㈠ 焊接裂纹的分类与特征
奥菲达技术研发部,热线0757-81137905,客服1004027259
裂纹分类
基本特征
敏感的温度区间
被焊材料
位置
裂纹走向
热裂纹
结晶裂纹
在结晶后期,由于低熔共晶形成的液态薄膜削弱了晶粒间的联结,在拉伸应力的作用下发生开裂
在固相线温度以上稍高的温度(固液状态)
杂质较多的碳钢、低中合金钢、奥氏体钢、镍基合金及铝
焊缝上、少量在热影响区
沿奥氏体晶界
多边化裂纹
已凝固的结晶前沿,在高温和应力的作用下,晶格缺陷发生移动和聚集,形成二次边界,它在高温处于低塑性状态,在应力作用下产生的裂纹
固相线以下再结晶温度
纯金属及单相奥氏体合金
焊缝上,少量在热影响区
沿奥氏体晶界
液化裂纹
在焊接热循环峰值温度在作用下,在热影响区和多层焊的层间发生重熔,在应力作用下产生的裂纹
固相线以下稍低温度
含S、P、C较多的镍铬高强钢、奥氏体钢、镍基合金
热影响区及多层焊的层间
沿晶界开裂
再热裂纹
厚板焊接结构消除应力处理过程中,在热影响区的粗晶区存在不同程度的应力集中时,由于应力松弛所产生附加变形大于该部位的蠕变塑性,则发生再热裂纹
600-700℃回火处理
含有沉淀强化元素的高强钢、珠光体钢、奥氏体钢、镍基合金等
热影响区的粗晶区
沿晶界开裂
冷裂纹
延迟裂纹
在淬硬组织、氢和拘束应力的共同作用下而产生的具有延迟特征的裂纹
在MS点以下
中、高碳钢,抵、中合金钢,钛合金等
热影响区、少量在焊缝
沿晶或穿晶
淬硬脆化裂纹
主要是由淬硬组织在焊接应力的作用下产生的裂纹
MS 点附近
含碳的NiCrMo钢、马氏体不锈钢
热影响区、少量在焊缝
沿晶或穿晶
低塑性脆化裂纹
在较低的温度下,由于被焊材料的收缩应变,超过了材料本身的塑性储备而产生的裂纹
在400℃以下
铸铁、堆焊硬质合金
热影响区及焊缝
沿晶或穿晶
层状撕裂
主要是由于钢板的内部存在有分层的夹杂物(沿轧制方向),在焊接时产生的垂直于轧制方向的应力,致使在热影响区或稍远的地方产生“台阶”状层状开裂
约400℃以下
含有杂质的低合金高强钢
热影响区附近
沿晶或穿晶
应力腐蚀裂纹(SCC)
某些焊接结构(如压力容器和管道等),在腐蚀介质和应力的共同作用下产生的延迟开裂
任何工作温度
碳钢、低合金钢、不锈钢、铝合金
焊缝和热影响区
沿晶或穿晶
㈡ 焊接裂纹的分类
裂纹影响焊接件的安全使用,是一种非常危险的工艺缺陷。焊接裂纹不仅发生于焊接过程中,有的还有一定潜伏期,有的则产生于焊后的再次加热过程中。焊接裂纹根据其部位、尺寸、形成原因和机理的不同,可以有不同的分类方法。按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。 主要产生于厚板角焊时,见附图。其特征为平行于钢板表面,沿轧制方向呈阶梯形发展。这种裂纹往往不限于热影响区内,也可出现在远离表面的母材中。其产生的主要原因是由于金属中非金属夹杂物的层状分布,使钢板沿板厚方向塑性低于沿轧制方向,另外由于厚板角焊时在板厚方向造成了很大的焊接应力,所以引起层状撕裂。通常认为片状硫化物夹杂危害最大,而层状硅酸盐和过量密集的氧化铝夹杂物也有影响。防止这种缺陷,主要应在冶金过程中严格控制夹杂物的数量和分布状态。另外,改进接头设计和焊接工艺,也有一定的作用。
㈢ 钢结构焊缝六类缺陷怎么区分记忆
国标《金属熔化焊焊缝缺陷分类及说明》将焊缝缺陷分为六类,裂纹、孔穴、固体夹杂,未熔合和末焊透、形状缺陷和上述以外的其他缺陷。每一缺陷大类用一个三位阿拉伯数字标记,每一缺陷小类用一个四位阿拉伯数字标记,同时采用国际焊接学会“参考射线底片汇编”中字母代号来对缺陷进行简化标记。
(1)裂纹缺陷以焊缝冷却结晶时出现裂纹的时间阶段区分有热裂纹(高温裂纹)、冷裂纹、延迟裂纹、再热裂纹。
①热裂纹
热裂纹是由于焊缝金属结晶时造成严重偏析,存在低熔点杂质,另外是由于焊接拉伸应力的作用而产生的。
②冷裂纹
冷裂纹发生于焊缝冷却过程中较低温度时,或沿晶或穿晶形成,视焊接接头所受的应力状态和金相组织而定。冷裂纹也可以在焊后经过一段时间(几小时或几天)才出现,称之为延迟裂纹。
③延迟裂纹
焊接后经过一段时间才产生的裂纹为延迟裂纹。延迟裂纹是冷裂纹的一种常见缺陷,它不在焊后立即产生,而在焊后延迟几小时、几天或更长时间才出现。
④再热裂纹
a再热裂纹-焊接完成后,焊接接头在一定温度范围内再次加热(消除应力热处理或其它加热过程)而产生的裂纹为再热裂纹。在消除应力热处理过程中产生的再热裂纹又称消除应力处理裂纹,也叫SR裂纹。
b再热裂纹的产生原因-产生再热裂纹的原因有二:一是与钢中所含碳化物形成元素(Cr、Mo、V、Ti及B等)有关。如珠光体耐热钢中的V元素,会使SR裂纹敏感性显著增加;二是与加热速度和加热时间有关,不同的钢种存在不同的易产生再热裂纹的敏感温度范围。
2)孔穴缺陷分为气孔和弧坑缩孔两种。
气孔造成的主要原因:焊条、焊剂潮湿,药皮剥落;坡口表面有油、水、锈污等未清理干净;电弧过长,熔池面积过大;保护气体流量小,纯度低;焊矩摆动大,焊丝搅拌熔池不充分;焊接环境湿度大,焊工操作不熟练。
弧坑缩孔是由于焊接电流过大,灭弧时间短而造成的,因此要选用合适的焊接参数,焊接时填满弧坑或采用电流衰减灭弧。
(3)固体夹杂缺陷有夹渣和金属夹杂两种缺陷
造成夹渣的原因有:多道焊层清理不干净;电流过小,焊接速度快,熔渣来不及浮出;焊条或焊矩角度不当,焊工操作不熟练,坡口设计不合理,焊条形状不良。
(4)未熔合缺陷主要是由于运条速度过快,焊条焊矩角度不对,电弧偏吹;坡口设计不良,电流过小,电弧过长,坡口或夹层清理不干净造成的。
(5)形状缺陷分为咬边、焊瘤、下塌、根部收缩、错边、角度偏差、焊缝超高、表面不规则等。
(6)其他缺陷
其他缺陷主要有电弧擦伤、飞溅、表面撕裂等。
电弧擦伤是由于焊把与工件无意接触,焊接电缆破损;未在坡口内引弧,而是在母材上任意引弧而造成的。飞溅是由于焊接电流过大,或没有采取防护措施,也有因CO2气体保护焊焊接回路电感量不合适造成的。可采用涂白垩粉调整CO2气体保护焊焊接回路的电感。
㈣ 什么叫做焊接裂纹
焊接裂纹,焊接件中最常见的一种严重缺陷,按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类
㈤ 焊接裂纹分为几种
焊接裂纹的危害性 焊接裂纹不仅给生产带来许多困难,而且可能带来灾难性的事帮。据统计,世界上焊接结构所出现各种事故中,除少数是由于设计不当、选材不合理和运行操作上的问题之外,绝大多数是由裂纹而引起的脆性破坏。因此,裂纹是引起焊接结构发生破坏事故的主要原因。 压力容器的破坏事帮常常造成巨大的损失。焊接结构中裂纹问题危害甚大,已造成世界各国所关注,具体分类见下图表:
㈥ 焊接冷裂纹和热裂纹有什么区别
冷裂纹与热裂纹区别
1、产生的温度和时间不同
热裂纹一般产生在焊缝的结晶过程中。冷裂纹大致发生在焊件冷却到200~300℃,有的焊后会立即出现,有的可以延至几小时到几周甚至更长时间才会出现。所以冷裂纹又称延迟裂纹。
2、产生的部位和方向不同
热裂纹绝大多数产生在焊缝金属中,有的是纵向,有的是横向,有时热裂纹也会延伸到基本金属中去。冷裂纹大多数产生在基本金属或熔合线上,大多数为纵向裂纹,少数为横向裂纹。
3、外观特征不同
热裂纹断面都有明显的氧化色。冷裂纹断口发亮,无氧化色。
4、金相结构不同
热裂纹都是沿晶界开裂的。冷裂纹是贯穿晶粒内部,即穿品开裂,不过也有的是沿晶界开裂。
㈦ 焊接裂纹按产生时间和温度不同分为几种
裂纹按其产生部位不同可分为根部裂纹、弧坑裂纹、熔合区裂纹以及热影响区裂纹等。按其产生的温度和时间不同可分为热裂纹、冷裂纹以及再热裂纹。
热裂纹:经常发生在焊缝中,有时也出现在热影响区,焊缝中纵向裂纹一般发生在焊道中心,与焊缝长度方向平行。横向热裂纹一般沿柱状晶发生,并与母材的晶粒间界相连,与焊缝长度方向垂直。根部裂纹发生在焊缝根部,弧坑裂纹大都发生在弧坑中心的等轴晶区,有纵、横、星状几种类型。热影响区中的热裂纹有横向,也有纵向,但都沿晶界发生,热裂纹的微观特征一般是沿晶界开裂,又称晶间裂纹。当裂纹贯穿表面与外界空气相通时,沿热裂纹折断的端口表面呈氧化色彩(如蓝灰色等)。热裂纹产生的原因:因为焊接过程中熔池金属中的硫、磷等杂质在结晶过程中形成低熔点共晶,随着结晶过程的进行,它们逐渐被排挤在晶界,形成了“液态薄膜”,而在焊缝凝固过程中由于收缩的作用,焊缝金属受拉应力,“液态薄胶”不能承受拉应力而产生裂纹。
防止产生热裂纹的措施:
①限制钢材及焊接材料中易偏析元素和有害杂质的含量。特别是减少硫、磷等杂质的含量及降低碳的含量。
②调节焊缝的化学成分,改善焊缝组织,细化焊缝晶粒,以提高其塑性,减少或分散偏析程度,控制低熔点共晶的影响。
③提高焊条的碱度,以降低焊缝中的杂质的含量。
④控制焊接规范,适当提高焊缝系数,用多层多道焊法,避免中心偏析,可防止中心线裂纹。
⑤采取降低焊接应力的措施,收弧时填满弧坑。
㈧ 什么是焊接裂纹,裂纹对材料的性能有什么影响
焊接裂纹就是焊缝或热区母材开裂,分为热裂纹,冷裂纹。一般是由于焊材选择不当或焊接工艺不合理.热处理不合理造成。裂纹是焊接中严禁出现的缺陷,对材料的性能轻者开裂断掉,严重后果不堪设想。