接电弧没有严格对准坡口中心; ⑹焊丝、焊件及保护气体中含有水分; 2.防止措施 ⑴反复调试选择合适的焊接规范; ⑵保持焊枪合适的倾角; ⑶加强焊工技能培训; ⑷选择合适的导电嘴径; ⑸力求使焊接电弧与坡口严格对中; ⑹焊前仔细清理焊丝、焊件;保证保护气体的纯度。 二、裂纹 铝及铝合金焊缝中的裂纹是在焊缝金属结晶过程中产生的,称为热裂纹,又称结晶裂纹。其形式有纵向裂纹、横向裂纹(往往扩展到基体金属),还有根部裂纹、弧坑裂纹等等。裂纹将使结构强度降低,甚至引起整个结构的突然破坏,因此是完全不允许的。 1.产生原因 ⑴焊缝隙的深宽比过大; ⑵焊缝末端的弧坑冷却快; ⑶焊丝成分与母材不匹配; ⑷操作技术不正确。 2.防止措施 ⑴适当提高电弧电压或减小焊接电流,以加宽焊道而减小熔深; ⑵适当地填满弧坑并采用衰减措施减小冷却速度; ⑶保证焊丝与母材合理匹配; ⑷选择合适的焊接参数、焊接顺序,适当增加焊接速度,需要预热的要采取预热措施。 三、气孔 在铝及铝合金MIG焊中,气孔是最常见的一种缺陷。要彻底清除焊缝中的气孔是很难办到的,只能是最大限度地减小其含量。按其种类,铝焊缝中的气孔主要有表面气孔、弥散气孔、局部密集气孔、单个大气孔、根部链状气孔、柱状气孔等。气孔不但会降低焊缝的致密性,减小接头的承载面积,而且使接头的强度、塑性降低,特别是冷弯角和冲击韧性降低更多,必须加以防止。 1.产生原因 ⑴气体保护不良,保护气体不纯; ⑵焊丝、焊件被污染; ⑶大气中的绝对湿度过大;耐磨焊条 ⑷电弧不稳,电弧过长; ⑸焊丝伸出长度过长、喷嘴与焊件之间的距离过大; ⑹焊丝直径与坡口形式选择不当; ⑺在同一部位重复起弧,接头数太多。 2.防止措施 ⑴保证气体质量,适当增加保护气体流量,以排除焊接区的全部空气,消除气体喷嘴处飞溅物,使保护气流均匀,焊接区要有防止空气流动措施,防止空气侵入焊接区,保护气体流量过大,要适当适当减少流量; ⑵焊前仔细清理焊丝、焊件表面的油、污、锈、垢和氧化膜,采用含脱氧剂较高的焊丝; ⑶合理选择焊接场所; ⑷适当减少电弧长度; ⑸保持喷嘴与焊件之间的合理距离范围; ⑹尽量选择较粗的焊丝,同时增加工件坡口的钝边厚度,一方面可以允许允许使用大电流,也使焊缝金属中焊丝比例下降,这对降低孔率是行之有效的; ⑺尽量不要在同一部位重复起弧,老板娘重复起弧时要对起弧处进行打磨或刮除清理;一道焊缝一旦起弧后要尽量焊长些,不要随意断弧,以减少接头量,在接头处需要有一定的焊缝重叠区域。 四、烧穿 1.产生原因 ⑴热输入量过大; ⑵坡口加工不当,焊件装配间隙过大; ⑶点固焊时焊点间距过大,焊接过程中产生较大的变形量; 操作姿势不正确。 3.防止措施 ⑴适当减小焊接电流、电弧电压,提高焊接速度; ⑵加大钝边尺寸,减小根部间隙; ⑶适当减小点固焊时焊点间距; ⑷焊接过程中,手握焊枪姿势要正确,操作要熟练。 五、未焊透 1.产生原因 ⑴焊接速度过快,电弧过长; ⑵坡口加工不当,装配间隙过小; ⑶焊接技术较低,操作姿势掌握不当; ⑷焊接规范过小; ⑸焊接电流不稳定。 2.防止措施 ⑴适当减慢焊接速度,压低电弧; ⑵适当减小钝边或增加要部间隙; ⑶使焊枪角度保证焊接时获得最大熔深,电弧始终保持在焊接熔池的前沿,要有正确的姿势; ⑷增加焊接电流及电弧电压,保证母材足够的热输入获得量; ⑸增加稳压电源装置或避开开用电高峰。 六、未熔合 1.产生原因 ⑴焊接部位氧化膜或锈未清除干净; ⑵热输入不足; ⑶焊接操作技术不当。 2.防止措施 ⑴焊前仔细清理待焊处表面; ⑵提高焊提高电流、电弧电压,减速小焊接速度; ⑶焊接时要稍微采用运条方式,在坡口面上有瞬间停歇,焊丝在熔池的前沿,提高焊工技术。 七、夹渣 1.产生原因 ⑴焊前清理不彻底; ⑵焊接电流过大,导致电嘴局部熔化混入熔池而形成夹渣; ⑶焊接速度过高。 2.防止措施 ⑴加强焊接前的清理工作,多道焊时,每焊完一道同样要进行焊缝清理; ⑵在保证熔透的情况下,适当减少焊接电流,大电流焊接时,导电嘴不要压得太低; ⑶适当降低速度,采用含脱氧剂较高的焊丝,提高电弧电压。
Ⅲ 桥梁工程焊接缺陷是什么原因,如何预防呢
一、原因分析:
①正式焊接前未进行试验,焊丝、焊条、熔剂、工艺等匹配不良。
②焊接时钢构件温度低,焊接后降温快,焊接应力过大。
③焊接变形矫正变形量过大,施力不当或矫形时温度过低。
二、防治措施:
①焊接前应对所选材料进行施焊,确认匹配性。
②按照钢材品种对施焊构件采取预热和保温措施。
③矫正变形应按多次微调的原则,防止出现矫正过度的现象。
Ⅳ 怎样防止焊接时的未焊透缺陷
缺陷名称:未焊透(Incomplete
Penetration)
手工电弧焊
1、产生原因
(1)焊条选用不当。
(2)电流太低。
(3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所阻挡,不能给予母材。
(4)焊缝设计及组合不正确。
2、防止方法
(1)选用较具渗透力的焊条。
(2)使用适当电流。
(3)改用适当焊接速度。
(4)增加开槽度数,增加间隙,并减少根深。
CO2气体保护焊
1、产生原因
(1)电弧过小,焊接速度过低。
(2)电弧过长。
(3)开槽设计不良。
2、解决方法
(1)增加焊接电流和速度。
(2)降低电弧长度。
(3)增加开槽度数。增加间隙减少根深。
Ⅳ 横焊时容易出现哪些缺陷应如何防止
当焊件较薄时,即原先电弧停留的旁边,使焊缝成形良好。 2。第二道焊缝采用斜圆圈运条专法,不至于使熔池温属度过高,便可得到合适的熔深.2-4毫米、焊接方法和运条注意事项,并稍停片刻,电弧应更短,为防止焊缝表面咬边和下面产生熔化金属下淌现象,以及适当的运条方法,避免焊条熔化金属过多地聚集在某一点上形成焊瘤和焊缝上部咬边等缺陷,焊条与下板成75-80度,当板厚为3-5毫米时应采用双面焊1,尽管知道横焊的方法,第一道焊缝选用细焊条,用直线往返形运条法,实践,再实践:实践.在施焊过程中,旦要均匀,当间隙大时宜采用直线往复形运条法,但最为重要的是,使熔池金属有机会冷却,运条速度应稍快些。 需要注意的是。开坡口的对接横焊,可以防止烧穿,这样做能有效地避免各种缺陷:(1)不开坡口的对接横焊,并选用较小直径焊接电流,每个斜圆圈形与焊颖中心线的斜度不得大于45度,然后缓慢将电弧引到焊缝的下边。当焊条末端运到斜圆上面时。焊件较厚时。应采用短弧焊接,可采用短弧直线形或小斜圆圈形运条法焊接。正面焊时焊条直径为3、横焊是焊接垂直或倾斜平面上水平方向的焊缝
Ⅵ 如何防止焊接缺陷
焊缝缺陷是造成锅炉、压力容器失效和事故的主要原因,因此,必须对焊缝缺陷的危害性有充分的认识。 (1)焊缝弧坑缺陷对焊接接头的强度和应力水平有不利的影响。焊瘤不仅影响了焊缝的外观,而且也掩盖了焊瘤处焊趾的质量情况,往往会在这个部位上出现未熔合缺陷。 (2)咬边是一种危险性较大的外观缺陷。它不但减少焊缝的承压面积,而且在咬边根部往往形成较尖锐的缺口,造成应力集中,很容易形成应力腐蚀裂纹和应力集中裂纹。因此,对咬边有严格的限制。 (3)气孔、夹渣等体积性缺陷的危害性主要表现为降低焊接接头的承载能力。如果气孔穿透焊缝表面。介质积存在孔穴内,当介质有腐蚀性时,将形成集中腐蚀,孔穴逐渐变深、变大,以至腐蚀穿孔而泄漏。夹渣边缘如果有尖锐形状,还会在该处形成应力集中。 (4)未熔合和未焊透等缺陷的端部和缺口是应力集中的地方,在交变载荷作用下很可能生成裂纹。 (5)裂纹是最尖锐的一种缺口,它的缺口根部曲率半径接近于零。尖锐根部有明显的应力集中,当应力水平超过尖锐根部的强度极限时,裂纹就会扩展,以至贯穿整个截面而造成锅炉压力容器失效。特别是当焊接接头处于脆性状态时,裂纹的扩展速度极快,造成脆性破裂事故。裂纹还会加剧疲劳破坏和应力腐蚀破坏。 要保证焊接接头的质量,就应在焊接过程中采用有效措施,防止产生焊接缺陷。 (1)防止咬边的措施是电流大小要适当;运条要均匀;焊条角度要正确;焊接电弧要短些;埋弧自动焊的焊速要适当。 (2)防止产生气孔的措施是:不得使用药皮开裂、剥落、变质、偏心或焊芯锈蚀的焊条;各种类型的焊条或焊剂都应按规定的温度和保温时间进行烘干;焊接坡口及其两侧应清理干净;正确地选择焊接工艺参数;碱性焊条施焊时,应短弧操作。
Ⅶ 如何防止管道焊口内部缺陷
管道焊接内部缺陷成因及预防在管道焊接过程中,由于人员、设备、材料、方法、环境等各方面因素影响,在管道焊缝处产生缺陷。管道焊接内部缺陷主要有裂纹、气孔、夹渣、未焊透、未熔合等。
一、裂纹。
在焊缝或热影响区内开裂形成的缝隙叫裂纹。分为冷裂纹、热裂纹、再热裂纹等。焊接裂
纹危害性很大,它除了降低焊缝强度外,还因裂纹末端存在尖锐的缺口,而引起严重的应力集中,造成结构断裂破坏。
1、冷裂纹:焊缝冷却过程中,温度在200℃以下产生的裂纹,叫冷裂纹。由于常在焊后一段时间发生,也叫延迟裂纹。冷裂纹发生在烛焊缝或热影响区上,在碳钢或合金钢中发生较多。
1.1产生原因
焊缝在结晶过程中,氢含量过高不能逸出,聚集在离熔合线附近的热影响区中;母材的淬硬倾向大,在冷却速度较快的条件下,热影响区形成脆而硬的马氏体组织;焊接过程中由于工件局部不均匀受热,焊缝在冷却过程中会产生很大的拉应力,这种拉应力随焊缝温度的下降而增大。在氢、淬硬组织、应力三个因素共同作用下,即产生裂纹。
1.2预防措施
1.2.1合理选择焊材。选用低氢型焊条,减少含氢量,焊前严格按规定进行烘干,焊口边缘彻底清理干净,减少氢的来源;选用合适焊材,使焊缝与母材有良好的匹配,增加焊缝金属的塑性
,不产生任何不良组织,如晶粒粗化及硬脆马氏体等。
1.2.2选择合理的焊接工艺。如焊前预热、控制层间温度、减缓冷却速度,使用小电流、分散焊等措施减小焊件的温度差,改善焊缝及热影响区的组织状态等。
1.2.3焊后及时热处理。使氢能从焊缝中逸出、减少焊接残余应力及改善接头的组织和性能。
1.2.4采用合理的焊接顺序和焊接方向,改善焊接的应力状态,降低焊接残余应力。
1.2.5制定合理的成形加工和组装工艺,尽可能减小冷却变形度,避免强制组装,预防组装过程中造成各种伤痕。
2、热裂纹:热裂纹是在稍低于凝固温度下产生的裂纹。在300℃以上高温产生的裂纹都叫热裂纹。热裂纹大多产生在焊缝中,有时也出现在热影响区内。这类裂纹沿晶界开裂,断面上大多有明显氧化色彩。
2.1产生原因:热裂纹是拉应力和低熔点共晶两者联合作用形成的裂纹。无论增大那一方面的作用,都可以促使焊缝中形成热裂纹。
2.2预防措施
2.2.1控制化学成分,限制易生成低熔点共晶物和有害杂质的含量,应减少焊缝金属中的镍、碳、硫、磷含量,增加铬、钼、硅及锰等元素,可以减少热裂纹的产生。
2.2.2改善焊缝金属组织,细化晶粒,减少或分散偏析,降低低熔点共晶物的有害作用。
2.2.3选用适当的焊条药皮类型。用低氢型药皮焊条可以使焊缝晶粒细化,减少杂质偏析,
提高抗裂性。用酸性药皮焊条氧化性强,使合金元素烧损多,抗裂性下降,而且晶粒粗大,使热裂纹极易产生。
2.2.4控制焊缝形状,尽量得到焊缝成形系数较大的焊缝。
2.2.5采用多层多道焊法,控制层问温度,避免偏析物聚集在焊缝中心部位。
2.2.6焊前预热,减小冷却速度,降低应力。
2.2.7焊接收弧熔池应填满,减少弧坑裂纹。
2.2.8选择合理的焊接顺序和焊接方向,减小焊接应力。
2.2.9采用小电流、快焊速来减少焊接熔池过热、快速冷却,以减少偏析,使抗裂性提高。
3、再热裂纹:再热裂纹是焊后焊件在一定温度范围再次加热,如焊后热处理或其他加热过程产生的裂纹。焊后热处理裂纹发生于焊后应力消除热处理的加热过程中。再热裂纹起源于热影响的粗晶区和焊根部位,具有晶间断裂的特征。
3.1产生原因
3.1.1焊缝再次加热后,由第一次热过程所形成的过饱和固熔碳化物再次被析出,即析出沉淀碳化物
造成晶内强化,使滑移应变集中于原奥氏体晶界。当晶界的塑性应变能力不足以承受松弛应力过程所产生
的应变时,则产生再热裂纹。
3.1.2接头在焊后热处理中,易使刚脆化的元素集结在晶界上,削弱了晶界的结合力,产生再热裂纹。
3.2预防措施
3.2.1减小热影响区的过热倾向,细化奥氏体晶粒尺寸。 3.2.2选用合适的焊接材料,提高金属在消除应力热处理温度时的塑性,以提高承担松弛应变的能力。
3.2.3提高预热温度、焊后采取缓冷,并使焊缝外形均匀平整,以减小焊接残余应力和应力集中。
3.2.4采用正确的热处理规范和工艺,尽量不在热敏感区停留过长。
Ⅷ 如何防止焊接缺陷
焊接当中常见的三种缺陷产生原因及解决办法:
一、焊缝开裂
焊缝在焊接当中开裂有以下原因: 应力、拘束力、刚性、化学成分、焊缝予留的间隙、电流、焊道、母材清洁度等。这些因素都可能是造成焊缝开裂的原因。虽然焊缝开裂原因很多,但在门种场合是多种因素造成,也有两种或三种因素造成的。但不管几个因素,其中必有一个主要因素。也有各种条件都没有什么影响,只受一个因素造成焊缝开裂。因此出现焊缝开裂必须首先正确地分析出开裂的主要因素和次要因素,根据造成开裂的主要、次要因素采取相应措施进行解决。
焊接过程形成的焊缝是焊条和母材两者经过电流高温熔化后形成焊缝,是焊条和母材由固体变成液体,高温液体是热胀,冷却变成固体是收缩。由于热胀冷缩,自然使焊接结构产生应力。有些焊接结构本身就存有拘束力和刚性。
焊接过程是由固体变成液体,也就是由固态转变成液态(通常说铁水),再由液态变成固态,也就形成焊缝。液态转变成固态(也就是铁水转变成晶粒)。铁水变成晶粒的过程就是结晶过程。
母材温度低的位置先开始结晶,逐渐向焊缝中间位置伸展,焊缝中间最后结晶。由于热胀冷缩的作用,焊接结构受应力或拘束力或刚性的影响,使母材晶粒连接不到一起,轻者在焊缝中间出现小裂纹,重者在焊缝中间出现明显的裂缝。即使母材和电焊条的化学成分都好,受焊接结构的拘束力、刚性和焊接过程产生的应力影响,也会出现裂纹或裂缝。如果母材和电焊条的化学成分不好(碳、硫、磷等偏高);或是焊缝予留间隙太大,母材在焊缝边缘杂质过多,或电流过大,并且焊接速度过快、过慢、焊道过宽等因素会使焊缝开裂情况更要加重。根据焊接工程现场焊缝开裂情况,多数是因为应力、拘束力、刚性造成的。可以说往往是应力、拘束力、刚性为焊缝开裂的主要因素。
解决应力、拘束力、刚性造成焊缝开裂比较有效的办法是:采取固定焊、分散焊。所谓固定焊:先将焊件的全部焊缝,或是重要部位焊缝,先采取小电流、窄焊道、短距离焊,全部固定住。这样使焊件不易产生较大应力。即便在焊件各处都固定住,但也不可在同一位置顺序向前焊,更不可采取大电流并采用大规格焊条。应换位置焊,不使其局部位置产生过大热量。有拘束力和刚性结构可以采取同样的方法解决。
所谓分散焊,这对大型结构来说决不可在同一位置顺序焊,应当调换位置进行焊。
对大型结构不仅得先固定焊,再采取分散焊,第一焊道也不可用大电流和大规格焊条。对整体大结构来说全部焊缝自始至终都得分散焊,不然,虽然焊缝不开裂,但残留应力太大。
如果母材化学成分不好的焊接结构,再加上上述几种因素,就应改用低氢型电焊条。如J426、J427、J506、J507,因这种电焊条抗裂性特强。但是同样得采取上述避免焊缝开裂的办法。凡属于中碳钢等合金钢种的母材或厚板时,必须用低氢型焊条。
二、气孔焊缝产生气孔的因素,一般常见的有焊处不洁净,有锈、油污、气焊渣等,不仅表面能见到的不洁净物质,需要作X光的焊缝就得在焊接前将母材的焊缝边缘用气焊将内部水分烘干。常见焊缝产生气孔多半是因为电流过大。焊缝的形状多种多样:如平焊、立焊、横焊、仰焊、平角焊、立角焊,母材厚薄、坡口形状、多层焊、盖面焊等等。无论那种焊缝想避免产生气孔,除了将焊缝坡口清除洁净外,主要在焊接过程中,电流大小一定要调整适宜。电流大小适宜的标准如何掌握呢?应观众熔池的液态熔渣覆盖熔池一半左右为宜,决不可低于三分之一。这是因为焊接当中熔化的铁水中含有各种气体,铁水中气体借着覆盖的液态熔渣保护铁水缓缓凝固,以便使气体向外逸出。
产生气孔也有极少数是因为母材是低质材含硫过高,造成熔渣的粘度增大,影响气体向外逸出。并且含硫量高产生较多二氧化硫气体,更加重气孔的产生。
三、咬肉在焊接当中咬肉现象是经常出现,不算大问题,所以用户一般不反映出来。咬肉现象多半出现在立焊、横焊、角焊的焊缝边缘处。出现咬肉的原因主要有:母材表面有锈、电流过大、运条时电弧在该处停留时间过短、焊条角度不适宜等。将这几个主要原因解决了,就不会出现咬肉
Ⅸ 自动焊接设备常见的焊接缺陷以及防止策略是什么
自动焊接设备常见的焊接缺陷以及防止策略:
第一,气孔。在全位置焊中应用自动焊接设备时,气孔是一种比较常见的问题,导致该问题产生的原因有很多,比如焊材自身的原因、操作不当、环境原因等。鉴于此,为有效地防止这一问题,在实施焊接时,应加强气体的保护,焊接温度不可过高,严格按照比例以及相关要求来充装气体,确保充装纯度达到要求。同时还要注意施焊场地周围的环境,若施工场地的风速每秒超过8米,应用防风棚来实施防护,且环境湿度不可过大。此外,为确保施焊位置保持干燥,可利用环形火焰加热器或中频感应加热器来实施加热。
第二,未熔合。在焊接中,未熔合这一问题一般常出现于立焊位置,导致该问题的原因有焊道打磨形状不正确、在焊接时偏离焊缝或者焊枪摆动的宽度不够合理等。鉴于此,在焊接过程中,在实施焊道打磨作业时,应尽量打磨平整。同时在焊接之前,还应对焊丝进行仔细地观察,察看其摆动宽度是否正确。此外,在焊接过程中,如发现焊接熔池和焊道中心出现偏离,应及时实施调整,以免出现未熔合问题。
Ⅹ 常见的焊接缺陷如何防止
你好,不同的焊接缺陷产生的机理和预防措施是不一样的。介绍如下:
形状缺欠
外观质量粗糙,鱼鳞波高低、宽窄发生突变;焊缝与母材非圆滑过渡。
主要原因:操作不当,返修造成。
危害:应力集中,削弱承载能力。
尺寸缺欠
焊缝尺寸不符合施工图样或技术要求。
主要原因:施工者操作不当
危害:尺寸小了,承载截面小; 尺寸大了,削弱了某些承受动载荷结构的疲劳强度。
咬边
原因:⒈焊接参数选择不对,U、I太大,焊速太慢。
⒉电弧拉得太长。熔化的金属不能及时填补熔化的缺口。
危害:母材金属的工作截面减小,咬边处应力集中。
弧坑
由于收弧和断弧不当在焊道末端形成的低洼部分。
原因:焊丝或者焊条停留时间短,填充金属不够。
危害:⒈减少焊缝的截面积;
⒉弧坑处反应不充分容易产生偏析或杂质集聚,因此在弧坑处往往有气孔、灰渣、裂纹等。
烧穿
原因:⒈焊接电流过大;
⒉对焊件加热过甚;
⒊坡口对接间隙太大;
⒋焊接速度慢,电弧停留时间长等。
危害:⒈表面质量差
⒉烧穿的下面常有气孔、夹渣、凹坑等缺欠。
焊瘤
熔化金属流淌到焊缝以外未熔化的母材上所形成的局部未熔合。
原因:焊接参数选择不当; 坡口清理不干净,电弧热损失在氧化皮上,使母材未熔化。
危害:表面是焊瘤下面往往是未熔合,未焊透; 焊缝几何尺寸变化,应力集中,管内焊瘤减小管中介质的流通截面积。
气孔
原因:⒈电弧保护不好,弧太长。
⒉焊条或焊剂受潮,气体保护介质不纯。
⒊坡口清理不干净。
危害:从表面上看是减少了焊缝的工作截面;更危险的是和其他缺欠叠加造成贯穿性缺欠,破坏焊缝的致密性。连续气孔则是结构破坏的原因之一。
夹渣
焊接熔渣残留在焊缝中。易产生在坡口边缘和每层焊道之间非圆滑过渡的部位,焊道形状突变,存在深沟的部位也易产生夹渣。
原因:⒈熔池温度低(电流小),液态金属黏度大,焊接速度大,凝固时熔渣来不及浮出;
⒉运条不当,熔渣和铁水分不清;
⒊坡口形状不规则,坡口太窄,不利于熔渣上浮;
⒋多层焊时熔渣清理不干净。
危害:较气孔严重,因其几何形状不规则尖角、棱角对机体有割裂作用,应力集中是裂纹的起源。
未焊透
当焊缝的熔透深度小于板厚时形成。单面焊时,焊缝熔透达不到钢板底部;双面焊时,两道焊缝熔深之和小于钢板厚度时形成。
原因:⒈坡口角度小,间隙小,钝边太大;
⒉电流小,速度快来不及熔化;
⒊焊条偏离焊道中心。
危害:工作面积减小,尖角易产生应力集中,引起裂纹
未熔合
熔焊时焊道与母材之间或焊道与焊道之间未能完全熔化结合的部分。
原因:⒈电流小、速度快、热量不足;
⒉坡口或焊道有氧化皮、熔渣等,一部分热量损失在熔化杂物上,剩余热量不足以熔化坡口或焊道金属。
⒊焊条或焊丝的摆动角度偏离正常位置,熔化金属流动而覆盖到电弧作用较弱的未熔化部分,容易产生未熔合。
危害:因为间隙很小,可视为片状缺欠,类似于裂纹。易造成应力集中,是危险性较大的缺陷。
焊接裂纹
危害最大的一种焊接缺陷
在焊接应力及其它致脆因素共同作用下,材料的原子结合遭到破坏,形成新界面而产生的缝隙称为裂纹。它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩展的趋势,所以是最危险的缺陷。