导航:首页 > 焊接工艺 > 焊接压力数据如何确定的流程图

焊接压力数据如何确定的流程图

发布时间:2023-03-28 02:27:24

❶ 不同情况下点焊参数如何确定

一些不同板厚焊接参数调整实际状况的选择方案【仅供参考、必须依实际状况调整】
(1) 1薄钢板同2块厚钢板进行点焊
此类焊接比较困难,根据厚钢板调整焊接参数,使用”A”类型电极帽在薄钢板焊接,可以在电极力较小的情况下实现可接受的压入深度.
(2)两薄钢板同一厚钢板点焊
根据较薄钢板进行焊接参数调整,焊接电流须在实验中确定.
(3)薄钢板两侧各有一层厚钢板点焊
此类焊接相对较简单,电极的选择.焊接时间.压力同同两层钢板焊接类似,焊接参数根据厚钢板确定.
(4)两薄钢板夹一厚钢板点焊
进行此类焊接时,钢板厚度的比例关系不能超过3,所需焊接参数根据薄钢板进行调整,但焊接电流要适当提高.
(5)三个不同板厚钢板的点焊
焊接参数的调整由次厚板为主,再依2层钢板焊接的数值,焊接电流须在实验中确定.【所需焊接参数根据经验进行调整,但焊接电流要适当提高.】
同2层钢板焊接相比较,3层厚钢板点焊的焊接压力和时间应提高15~20%.。
焊接电流应调至焊点出现飞溅时的电流略低的状态.。

当镀层厚度改变时,镀层厚度与焊接电流、时间和电极压力间的关系成正比。
不同种类镀层对焊接条件影响不大。

PS:一般理论上确定的额定值必须在实践中依据经验调整。【此点很重要】

补充说明:
在网络文库内有一些不错的数据参考,像是点焊知识培训、点焊工艺等
其它参考书籍也很多,提供几本供参考
焊接工程师手册(第2版) 陈祝年机械工业出版社 2010 page 515~538
特种焊接技术与运用 化学工业出版社 2003 page 185~208
特种焊接技术 王洪光 化学工业出版社 2009

❷ 如何确定点焊焊接参数的焊接电流,时间和压力(高分求助)

铝合金点焊参数
http://www.ugcn.cn/qiege/view_640.html
不锈钢点焊参数
http://www.hn304.com.cn/show.asp?eid=22053
碳钢等点焊参数
点焊方法和工艺一、点焊方法:点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。二、点焊工艺参数选择通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。三、不等厚度和不同材料的点焊当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8)调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有:(1)采用强条件 使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。(2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。(3)采用不同的电极材料 薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这一侧的热损失。(4)采用工艺垫片 在薄件或导电、导热性好的工件一侧垫一块由导热性较差的金属制成的垫片(厚度为0.2-0.3mm),以减少这一侧的散热。点焊接头的设计点焊通常采用搭接接头和折边接头(图11-9)接头可以由两个或两个以上等厚度或不等厚度的工件组成。在设计点焊结构时,必须考虑电极的可达性,即电极必须能方便地抵达工件的焊接部位。同时还应考虑诸如边距、搭接量、点距、装配间隙和焊点强度诸因素。边距的最小值取决于被焊金属的种类,厚度和焊接条件。对于屈服强度高的金属、薄件或采用强条件时可取较小值。搭接量是边距的两倍,推荐的最小搭接量见表11-2。表11-2 接头的最小搭接量(mm)3最薄板件厚度 单排焊点 双排焊点
结构钢 不锈钢及高温合金 轻合金 结构钢 不锈钢及高温合金 轻合金
0.50.81.01.21.52.02.53.03.54.0 891011121416182022 6789101214161820 12121414162024262830 16182022242832364042 14161820222630343840 22222426303440464850
点距即相邻两点的中心距,其最小值与被焊金属的厚度、导电率,表面清洁度,以及熔核的直径有关。表11-3为推荐的最小点距。表11-3 焊点的最小点距(mm)3最薄板件厚度 点距
结构钢 不锈钢及高温合金 轻合金
0.50.81.01.21.52.02.53.03.54.0 10121214141618202224 8101012121416182022 15151515202525303535
规定点距最小值主要是考虑分流影响,采用强条件和大的电极压力时,点距可以适当减小。采用热膨胀监控或能够顺序改变各点电流的控制器时,以及能有效地补偿分流影响的其他装置时,点距可以不受限制。装配间隙必须尽可能小,因为靠压力消除间隙将消耗一部分电极压力,使实际的焊接压力降低。间隙的不均匀性又将使焊接压力波动,从而引起各焊点强度的显著差异,过大的间隙还会引起严重飞溅,许用的间隙值取决于工件刚度和厚度,刚度、厚度越大,许用间隙越小,通常为0.1-2mm。单个焊点的抗剪强度取决于两板交界上熔核的面积,为了保证接头强度,除熔核直径外,焊透率和压痕深度也应符合要求,焊透率的表达式为:η=h/δ-c×100%(参见图11-10)。两板上的焊透率只允许介于20-80%之间。镁合金的最大焊透率只允许至60%。而钛合金则允许至90%。焊接不同厚度工件时,每一工件上的最小焊透率可为接头中薄件厚度的20%,压痕深度不应超过板件厚度的15%,如果两工件厚度比大于2:1,或在不易接近的部位施焊,以及在工件一侧使用平头电极时,压痕深度可增大到20-25%。图11-10示低倍磨片上的熔核尺寸。点焊接头受垂直面板方向的拉伸载荷时的强度,为正拉强度。由于在熔核周围两板间形成的尖角可引起应力集中,而使熔核的实际强度降低,因而点焊接头一般不这样加载。通常以正拉强度和抗剪强度之比作为判断接头延性的指标,此比值越大,则接头的延性越好。多个焊点形成的接头强度还取决于点距和焊点分布。点距小时接头会因为分流而影响其强度,大的点距又会限制可安排的焊点数量。因此,必须兼顾点距和焊点数量,才能获得最大的接头强度,多列焊点最好交错排列而不要作矩形排列。常用金属的点焊一、电阻焊前的工件清理无论是点焊、缝焊或凸焊,在焊前必须进行工件表面清理,以保证接头质量稳定。清理方法分机械清理和化学清理两种。常用的机械清理方法有喷砂、喷丸、抛光以及用纱布或钢丝刷等。不同的金属和合金,需采用不同的清理方法。简介如下:铝及其合金对表面清理的要求十分严格,由于铝对氧的化学亲合力极强,刚清理过的表面上会很快被氧化,形成氧化铝薄膜。因此清理后的表面在焊前允许保持的时间是严格限制的。铝合金的氧化膜主要用以化学方法去除,在碱溶液中去油和冲洗后,将工件放进正磷酸溶液中腐蚀。为了减慢新膜的成长速度和填充新膜孔隙,在腐蚀的同时进行纯化处理。最常用的纯化剂是重铬酸钾和重铬酸纳(见表1)。纯化处理后便不会在除氧化膜的同时,造成工件表面的过分腐蚀。腐蚀后进行冲洗,然后在硝酸溶液中进行亮化处理,以后再次进行冲洗。冲洗后在温度达75℃的干燥室中干燥,活用热空气吹干。这样清理后的工件,可以在焊前保持72h。铝合金也可用机械方法清理。如用0-00号纱布,或用电动或风动的钢丝刷等。但为防止损伤工件表面、钢丝直径不得超过0.2mm,钢丝长度不得短于40mm,刷子压紧于工件的力不得超过15-20N,而且清理后须在不晚于2-3h内进行焊接。为了确保焊接质量的稳定性,目前国内各工厂多在化学清理后,在焊前再用钢丝刷清理工件搭接的内表面。铝合金清理后必须测量放有两铝合金工件的两电极间总阻值R。方法是使用类似于点焊机的专用装置,上面的一个电极对电极夹绝缘,在电极间压紧两个试件,这样测出的R值可以最客观地反映出表面清理的质量。对于LY12、LC4、LF6铝合金R不得超过120微欧姆,刚清理后的R一般为40-50微欧,对于导电性更好的LF21、LF2铝合金以及烧结铝类的材料,R不得超过28-40微欧。镁合金一般使用化学清理,经腐蚀后再在铬酐溶液中纯化。这样处理后会在表面形成薄而致密的氧化膜,它具有稳定的电气性能,可以保持10昼夜或更长时间,性能仍几乎不变。镁合金也可以用钢丝刷清理。铜合金可以通过在硝酸及盐酸中处理,然后进行中和并清除焊接处残留物。不锈钢、高温合金电阻焊时,保持工件表面的高度清洁十分重要,因为油、尘土、油漆的存在,能增加硫脆化的可能,从而使接头产生缺陷。清理方法可用激光、喷丸、钢丝刷或化学腐蚀。对于特别重要的工件,有时用电解抛光,但这种方法复杂而且生产率低。钛合金的氧化皮,可在盐酸、硝酸及磷酸钠的混合溶液中进行深度腐蚀加以去除。也可以用钢丝刷或喷丸处理。低碳钢和低合金钢在大气中的抗腐蚀能力较低。因之,这些金属在运输、存放和加工过程中常常用抗蚀油保护。如果涂油表面未被车间的赃物或其它不良导电材料所污染,在电极的压力下,油膜很容易被挤开,不会影响接头质量。钢的供货状态有:热轧,不酸洗;热轧,酸洗并涂油;冷轧。未酸洗的热轧钢焊接时,必须用喷砂、喷丸,或者用化学腐蚀的方法清除氧化皮,可在硫酸及盐酸溶液中,或者在以磷酸为主但含有硫脲的溶液中进行腐蚀,后一种成份可有效地同时进行涂油和腐蚀。有镀层的钢板,除了少数例外,一般不用特殊清理就可以进行焊接,镀铝钢板则需要用钢丝刷或化学腐蚀清理。带有磷酸盐涂层的钢板,其表面电阻会高到在地电极压力下,焊接电流无法通过的程度。只有采用较高的压力才能进行焊接。二、镀锌钢板的点焊镀锌钢板大致分为电镀锌钢板和热浸镀锌钢板,前者的镀层比后者薄。点焊镀锌钢板用的电极,推荐用2类电极合金。相对点焊外观要求很高时,可以采用1类合金。推荐使用锥形电极形状,锥角120度-140度。使用焊钳时,推荐采用端面半径为25-50mm的球面电极。为提高电极使用寿命,也可采用嵌有钨极电极头的复合电极,以2类电极合金制成的电极体,可以加强钨电极头的散热。 三、低碳钢的点焊低碳钢的含碳量低于0.25%。其电阻率适中,需要的焊机功率不大;塑性温度区宽,易于获得所需的塑性变形而不必使用很大的电极压力;碳与微量元素含量低,无高熔点氧化物,一般不产生淬火组织或夹杂物;结晶温度区间窄、高温强度低、热膨胀系数小,因而开裂倾向小。这类钢具有良好的焊接性,其焊接电流、电极压力和通电时间等工艺参数具有较大的调节范围。钢具有良好的焊接性,其焊接电流、电极压力和通电时间等工艺参数具有较大的调节范围。 四、淬火钢的点焊由于冷却速度极快,在点焊淬火钢时必然产生硬脆的马氏体组织,在应力较大时会产生裂纹。为了消除淬火组织、改善接头性能,通常采用电极间焊后回火的双脉冲点焊方法,这种方法的第一个电流脉冲为焊接脉冲,第二个为回火处理脉冲,使用这种方法时应注意两点:(1)两脉冲之间的间隔时间一定要保证使焊点冷却到马氏体转变点Ms温度以下;(2)回火电流脉冲幅值要适当,以避免焊接区的金属重新超过奥氏体相变点而引起二次淬火。淬火钢的双脉冲点焊工艺参数实例,示于下表可供参考:25CrMnSiA、30CrMnSiA钢双脉冲点焊的焊接条件板厚(mm) 电极端面直径(mm) 电极压力(KN) 焊接时间(周)
1.01.52.02.5 5-5.56-6.56.5-77-7.5 1-1.81.8-2.52-2.82.2-3.2 22-3224-3525-3730-40
板厚(mm) 焊接电流(KA) 间隔时间(周) 回火时间(周) 回火电流(KA)
1.01.52.02.5 5-6.56-7.26.5-87-9 25-3025-3025-3030-35 60-7060-8060-8565-90 2.5-4.53-53.5-64-7
五、镀铝钢板的点焊镀铝钢板分为两类,第一类以耐热为主,表面镀有一层厚20-25微米的Al-Si合金(含有Si6-8.5%),可耐640度高温。第二类以耐腐蚀为主,为纯铝镀层,镀层厚为第一类的2-3倍。点焊这两类镀锌钢板时都可以获得强度良好的焊点。由于镀层的导电、导热性好,因此需要较大的焊接电流。并应采用硬铜合金的球面电极。下表为第一类镀铝钢板点焊的焊接条件。对于第二类,由于镀层厚,应采用较大的电流和较低的电极压力。 耐热镀铝板点焊的焊接条件板厚(mm) 电极球面半径(mm) 电极压力(KN) 焊接时间(周) 焊接电流(KA) 抗剪强度(KN)
0.60.81.01.21.42.0 252550505050 1.82.02.53.24.05.5 91011121418 8.79.510.512.013.014.0 1.92.54.26.08.013.0
六、不锈钢的点焊不锈钢一般分为:奥氏体不锈钢、铁素体不锈钢和马氏体不锈钢三种。由于不锈钢的电阻率高、导热性差,因此与低碳钢相比,可采用较小的焊接电流和较短的焊接时间。这类材料有较高的高温强度,必须采用较高的电极压力,以防止产生缩孔、裂纹等缺陷。不锈钢的热敏感性强,通常采用较短的焊接时间、强有力的内部和外部水冷却,并且要准确地控制加热时间、焊接时间及焊接电流,以防热影响区晶粒长大和出现晶间腐蚀现象。点焊不锈钢的电极推荐用2类或3类电极合金,以满足高电极压力的需要。下表为不锈钢点焊焊接条件: 不锈钢点焊的焊接条件板厚(mm) 电极端面直径(mm) 电极压力(KN) 焊接时间(周) 焊接电流(KA)
0.30.50.81.01.21.52.02.53.0 3.04.05.05.06.05.5-6.57.07.5-8.09-10 0.8-1.21.5-2.02.4-3.63.6-4.24.0-4.55.0-5.67.5-8.58.5-1010-12 2-33-45-76-87-99-1211-1312-1613-17 3-43.5-4.55-6.55.8-6.56.0-7.06.5-8.08-108-1111-13
七、铝合金的点焊铝合金的应用十分广泛,分为冷作强化和热处理强化两大类。铝合金点焊的焊接性较差,尤其是热处理强化的铝合金。其原因及应采取的工艺措施如下:(1)电导率和热导率较高 必须采用较大电流和较短时间,才能做到既有足够的热量形成熔核;又能减少表面过热、避免电极粘附和电极铜离子向纯铝包复层扩散、降低接头的抗腐蚀性。(2)塑性温度范围窄、线膨胀系数大 必须采用较大的电极压力,电极随动性好,才能避免熔核凝固时,因过大的内容拉应力而引起的裂纹。对裂纹倾向大的铝合金,如LF6、LY12、LC4等,还必须采用加大锻压力的方法,使熔核凝固时有足够的塑性变形、减少拉应力,以避免裂纹产生。在弯电极难以承受大的定锻压力时,也可以采用在焊接脉冲之后加缓冷脉冲的方法避免裂纹。对于大厚度的铝合金可以两种方法并用。(3)表面易生成氧化膜 焊前必须严格清理,否则极易引起飞溅和熔核成形不良(撕开检查时,熔核形状不规则,凸台和孔不呈圆形),使焊点强度降低。清理不均匀则将引起焊点强度不稳定。基于上述原因,点焊铝合金应选用具有下列特性的焊机:1)能在短时间内提供大电流;2)电流波形最好有缓升缓降的特点;3)能精确控制工艺参数,且不受电网电压波动影响;4)能提供价形和马鞍形电极压力;5)机头的惯性和摩擦力小,电极随动性好。当前国内使用的多为300-600KVA的直流脉冲、三相低频和次级整流焊机,个别的达到1000KVA,均具有上述特性。也有采用单相交流焊机的,但仅限于不重要工件。点焊铝合金的电极应采用1类电极合金,球形端面,以利于压固熔核和散热。由于电流密度大和氧化膜的存在,铝合金点焊时,很容易产生电极粘着。电极粘着不仅影响外观质量,还会因电流减小而降低接头强度。为此需经常修整电极。电极每修整依次后可焊工件的点数与焊接条件、被焊金属型号、清理情况、有无电流波形调制,电极材料及其冷却情况等因素有关。通常点焊纯铝为5-10点,点焊LF6,LY12时为25-30点。防透铝LF21强度低,延性后,有较好的焊接性,不产生裂纹,通常采用固定不变电极压力。硬铝(如LY11、LY12),超硬铝(如LC4、LC5)强度高、延性差,极易产生裂纹,必须采价形曲线的压力。但对于薄件,采用大的焊接压力或具有缓冷脉冲的双脉冲加热,裂纹也不是不可避免的。采用价形压力时,锻压力滞后于断电的时刻十分重要,通常是0-2周。锻压力加得过早(断电前),等于增大了焊接压力,将影响加热,导致焊点强度降低和波动。锻压力加得过迟,则熔核冷却结晶时已经形成裂纹,加锻压力已无济于事

❸ 焊接自动化如何画系统的框图

焊接自动化系统的框图大致包含以下几个部分:

1. 传感器部分:包括焊接过程中所需要的各种传感器,如:焊枪位置传感器、焊缝传感器拿坦悄、温度传感器等。

2. 控制系统部分:包括控制器、驱动器、电机等控制器件,用于对焊接设备、输送设备、转盘设备等进行控制和调整。

3. 运输部分:消渣包括各种输送设备,如:输送带、转盘等,将工件从装配站点上输送到焊接站点上。

4. 焊接设备部分:包括各种焊接设备,如:MIG/MAG/TIG等,通过控制系统控制焊接设备的操作实现焊接作业。

5. 数信物据处理部分:焊接完成后需要对焊接数据进行处理,如:焊接时间、温度、焊接速度等,这些数据可以用于后续的质量分析和优化调整。

综上所述,焊接自动化系统的框图需要结合具体的焊接流程和设备参数进行设计,以满足焊接作业的实际需求。

❹ 压力容器水压试验的压力如何确定

集箱和其他类似的部件,应该用1.5倍的设计压力进行水压试验。对接焊接的受热面管子及其他受压管件,应逐根逐件进行水压试验,试验压力为元件工作压力的2倍。

水压试验压力应以能考核承压部件的强度,暴露其缺陷,首颂但又不损害承压部件为佳。通常规定,承压部件在水压试验压力下的薄膜应力不得超过材料在试验温度下屈服极限的90%。

(4)焊接压力数据如何确定的流程图扩展阅读:

1、当容器上装有安全阀时

考虑到安全阀开启动作的滞后,容器不能及时泄压,设计压力不得低于安全阀的开启压力[开启压力是指阀瓣在运行条件下开始升起,介质连续排出的瞬时压力,其值小于等于(1.05~1.1)倍容器的工作压力]。

2、当容器上装有爆破片时

设计压力不得低于爆破片的爆破压力。其值可以根据爆破片的类型确定,取爆破片的设计爆破压力加上所选爆破片制造范围的上限,通常可取(1.15~1.3)倍最高工作压力。

3、当容器出口侧管线上装有安全阀时

其设计压力应不低于安全阀的开启压力加上容器至安全阀处的压力辩芹简降。

4、携裤当容器进口管线上装有安全阀

出口侧装有截止阀或其它截断装置时,其设计压力取以下两种情况之大者。

a、安全阀的开启压力。

b、按容器工作压力增加适当的裕度。

❺ 焊接参数如何选取

当采用工频交流电源时,点焊机点焊参数主要有焊接电流,焊接(通电)时间,电极压力和电极尺寸。
①焊接电流iw:焊件析出热量与电流的平方成正比,所以焊接电流对焊点性能影响最敏感。在其它参数不变时,当电流小于相应的值时,熔核不能形成,造成脱焊。超过此值时后,随电流增加熔核快速增大,焊点强度上升,而后因散热量的增大而熔核增长速度减缓,焊点强度增加缓慢。如进一步提高电流则导致产生飞溅,焊点强度反而下降。所以一般建议选用对熔核直径变化不敏感的适中电流来焊接。在实际生产中,焊接电流的波动有时甚大,其原因有:a、是网电压本身波动或多台焊机同时通电;b、铁磁体焊件伸入焊接回路的变化;c、前点对后点的分流等;d、导电性焊接工装同焊机电极接触导致分流。
②焊接时间tw:通电时间的长短直接影响输入热量的大小,在目前广为采用的同期控制点焊机上,通电时间是以周波数为计量单位(我国一个周波为0.02s,有的焊机厂家如采用计算机控制器,通电时间用半个周波数为计量单位)的整倍数。在其它参数固定的情况下,只有通电时间超过某一最小值时才开始出现熔核,从而实现工件的焊接联结。随通电时间的增长,熔核先快速增大,拉剪力亦提高。当选用的电流较大时,则熔核长大到一定极限后会产生飞溅。
选取尽可能短的焊接时间是焊接过程优先考虑的工艺,但是,根据不同的焊机功率,焊接工件形式,焊接工件材质,焊点数量等因素,焊接时间必需满足熔核的形成条件。
③电极压力f:电极压力的大小一方面影响工件接触电阻的数值,从面影响析热量的多少,另一方面影响焊件向电极的散热情况。从节能的角度来考虑,应选择不产生飞溅的最小电极压力。
在多台焊机连续焊接时,要特别注意气源的压缩空气流量和压力输出的稳定性。当流量和压力输出不稳定时,极易产生飞溅或脱焊。
④电极工作面尺寸:焊接电流一定时,较小的电极工作尺寸使得电流密度增加,增强了焊接能力。因此,必须在焊接一定的时间后,对焊机电极进行及时的修理,以保证焊接电流密度的一致性,从而保证焊接质量的稳定性。
电极工作面尺寸对焊件表面美观,焊核尺寸的稳定都有重要影响,要特别注意。
需要说明的是,点(排)焊时各参数是相互影响的,针对不同的焊接材料和工作条件,对大多数场合均可选取多种各参数的组合。

❻ 有压力的管道怎么焊接

在工业发展中,压力管道的应用越来越广泛,随之而来焊接工程也就繁重起来。如何做好这项工作及一般管道焊接的过程是怎样的呢?

一般先要做焊前准备,再进行焊口组对,接着开始定位焊缝,之后就开始在正常的焊接及注意事项,最后进行焊后热处理。期间贯串检验、评定、辅助等工作,在实际施工中,情况复杂,是一个焊接生产管理的系统工程。在这里主要讲一讲预热和焊后热处理。

焊前预热

预热通常应根据焊接工艺指导书(WPS)中规定,并经焊接工艺评定验证。包括管道所有类型的焊接,比如:定位焊、补焊、螺纹接头的密封焊等。当用热加工法进行切割、开坡口清根、开槽、焊接临时焊缝时,也应考虑预热要求。需要预热的焊件,其层间温度不低于预热温度。其中奥氏体不锈钢焊接时,层间温度宜低于150℃;马氏体不锈钢焊接时,层间温度宜低于315℃。各种管道材料所要求和推荐的最低预热温度参见图1。

预热温度的测量应采用计量合格的测温笔、热电偶、或其它合适的方法进行测量并记录,以保证在焊前及焊接过程中达到和保持焊接工艺指导书中规定的温度。热电偶可用电容储能放电直接焊在工件上,可不必进行焊接工艺评定和技能评定。热电偶去除后,应检查焊点区域是否存在缺陷。预热区域应以焊缝中心为基准,每侧应不小于焊件厚度的3倍,且不小于25mm。在焊接过程中,如焊接中断,应控制合理的冷却速度或采取其它措施防止对管道产生不利影响。再次焊接时,应按焊接工艺指导书的规定重新进行预热。

焊后热处理

焊后热处理工艺应根据焊接工艺指导书中的规定,还必须经焊接工艺评定验证。对于调质钢焊缝的焊后热处理应低于其回火温度。对于双相不锈钢焊后热处理,通常不进行,但热处理应按材料的标准。对于有应力腐蚀倾向的焊缝应进行热处理。对于容易产生焊接延时裂纹的钢材,焊后应及时进行热处理;当不能及时进行热处理时,应在焊后立即均匀加热至200~300℃,并保温缓冷,加热保温范围应与焊后热处理要求相同。铁素体钢之间的异种钢焊后热处理应按图2两者之中的较高热处理温度进行,但不应超过另一侧的临界点Ac1。详细焊后热处理参数见图2。

为了保证焊后热处理的温度均匀性和温度控制,可采用炉内加热、局部火焰加热、电阻加热、电感应加热等;可采用炉冷、空冷、局部加热、绝热、或其它合适的方法来控制冷却速度。最好采用自动测温记录仪在整个热处理过程测量记录热处理温度。当装配焊接后的管道不能整体进炉热处理时,允许分段热处理。分段处应有宽度大于300mm的搭接带,分段热处理时,炉外的部分应适当保温,以防较大的温度梯度

❼ 管道焊接工艺流程图

(1)准备施焊
准备好焊锡丝和烙铁,做好焊前准备。
(2)加热焊件
将烙铁接触焊接点,注意首先要保持烙铁加热焊迅明肢件各部件(如印制板上的引线和焊盘)都受热,其亩世次注意让烙铁头的扁平部分(较大槐搜部分)接触热容量较大的焊件,烙铁头的侧面或边缘部分接触热容量较小的焊件,以保持焊件均匀受热。
(3)熔化焊料
在焊件加热到能熔化焊料的温度后,将焊丝置于焊点,焊料开始融化并润湿焊点。
(4)移开焊锡
在熔化一定量的焊锡后,将焊锡丝移开。
(5)移开烙铁
在焊锡完全润湿焊点后移开烙铁,注意移开烙铁的方向应该大致45°的方向。
对于焊接热容量较小的工件,可以简化为二步法操作:准备焊接,同时放上电烙铁和焊锡丝,同时撤走焊锡丝并移开烙铁

❽ 请问不锈钢无缝管以及焊接管的压力是如何计算的

不锈钢无缝管以及焊接管的所能承受压力(严格说是内水压强)是由钢材种类版和焊缝质权量,以及内管径、管厚等因素决定的。设钢管的允许拉应力(可查手册,或由出厂商提供)为[S],管内径为D,管壁厚为T,管的所能承受内水压强P,则可根据力平衡推出计算公式:

P=[2T/D][S]

若取D=45mm,T=1.5mm,[S]=304 MPa,则 P=[2T/D][S]=[2*1.5/45][304]=20.27MPa

❾ 焊接中压力容器工作压力,设计压力,和水压试验压力,3者之间的关系

工作答皮压力Pw是指设备正常运行时顶部可能出现的最高压力或压差(表压),在顷举轿老容规中也称为“最高工作压力”。
设计压力P是指设定的设备顶部最高压力,其取值不小于工作压力。
水压试验压力Pt=1.25P[σ]/[σ]t,[σ]为试验温度下材料的许用应力;[σ]t为设计温度下雀肆材料的许用应力。

阅读全文

与焊接压力数据如何确定的流程图相关的资料

热点内容
玻璃电水壶和304不锈钢哪个好 浏览:337
ppr弯头怎么连接 浏览:764
dn32无缝管内径多少 浏览:779
eh36钢板对应国内什么材质 浏览:482
银跟什么合金变黑 浏览:248
钢铁雄心4怎么运送物资 浏览:107
搪瓷罐厂家用的钢板是什么材质 浏览:102
吉林市哪里卖铝合金管 浏览:610
国标8厘螺纹钢多少钱一米 浏览:490
焊不锈钢栏杆圆弧切面怎么割 浏览:773
不锈钢管4分管一米多少公斤 浏览:442
铝合金铁和钢哪个好 浏览:677
露华浓口红方管 浏览:88
文昌pe衬塑钢管哪里有 浏览:686
304不锈钢和钛合金门哪个好 浏览:814
浙江别墅护栏多少钱 浏览:368
铝合金把立和碳把立哪个强度高 浏览:272
无缝钢管护栏一米多少重量 浏览:2
合金可以用于牙的哪里 浏览:177
矩形方管焊移门横梁 浏览:164