❶ 焊接用的气体有哪些,其性质和用途如何
焊接用的气体按照焊接方式可以分为如下:
一、气焊焊接用的气体有氧气、乙炔
助燃气体主要为氧气,可燃气体主要采用乙炔、液化石油气等。所使用的焊接材料主要包括可燃气体、助燃气体、焊丝、气焊熔剂等。特点设备简单不需用电。设备主要包括氧气瓶、乙炔瓶(如采用乙炔作为可燃气体)、减压器、焊枪、胶管等。由于所用储存气体的气瓶为压力容器、气体为易燃易爆气体,所以该方法是所有焊接方法中危险性最高的之一。
二、氩弧焊焊接用的保护气体有氩气、或者氦气。
氩弧焊焊接用常用的惰性气体是氩气。它是一种无色无味的气体,在空气的含量为0.935%(按体积计算),氩的沸点为-186℃,介于氧和氦的沸点之间。氩气是氧气厂分馏液态空气制取氧气时的副产品。
氩气是一种比较理想的保护气体,比空气密度大25%,在平焊时有利于对焊接电弧进行保护,降低了保护气体的消耗。氩气是一种化学性质非常不活泼的气体,即使在高温下也不和金属发生化学反应,从而没有了合金元素氧化烧损及由此带来的一系列问题。氩气也不溶于液态的金属,因而不会引起气孔。氩是一种单原子气体,以原子状态存在,在高温下没有分子分解或原子吸热的现象。氩气的比热容和热传导能力小,即本身吸收量小,向外传热也少,电弧中的热量不易散失,使焊接电弧燃烧稳定,热量集中,有利于焊接的进行。
氩气的缺点是电离势较高。当电弧空间充满氩气时,电弧的引燃较为困难,但电弧一旦引燃后就非常稳定。
三、二氧化碳气体保护焊接用的二氧化碳气体
二氧化碳常温下是一种无色无味、不可燃的气体,密度比空气大,略溶于水,与水反应生成碳酸。
二氧化碳气体保护电弧焊(简称CO2焊)是以二氧化碳气为保护气体,进行焊接的方法。(有时采用CO2+Ar的混合气体)。在应用方面操作简单,适合自动焊和全方位焊接。焊接时抗风能力差,适合室内作业。由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
❷ 氩弧焊在焊接时充氩气,它起什么作用
氩弧焊在焊接时充氩气,它起保护作用。
在普通电弧焊的原理的基础上,利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成熔池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化,因此可以焊接不锈钢、铁类五金金属。
非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流过一种不和金属起化学反应的惰性气体(常用氩气),形成一个保护气罩。
使钨极端部、电弧和熔池及邻近热影响区的高温金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好。
(2)焊接的保护气体有什么作用扩展阅读
中国均采用瓶装氩气用于焊接,在室温时,其充装压力为15MPa。钢瓶涂灰色漆,并标有“氩气”字样。纯氩的化学成分要求为:Ar≥99.99%;He≤0.01%;O2≤0.0015%;H2≤0.0005%;总碳量≤0.001%;水分≤30mg/m²。
氩气是一种比较理想的保护气体,比空气密度大25%,在平焊时有利于对焊接电弧进行保护,降低了保护气体的消耗。氩气是一种化学性质非常不活泼的气体,即使在高温下也不和金属发生化学反应,从而没有了合金元素氧化烧损及由此带来的一系列问题。
氩气也不溶于液态的金属,因而不会引起气孔。氩是一种单原子气体,以原子状态存在,在高温下没有分子分解或原子吸热的现象。
氩气的比热容和热传导能力小,即本身吸收量小,向外传热也少,电弧中的热量不易散失,使焊接电弧燃烧稳定,热量集中,有利于焊接的进行。
氩气的缺点是电离势较高。当电弧空间充满氩气时,电弧的引燃较为困难,但电弧一旦引燃后就非常稳定。
❸ 什么叫保护气体
什么是保护气体呢?保护气体就是指焊接过程中用于保护金属熔滴、熔池及焊缝区的气体。
它的作用是什么呢?它能使高温金属免受外界气体的侵害。森腊铅
另外保护气体可以分为两类:惰性气体和活性气体。惰性气体指的是氦气和氩气,此好根本不局大会与熔融焊缝发生反应。而活性气体,一般包括二氧化碳,氧气,氮气和氢气。这些气体通过稳定电弧和确保材料平稳地传送到焊缝来参与焊接过程。
❹ 什么是焊接保护气
焊接保护气体的重要作用
从技术角度分析,通过改变保护气体成分,就能对焊接过程产生下列5大重要影响:
(1)提高焊丝熔敷率与传统纯二氧化碳相比,富氩混合气通常带来更高的生产效率。氩气含量应该超过85%以实现射流过渡。当然,提高焊丝熔敷率要求选择合适的焊接参数,焊接效果通常是多参数共同作用的结果,不合适的焊接参数选择通常会降低焊接效率,增加焊后清渣工作。
(2)控制飞溅以及减少焊后清渣氩气的低电离势使电弧稳定性提高,相应的减少了飞溅。最近的焊接电源新技术对CO2焊接的飞溅进行了控制,而在同样条件下,如果使用混合气,能够进一步减少飞溅和扩大焊接参数窗口。
(3)控制焊缝成形,减少过度焊接CO2焊缝倾向于向外突出,导致了过度焊接,使焊接成本增加。氩混气易于控制焊缝成形,避免了焊丝浪费。
(4)提高焊接速度通过使用富氩混合气,即使增加焊接电流,依然能够保持非常好地控制飞溅。这样带来的优势是焊接速度的提高,尤其是对于自动焊接,极大地提高了生产效率。
(5)控制焊接烟尘在同样的焊接操作参数下,富氩混合气相比二氧化碳大大减少了焊接烟尘。相比投资硬件设备来改善焊接操作环境,采用富氩混合气是一个附带的减少源头污染的优势。
分类
焊接保护气体有单元气体,也有二元,三元混合气。单元气体有氩气,二氧化碳,二元混合气有氩和氧,氩和二氧化碳,氩和氦,氩和氢混合气。三元混合气有氦,氩,二氧化碳混合气。应用中视焊材不同选择不同配比的焊接混合气。
常用金属焊接保护气体
(1)Stargold二元氩混气Stargold富氩混合气的特点是焊接电弧稳定,焊接过程平稳,焊后表面光亮,无飞溅,无需焊后打磨。
在一些汽车零部件行业,由于焊缝表面氧化皮的存在,焊后喷漆或电泳均无法附着在氧化皮上。减少气体反应性可以帮助减少这些表面氧化皮的产生。如图1所示。采用stargold5,焊缝表面洁净光亮,无飞溅。
(2)Robostar这是一种适用于自动焊接过程的三元混合气体,熔深能力强,焊接效率高,适合于多种熔滴过渡模式,接头疲劳强度高。尤其适合于汽车行业。当接头焊脚处存在由于焊缝表面外凸引起的焊缝金属向母材表面的不平滑的过渡而造成的多余应力,而引起疲劳强度下降时,Robostar是解决问题的最佳选择。
(3)Stargon与CO2相比,这种三元混合气体可提高焊接速度20%~30%,降低烟尘50%~100%,是一种非常环保的保护气体。适合于各种熔滴过渡形式,焊接过程稳定,焊缝成形好。
❺ 气体保护焊 保护气体的种类及用途有哪些
气体保护焊保护气体的种类及用途 有以下几点:
1惰性气体 :氩气,氦气 。
用途:不锈钢 。
2还原性气体 :氮气,氢气 。
用途:铜及铜合金 。
3氧化性气体 :二氧化碳 。
用途:碳素钢,低合金钢 。
4混合性气体 :一种保护性气体加入一定量比例的另一种气体 。
用途:适用于各种金属焊接 。
❻ 二氧化碳保护焊中二氧化碳起什么作用
二氧化碳保护气体是指焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,它使高温金属免受外界气体的侵害。
CO2气体保护焊通常采用实芯焊丝,没有稳弧剂,所以用交流电时电弧不稳定,飞溅人,难以正常工作,因此CO2气体保护焊的电源都采用直流电流和反极性连接。我国基本上不生产供CO2气体保护焊用的弧焊发电机,目前均采用整流式电源。
为保证焊接工艺参数在焊接过程中的稳定,采用细丝CO2气体保护焊时,为等速送丝配合平特性电源;采用粗丝CO2气体保护焊时,为变速送丝配合陡降特性电源。
(6)焊接的保护气体有什么作用扩展阅读
优点:
1、焊接成本低。其成本只有埋弧焊、焊条电弧焊的40~50%。
2、生产效率高。其生产率是焊条电弧焊的1~4倍。
3、操作简便。明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
4、焊缝抗裂性能高。焊缝低氢且含氮量也较少。
5、焊后变形较小。角变形为千分之五,不平度只有千分之三。
6、焊接飞溅小。当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。
❼ 选择性波峰焊为什么要用氮气保护,除了氮气还可以用什么气体
氮气作为保护气体,在焊接中的主要作用是排除焊接过程中的氧气 ,增加可焊性,防止再氧化。焊接可靠,除了选择合适的焊料,一般还需要焊剂的配合,焊剂主要是去除焊接前SMA组件焊接部位的氧化物以及防止焊接部位的再氧化,并形成焊料优良的润湿条件,提高可焊性。试验证明,在氮气保护下加入甲酸后即能起到如上作用。采用隧道式焊接槽结构的环氮波峰焊接机,其机身主要是一个隧道式的焊接加工槽,上盖由几块可打开的玻璃组成,确保氧气不能进入加工槽内。当氮气通入焊脊槐接,利用保护气体和空气的不同比重,樱慎友氮气会自动把空赶出焊接区。在焊接进行过程中,PCB板会不断带入氧气注入焊接区内,因此要不断将氮气注入焊接区内,使氧气不断排到出口。 氮气加甲酸技术一般应用于红外加强力对流混合的隧道式再流焊炉中,进口和出口一般设计成开启式,而在其内部有多道门帘,密封性好,能使组件的预热、干燥、再流焊接冷却都在隧道内完成。
选择性波峰焊设备使用氮气时,出产8小时几乎没有锡渣,而不使用氮气时,锡渣会以百倍得速度产生,所以更节约成本。主要还是因氮气的化学性质稳定,一般不会与其它金属产生孝大反应,所以使用氮气进行保护,另外除氮气以外,其它化学性质稳定的气体也是可以的,如稀有气体:He、Ne、Ar、Kr等,但相较而言,氮气是最优选择。
❽ 保护气体的作用
保护气体在焊接过程中用于保护金属熔滴,对焊接的生产率和质量常常具有重要毕答作用。保护气体防止固化中的熔融焊缝发生氧化,同时也阻挡杂质和空气中的湿气,其可能会通过渣数拦改变接缝的几如胡何特性而削弱焊缝的耐腐蚀能力、产生气孔并削弱焊缝的耐久性。保护气体也会使焊枪冷却。
❾ 在焊接金属时为什么要用化学性质不活泼的气体作保护气(例如氮气)
不活泼气体是用于保护焊接时形成的金属熔池和熔滴的。熔池里的金属在高温下会与空气产生反应,形成气孔、夹杂等缺陷,影响焊缝的品质。氮气、二氧化碳等气体形成气体隔离层,防止了熔池氧化。
气焊,有惰性气体保护,把分离的金属溶化后又使凝固成一体;气割,没有保护气体,熔化金属后,金属被高速气流吹走或气流中过量的氧气氧化,就分离了金属。
活泼气体是氧,助燃,乙炔或氢气燃烧后产生的热量更多。
焊接金属的方式包括气焊,另外还有用焊条焊接的。
❿ 激光焊接机焊接为什么要用到保护气体
原因可分为三点。
原因一:可保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射
保护气体可以保护激光焊接机聚焦透镜免受金属蒸气污染和液体熔滴的溅射,特别在高功率焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。
原因二:保护气体对驱散高功率激光焊接产生的等离子屏蔽很有效
金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。如果等离子体存在过多,激光束在某种程度上被等离子体消耗。等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。
原因三:保护气体可使工件在焊接过程中免受氧化
激光焊接机必须使用一种气体进行保护,而且程序要设定成先出保护气体再出激光的方式,防止在连续加工时,脉冲激光出现氧化的现象。而惰性气体可以保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。
以上就是激光焊接机焊接时为什么要用到保护气体的原因。山东言赫提醒您一般采用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;而且质轻能逸出,不易造成气孔。当然,从我们实际焊接的效果看,用氩气保护的效果也还不错。