『壹』 微束等离子弧焊与微束TIG焊的区别;两厚度为0.73mm的薄板焊接采用哪种焊接方法好
TIG(钨惰性气体)焊接是一种低熔化率的高质量焊接技术。电弧在钨电极和工件之间燃烧; 电极并不熔化,它只作为电流导体和电弧载体。 MIG/TIG焊接都是采用气体保护的电弧焊。
TIG 为交流钨极氩弧焊,采用杜钨棒作电极,使用高频电,用氩气作保护气体。
MIG为直流反极性熔化极气体保护焊,将填充金属焊丝做电极,使用直流电,用二氧化碳作为保护气体。
TIG的适用范围广,大部分为手工焊,焊接质量高,因使用氩气,成本较高。
微束等离子弧:焊接电流在30A以下的等离子弧焊。喷嘴直径很小(Φ0.5~Φ1.5毫米),得到针状细小的等离子弧。主要用于焊接1毫米以下的超薄、超小、精密的焊件 。。微束等离子焊机能够更好的解决这些问题,并且价格低廉,使用时间长,对工件污染程度极低等特点,是众多的中小型企业能够接受,并能更好的应用到生产中。
『贰』 等离子弧加工的焊接方法
按焊缝成形原理,等离子弧有两种基本焊接方法:小孔型等离子弧焊及熔透型等离子弧焊,其中30A以下的熔透型等离子弧焊又可称为微束等离子弧焊。
(1)小孔型等离子弧焊利用小孔效应实现等离子弧焊的方法称小孔型等离子弧焊,亦称穿透性焊接法。
1)小孔法原理在对一定厚度范围内的金属进行焊接时,适当地配合电流、离子气流及焊接速度三个工艺参数,等离子弧将会穿透整个工件厚度,形成一个贯穿工件的小孔,如图5。小孔周围的液体金属在电弧吹力、液体金属重力与表面张力作用下保持平衡。焊枪前进时,在小孔前沿的熔化金属沿着等离子弧柱流到小孔后面并遂渐凝固成焊缝。 小孔法焊接的主要优点在于可以单道焊接厚板,板厚范围:1.6~9mm。小孔法一般仅限于平焊;然而,对于某些种类的材料,采取必要的工艺措施,用小孔法可实现全位置焊接。
2)焊接特点 小孔法焊接所具有的优点是:
a、孔隙率低。
b、由于小孔法产生较为对称的焊缝,焊接横向变形小。
c、由于电弧穿透能力强,对厚板可实现单道焊接。
d、不开坡口实现对接焊,焊前对工件坡口加工量减少。
小孔法的缺点是:
a、焊接可变参数多,规范区间窄。
b、厚板焊接时,对操作者的技术水平要求较高,并且小孔法仅限于自动焊接。
c、焊枪对焊接质量影响大,喷嘴寿命短。
d、除铝合金外,大多数小孔焊工艺仍限于平焊位置。
(2)熔透型等离子弧焊 焊接过程过程中,只熔透工件,但不产生小孔效应的等离子弧焊方法,又称熔透型焊接法。
1)熔透法原理 当离子气流量较小,弧柱受压缩程度较弱时,这种等离子弧在焊接过程中只熔化工件而不产生小孔效应,焊缝成形原理与氩弧焊类似。主要用于薄板焊接及厚板多层焊。
2)微束等离子弧焊 微束等离子通常采用如图3c所示的联合弧。由于非转移弧的存在,焊接电流小至1A以下电弧仍具有较好的稳定性,能够焊接细丝及箔材。这时的非转移弧又称维弧,而用于焊接的转移弧又称主弧。
3)焊接特点与GTAW焊相比,熔透法等离子弧焊具有优点是:
a、电弧能量集中,因此焊接工艺具有焊接速度快;焊缝深宽比大,截面积小;薄板焊接变形小,厚板焊接缩孔倾向小及热影响区窄等优点。
b、电弧稳定性好。由于微束等离子弧焊接采用联合弧,电流小至0.1A时电弧仍能稳定燃烧,因此可焊超薄件,如厚度0.1mm不锈钢片。
c、电弧挺直性好。以焊接电流10A为例,等离子弧焊喷嘴高度(喷嘴到工件表面的距离)达6.4mm时,弧柱仍较挺直,而钨极氩弧焊的弧长仅能采用0.6mm(弧长大于0.6mm后稳定性变差)。钨极氩弧的扩散角约450,呈圆锥形(见图6a),工件上的加热面积与弧长成平方关系,只要电弧长度有很小变化将引起单位面积上输入热量的较大变化。而等离子弧的扩散角仅50左右(见图6b)基本上是圆柱形,弧长变化对工件上的加热面积和电流密度影响比较小,所以等离子弧焊弧长变化对焊缝成形的影响不明显。
d、由于等离子弧焊的钨极内缩在喷嘴之内,电极不可能与工件相接触,因而没有焊缝夹钨的问题。
与GTAW焊相比,熔缝法的主要缺点是:
a、由于电弧直径小,要求焊枪喷嘴轴线更准确地对中焊缝。
b、焊枪结构复杂,加工精度高。焊枪喷嘴对焊接质量有着直接影响,必需定期检查、维修,及时更换。

『叁』 等离子弧焊接有哪三种方法
等离子弧焊(PAW,Plasma Arc Welding)是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。
等离子弧有两种工作方式。一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料。
另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。
等离子弧焊广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。
『肆』 等离子弧焊接有哪些方法有何特点焊接中要注意这些
等离子弧焊接有2种方法一种是非转移弧,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料。
另一种是转移弧,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。
前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。

等离子弧焊特点
等离子弧焊接是利用特殊构造的等离子焊炬所产生的高温等离子弧,并在保护气体的保护下熔合金属的一种焊接方法。电弧通过水冷喷嘴孔道,受到机械压缩、热收缩和磁收缩效应的作用,迫使弧柱截面缩小,电流密度增大,弧柱电离度提高。
从而获得更为集中、温度达10000-30000℃的等离子弧。等离子弧焊主要用于碳钢、普低钢、耐热钢、不锈钢、铜及其合金、镍及其合金、钛及其合的焊接。
『伍』 等离子弧焊接有哪些方法有何特点焊接中要注意什么
等离子弧焊接方法:穿透型焊接法,熔透型焊接法,微束等离子弧焊。特点是等离子弧的能量密度大,弧柱温度高,穿透能力强,焊接电流小到0.1A时,电弧仍能稳定燃烧,并保持良好的挺度与方向性,电弧呈圆柱形,弧长变化时对焊件表面加热点的能量密度影响较小。
焊前要加强对金刚石焊件、焊丝的清理,防止氢溶人产生气孔,还应加强对焊缝和焊丝的维护。2交流等离子弧焊的许用等离子气流量较小,流量稍大,等离子弧的吹力过大,铝的液态金属被向上吹起,形成凸凹不平或不连续的凸峰状焊缝。

等离子弧焊接技巧
等离子切割机工作时,首先要引燃等离子弧,由高频振荡器激发电极与喷嘴内壁之间的气体,产生高频放电,使气体局部电离而形成小弧,这一小弧受压缩空气的作用,从喷嘴喷出以引燃等离子弧,这是火花发生器主要的任务。
正常情况下,火花发生器的工作时间只有0.2~0.5s,不能自动断弧的原因一般是控制线路板元件失调,火花发生器的放电电极间隙不合适。
解决措施:应经常检查火花发生器放电电极,使其表面保持平整,适时调整火花发生器的放电电极间隙与割炬电极喷嘴之间的间隙相适应,必要时更换控制板或更换电极喷嘴。
『陆』 等离子弧焊的组成结构
和钨极氢弧焊一样,按操作方式,等离子弧焊设备可分为手工焊和自动焊两类。手工焊设备由焊接电源、焊枪、控制电路、气路和水路等部分组成。自动焊设备则由焊接电源、焊枪、焊接小车(或转动夹具)、控制电路、气路及水路等部分组成。
焊接电源
下降或垂直下降特性的整流电源或弧焊发电机均可作为等离子弧焊接电源。用纯氢作为离子气时,电源空载电压只需65-80V;用氢、氢混合气时,空载电压需110-120 0
大电流等离子弧都采用等离子弧,用高频引燃非转移弧,然后转移成转移弧。
30A以下的小电流微束等离子弧焊接采用混合型弧,用高频或接触短路回抽引弧。由于非转移弧在非常焊接过程中不能切除因此一般要用两个独立的电源。
气路系统
等离子弧焊机供气系统应能分别供给可调节离子气、保护气、背面保护气。为保证引弧和熄弧处的焊接质量,离子气可分两路供给,其中一路可经气阀放空,以实现离子气流衰减控制。
控制系统
手工等离子弧焊机的控制系统比较简单,只要能保证先通离子气和保护气,然后引弧即可。自动化等离子弧焊机控制系统通常由高频发生器,小车行走。填充焊口逆进拖动电路及程控电路组成。程控电路应能满足提前送气、高频引弧和转弧、离子气递增、延迟行走、电流和气流衰减熄弧。延迟停气等控制要求。
一种新开发的用于等离子弧焊的焊矩系统,采用反极性电极和选用100~200A焊接电流可以经济有效地焊接铝制零件,焊接质量很好。经对各种铝镁合金的焊接试验表明:在焊接2~8mm的板材时,可以使用熔入和锁孔式焊接技术。
使用电极极性可变的锁孔技术进行等离子弧焊,可用来焊圆周焊缝,如AlMg3管道、法兰盘以及GK-AlSi7Mg冷铸合金制造的形状各异的零件,能够进行8mm壁厚材料的无坡口对焊连接。使用新开发的特殊气体控制系统可以无缺陷地完成圆周焊缝的收尾焊接。由于只在铸件一侧才会产生气孔,因此要确定铸件熔化金属的原子氢含量。如果铸件熔化金属中的氢含量低于0.3mL/100g,焊缝产生的气孔就很少。采用此方法要修复的焊缝总长度可达39m,占整个焊缝长度的27.2%。
在研究开发最现代化的电源和控制技术条件下,采用等离子弧焊技术是一种质量最佳、经济有效、重复性好的连接工艺。另外,通过调节电流,确保厚板等离子弧对接接头焊接时产生锁孔的传感器系统、导电的熔池支撑与被焊板材绝缘,并通过带电的车架在等离子弧穿透时测量电流,并随之移动。
这种新的工艺与TIG焊接相比具有如下特点:
(1)采用等离子弧焊时的特定工艺优点,不仅主要表现在微型等离子弧焊的板材厚度范围方面,而且涉及使用锁孔技术。
应用范围包括:表面堆焊、喷涂和焊接。通过可调频率使用低脉冲焊接电流,等离子弧焊可以更好的方式控制电弧能量的大小,能够通过现代控制系统可靠地同步监测各种设定值的执行情况。晶体管的焊接电源,如 AUTOTIG系列,可以精确地按照技术规格的规定运行。
(2)用粉末等离子弧焊焊接薄板和管道时,具有焊接速度快、热输入小和变形小等优点。
(3)等离子弧焊接时,锁孔技术的优点还清楚地在板厚达10mm的材料焊接方面体现。在应用技术中,粉末等离子弧焊接具有稳固的市场地位。这种新的工艺也将会在机器人上得到应用。
杨怀文
索引:等离子弧焊的几个工艺参数
关键词:焊接电流,焊接速度,喷嘴离工件的距离,等离于气及流量,引弧及收弧,接头形式和装配要求,
(1)焊接电流
焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。
(2)焊接速度
焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。
(3)喷嘴离工件的距离
喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。
(4)等离于气及流量
等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。
离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。
保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。
小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。
(5)引弧及收弧
板厚小于3mm时,可直接在工件上引弧和收弧。利用穿孔法焊接厚板时,引弧及熄弧处容易产生气孔、下凹等缺陷。对于直缝,可采用引弧板及熄弧板来解决这个问题。先在引弧板上形成小孔,然后再过渡到工件上去,最后将小孔闭合在熄弧板上。
大厚度的环缝,不便加引弧板和收弧板时,应采取焊接电流和离子气递增和递减的办法在工件上起弧,完成引弧建立小孔并利用电流和离子气流量衰减法来收弧闭合小孔。
(6)接头形式和装配要求
工件厚度大于1.6mm时,小于表1-1列举的厚度时,采用I形坡口,用穿孔法单面焊双面成形一次焊透。工件厚度大于表1-1列举的数值时,根据厚度不同,可开V形、U形或双V形、双U形坡口。
工件厚度小于1.6mm,采用微束等离子弧焊时,接头形式有对接、卷边对接、卷边角接、端面接头。当厚度小于0.8mm时,接头装配要求见表1-2。
摘要:提出了一种基于等离子弧焊的直接金属成形新方法,通过对成形工艺的试验研究,确定了焊接电流、成形速度与成形轨迹宽度之间的对应关系;针对成形轮廓的表面质量问题,实施了根据轮廓矢量进行切向送丝的填充方案;并采用循环水冷的温控措施解决了成形过程的过热问题。
送丝角度对成形轨迹的影响
本文在实验中发现,对零件外轮廓进行扫描时,填充丝材送入的方向同外轮廓切向的夹角对轮廓成形的质量有显著的影响。在直接金属成形系统运动机构的早期设计中, 焊炬和送丝机构固定不动,保持送丝方向在空间上不变, 这样当XY 二维工作台沿着成形轮廓插补运动时, 送丝方向与成形轮廓的运动方向就会形成一定的夹角α,如图3。当夹角α较小时,轨迹成形所受影响不大,但是, 当α增加到一定程度后成形轨迹的表面波纹度开始增大,表面质量明显变差。
图4是不同送丝角度下成形轨迹的形貌。可以看出,送丝角度保持在小角度范围内时,成形轨迹表面质量较好;而随着送丝角度的增加,成形轨迹表面的波浪度增大;当送丝角度进一步增大时,熔化的焊丝不能进入熔池,团成球状凝结于扫描路径外侧,不能形成完整的轨迹。
成形过程不均匀的热场和力场分布,是造成这种现象的主要原因。小角度,特别是切向送丝时,焊丝送入的方向与焊接热场移动的方向相符,焊丝能够得到足够的热量迅速熔化,并与熔池形成搭桥过渡,顺利进入熔池,如图5。固定送丝方向时,随着焊丝与轨迹切向夹角的增大,焊丝吸收的热量减少,难以形成顺利的搭桥过渡,焊丝熔化后团聚成球状,难以送入熔池中心,在自重作用下落于熔池边缘,如图6。
成形件的外轮廓总是由各种形式的曲线构成的,如果在成形曲线的过程中保持送丝的角度不变,势必会引起熔滴过渡的条件时好时坏,容易在曲线轨迹表面形成图7中所示的积瘤、夹丝等缺陷。因此,成形过程中,为了保证成形轨迹轮廓的一致均匀性,应根据成形轮廓切向的变化,不断调整送丝角度,使二者保持一致,如图8。
为了方便送丝角度的动态调整,本文对直接金属成形系统的机构部分进行了改进,将先前固定的焊炬和送丝机构置于回转工作台上,回转工作台通过步进电机在计算机系统的控制下可以随扫描轨迹的走向自适应旋转,以保证送丝机构沿扫描轮廓的切向均匀连续地送丝。图9即为改进后的直接金属成形系统部分实物照片,图10是采用送丝角度调整后成形轮廓的外观情况,通过送丝角度的调整,成形件的外观质量得到了改善。
冷却措施
在成形过程中,成形件要承受电弧热量的连续输入,从而造成其整体温度升高,成形轨迹热影响区变大,熔池金属流动性增强等热效应,这对于控制成形件表面质量极为不利。而焊后引起的整体热变形对成形件的尺寸及形状都有很大的影响。对于具有薄壁特征的成形件,其传热途径更为局限,因此,这种热效应就更为严重(如图11) 。因此,有必要采取可靠的传热措施,控制成形过程中成形件的热量传递。
针对这种现象,本文在实验中采用循环水冷的方法,增强成形过程中成形件的热量传递。具体实施方法如图12所示,将基底放入水槽中进行焊接成形;当成形过程中出现过热效应时,开始通入循环冷却水;并使冷却水的液面始终与当前熔焊层保持3 mm~5 mm的距离,以保持良好的散热效果。这样可以大大改善成形件的热传递过程,同时也可在一定程度上增强保护气体的保护效果。
等离子是指在标准大气压下温度超过3000℃的气体,在温度谱上可以把其看作为继固态、液态、气态之后的第四种物质状态。等离子是由被激活的高子、电子、原子或分子组成。例如:它可通过自然界中的闪电产生。从1960年以后,等离子这个词获得了新的含义,那就是电弧通过涡流环或喷嘴压缩而形成的高能量状态,此原理被广泛用于钢铁、化工及机械工程工业。
等离子弧焊是在钨极氩弧焊的基础上发展起来的一种焊接方法。钨极氩弧焊使用的热源是常压状态下的自由电弧,简称自由钨弧。等离子弧焊用的热源则是将自由钨弧压缩强化之后而获得电离度更高的电弧等离子体,称等离子弧,又称压缩电弧。两者在物理本质上没有区别,仅是弧柱中电离程度上的不同。经压缩的电弧其能量密度更为集中,温度更高。
等离子弧的最大电压降是在弧柱区里,这是由于弧柱被强烈压缩,使电场强度明显增大的缘故。因此,等离子弧焊主要是利用弧柱等离子体热来加热金属,而自由钨弧是利用两电极区产生的热来加热母材和电极金属。
等离子弧的静特性曲线接近U形(图1-2)。与自由钨弧比较最大区别是电弧电压比自由钨弧高。此外,在小电流时,自由钨弧静特性为陡降(负阻特性)的,易与电源外特性曲线相切,使电弧失稳。而等离子弧则为缓降或平的,易与电源外特性相交建立稳定工作。
表示了等离子弧与自由钨弧的形态区别。等离子弧呈圆柱形,扩散角约5度左右,焊接时,当弧长发生波动时,母材的加热面积不会发生明显变化,而自由钨弧呈圆锥形,其扩散角约45度,对工作距离变化敏感性大。
等离子弧的挺直度非常好。由于等离子弧是自由钨弧经压缩而成,故其挺度比自由钨弧好,焰流速度大,可达300m/s以上,因而指向性好,喷射有力,其熔透能力强。
综述
穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。
高温合金焊接
用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。等离子气流和焊接电流均要求能递增和衰减控制。
焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采用填充焊丝根据需要确定。选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。
高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。
铝及铝合金
等离子弧是以钨极作为电极,等离子弧为热源的熔焊方法。焊接铝合金时,采用直流反接或交流。铝及铝合金交流等离子弧焊接多采用矩形波交流焊接电源,用氩气作为等离子气和保护气体。对于纯铝、防锈铝,采用等离子弧焊,焊接性良好;硬铝的等离子弧焊接性尚可。
为了获得高质量的焊缝应注意以下几点。
a.焊前要加强对焊件、焊丝的清理,防止氢溶人产生气孔,还应加强对焊缝和焊丝的保护。
b.交流等离子弧焊的许用等离子气流量较小,流量稍大,等离子弧的吹力过大,铝的液态金属被向上吹起,形成凸凹不平或不连续的凸峰状焊缝。为了加强钨极的冷却效果,可以适当加大喷嘴孔径或选用多孔型喷嘴。
c.当板厚大于6mm时,要求焊前预热100--200℃。板厚较大时用氦作等离子气或保护气,可增加熔深或提高效率。
d.需用的垫板和压板最好用导热性不好的材料制造(如不锈钢)。垫板上加工出深度lmm、宽度20~40mm的凹槽,以使待焊铝板坡口近处不与垫板接触,防止散热过快。
e.板厚不大于lOmm时,在对接的坡口上海间隔150mm点固焊一点;板厚大于l0mm时,每间隔300mm点固焊一点。点固焊采用与正常焊接相同的电流。
f.进行多道焊时,焊完前一道焊道后应用钢丝或铜丝刷清理焊道表面至露出纯净的铝表面为止。
表1-2列出纯铝自动交流等离子弧焊接的工艺参数。表1-3列出铝合金直流等离子弧焊接的工艺参数。
钛、钛合金
等离子弧焊能量密度高、线能量大、效率高。厚度2.5~15mm的钛及钛合金板材采用小孔型方法可一次焊透,并可有效地防止产生气孔,熔透型方法适于各种板厚,但一次焊透的厚度较小,3mm以上一般需开坡口。
钛的弹性模量仅相当于铁的1/2,因此在应力相同的条件下,钛及钛合金焊接接头将发生比较显著的变形。等离子弧的能量密度介于钨极氩弧和电子束之间,用等离子弧焊接钛及钛合金时,热影响区较窄,焊接变形也较易控制。微束等离子弧焊已经成功地应用于薄板的焊接。采用3~10A的焊接电流可以焊接厚度为0.08~0.6mm的板材。
由于液态钛的密度较小,表面张力较大,利用等离子弧的小孔效应可以单道焊接厚度较大的钛和钛合金,保证不致发生熔池坍塌,焊缝成形良好。通常单道钨极氩弧焊时工件的最大厚度不超过3mm,并且因为钨极距离熔池较近,可能发生钨极熔蚀,使焊缝渗入钨夹杂物。等离子弧焊接时,不开坡口就可焊透厚度达15mm的接头,不可能出现焊缝渗钨现象。
钛板等离子弧焊接的工艺参数见表1-4。TC4钛合金等离子弧焊和TIG焊接接头的力学性能见表1-5。
焊接航天工程中应用的TC4钛合金高压气瓶的研究结果表明,等离子弧焊接头强度与氩弧焊相当,强度系数均为90%,但塑性指标比氩弧焊接头高,可达到母材的75%。根据30万吨合成氨成套设备的生产经验,用等离子弧焊接厚度10mm的TAl工业纯钛板材,生产率可比钨极氩弧焊提高5~6倍,对操作的熟练程度要求也较低。
纯钛等离子弧焊的气体保护方式与钨极氩弧焊相似,可采用氩弧焊拖罩,但随着板厚的增加、焊速的提高,拖罩要加长,使处于350℃以上的金属得到良好保护。背面垫板上的沟槽尺寸一般宽度和深度各为2.0~3.0mm,同时背面保护气体的流量也要增加。厚度15mm以上的钛板焊接时,开6~8mm钝边的V形或U形坡口,用小孔型等离子弧焊封底,然后用熔透型等离子弧填满坡口。用等离子弧封底可以减少焊道层数,减少填丝量和焊接角变形,提高生产率。熔透型多用于厚度3mm以下薄件的焊接,比钨极氩弧焊容易保证焊接质量。
银与铂
银与铂都属于贵金属,价格昂贵。银与铂可制成板材、带材、线材等常用于微电子,仪器仪表、医药等特殊产品或军工产品。
银与铂电子器件的微束等离子弧接的工艺要点如下:
a.焊前将银与铂的接头处清理干净;
b.将两种金属预热到400~500℃,
c.采用微束脉冲等离子弧,维弧电流为24A;
d.保护气体流量为6L/min,离子气流量为0.5L/min。
银与铂电子器件微束等离子弧焊接的工艺参数见表1-6

『柒』 等离子焊接的原理及特点
原理:等离子弧切割是一种常用的金属和非金属材料切割工艺方法。它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。
等离子弧的特点:
(1)能贵高度集中由于等离子弧有很高的导电性,能承受很大的电流密度,因而可以通过极大的电流,故具有极高的温度;又因其截面很小,能量高度集中,所以一般等离子弧在喷嘴出口中心温度达20000℃左右,而用于切割的等离子弧在喷嘴附近温度可达30000℃左右。
(2)极大的温度梯度由于等离子弧横截面积很小(直径一般小于3mm),从温度最高的中心到温度低的边沿,温度变化非常大,所以说其温度梯度极大。
(3)具有很强的吹力等离子发生装置内通入的常温压缩气体,由于受到电弧的高温而膨胀,使气体压力增高,能过喷嘴细孔的气体流速甚至可超过声速,故等离子体具有较强的冲击力。
(4)良好的电弧稳定性由于等离子弧电离程度很高,所以放电过程稳定,弧柱呈图柱形,挺直度好,使焊件受热面积几乎不变,当弧长变化时,电弧电压和焊接电流变化都非常小。

(7)微束等离子焊接采用什么等离子弧扩展阅读
1、优点
由于等离子弧能量集中、温度高、具有很大的机械冲击力,并且电弧稳定,因而等离子弧切割具有以下优点:
(1)可以切割任何黑色和有色金属等离子弧可以切割各种高熔点金属及其他切割方法不能切割的金属,如不锈钢、耐热钢、钛、钼、钨、铸造铁、铜、铝及其合金。切割不锈钢、铝等厚度可达200mm以上。
(2)可切割各种非金属材料采用非转移型电弧时,由于工件不接电,所以在这种情况下能切割各种非导电材料,如耐火砖、混凝土、花岗石、碳化硅等。
(3)切割速度快、生产率高在目前采用的各种切割方法中,等离子切割的速度比较快,生产率也比较高。例如,切lOmm的铝板,速度可达(200~300)m/h;切12mm厚的不锈钢,割速可达(100-130)m/h。
(4)切割质量高等离子弧切割时,能得到比较狭窄、光洁、整齐、无粘渣、接近于垂直的切口,而且切口的变形和热影响区较小,其硬度变化也不大。
2、缺点
(1)设备比氧一乙炔切割复杂、投资较大。
(2)电源的空载电压较高,要注意安全。
(3)切割时产生的气体会影响人体健康,所以操作时应注意通风。
『捌』 等离子弧焊的种类
等离子弧有两种工作方式。一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料。
另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。
等离子弧焊接属于高质量焊接方法。焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。
等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式:
1、微束等离子弧焊:30A以下的熔透型等离子弧焊
是指电流在30A以下的熔透型等离子弧焊,通常称为微束等离子弧焊。为了保证小电流等离子弧的稳定,一般采用混合型等离子弧。主要用于超薄件的焊接。
2、熔透型等离子弧焊:15~200A
它是采用较小的焊接电流和较小的离子气流量,等离子弧在焊接过程中只熔化焊件不产生小孔效应,焊接方法与钨极氩弧焊很相似,焊接时可以不添加金属,主要用于薄板(0.5~2.5mm)的焊接。
3、穿透型等离子弧焊:100~300A
又称穿孔型焊接法,通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,利用它温度高、能量密度强、穿透力强的特点,焊接时等离子弧把焊件完全熔透并在等离子流量的作用下形成一个穿透焊件的小孔(小孔背面露出等离子弧),形成了正反面都有波纹的焊缝,即所谓的“小孔效应”,焊接时一般不加金属。适用于3~8mm的不锈钢、12mm以下的钛合金、2~6mm低碳钢低合金钢以及铜、黄铜和镍及镍合金的焊接。
电源
使用等离子弧焊时,通常采用直流电流和垂降特性电源。由于从特别的焊炬排列方式和各自分离的等离子、保护气流中获得了独特的操作特性,可在等离子控制台上增加一个普通的TIG电源,还可以使用特别组建的等离子系统。采用正弦波交流电时,不容易使等离子弧稳定。当电极和工件间距较长且等离子被压缩时,等离子弧很难发挥作用,而且,在正半周期内,过热的电极会使导电嘴变成球形,从而干扰弧的稳定。
可使用专用的直流开关电源。通过调节波形的平衡来减少电极正极的持续时间,使电极得到充分冷却,以维护尖头导电嘴形状,并形成稳定的弧。
起弧
虽然等离子弧是通过采用高频产生的,但它首先是在电极和等离子喷嘴之间形成的。该维弧被装在焊炬中,需要焊接时,再将它转移到工件上。与在焊缝间保持的维弧相同,维弧系统能确保稳定的起弧,这避免了对产生电子干涉的高频的需要。
电极
用于等离子过程使用的是含2%氧化钍的钨电极和铜的等离子喷嘴。与TIG焊使用的导电嘴不同,在等离子过程中,对电极导电嘴的直径要求不那么严格,但压缩角须保持在30°~60°左右。等离子喷嘴孔的直径是很重要的,在相同的电流强度和等离子气流速度下,孔直径太小会导致喷嘴被过度腐蚀甚至熔化。在工作电流下,需要谨慎使用直径过大的等离子喷嘴。
注:孔的直径过大,可能会对弧的稳定及孔的维护造成困难。
气体
通常等离子气体的组合气体是氩气,并含有2%~5%的氩气作为保护气体。氦气也能用做等离子气体,但由于它温度较高,会降低喷嘴的电流上升率。氢气含量越少,进行小孔型等离子焊接就越困难。
