❶ 脚手架钢管扰度如何计算
我在别处复制了一段话,不知道能否帮上你
【摘 要】该文论述了脚手架在现场施工的应用情况,详细叙述了脚手架的支撑体系的计算,并且比较了施工中常见的两种钢管脚 手架的情况。
【关键词】扣件式钢管脚手架 门式钢管脚手架 地基承载力
前言
在桥梁施工中,虽然脚手架在工程中有着重要的地位,而且按照施工设计要求也应当列入单位工程施工组织设计内,但现在却还经常发现许多单位的施工组织设计内并无详细叙述;即使有,往往也很简单并不符合实际施工的要求。为确保施工安全,对脚手架的验算很有必要。
在现在桥梁施工中, 应用比较多的有两种脚手架,一是扣件式钢管脚手架 ,另一种为门式钢管脚手架。本文主要介绍这二种脚手架的设计计算方法。
扣件式钢管脚手架
扣件式钢管脚手架是以横向横杆、纵向横杆、立杆、脚手板和剪刀撑、扫地杆、底座、拉撑件以及连接它们的扣件组成的一种钢管脚手架。
1、扣件式钢管脚手架设计计算
桥梁施工采用的扣件式钢管脚手架一般主要作为模板支架,承受混凝土结构物的施工荷载。扣件式钢管脚手架的承载能力按概率极限状态设计法的要求,采用分项系数设计表达式进行设计。一般进行的计算为:纵向、横向水平杆等受弯构件的强度和连接扣件的抗滑承载力计算;立杆的稳定性计算;立杆地基承载力计算。
(1)荷载计算
在桥梁施工中,作用在扣件式钢管脚手架上的荷载一般有施工结构物荷载、操作人员体重、施工设备重力和扣件式钢管脚手架自重力。各种荷载的作用部位和分布可按实际情况采用。扣件式钢管脚手架荷载的传递顺序为:脚手板→横向横杆→纵向横杆→立杆→底座→地基。
(2)纵向、横向水平杆的抗弯强度计算
纵向、横向水平杆的抗弯强度计算公式如下:
δ= ≤[f]
m——弯矩设计值
横向、纵向水平杆的内力一般按照三跨连续梁计算弯矩(如果特殊情况可按多跨连续梁弯矩计算):
w——截面模量。
[f]——钢材的抗弯强度设计值。
(3)纵向、横向水平杆的扰度计算:
纵向、横向水平杆扰度按下式计算:
υ= ≤[υ]
υ——扰度
e——钢材的弹性模量
i——纵向、横向水平杆的截面惯性矩
q——纵向、横向水平杆上的等效均布荷载
l——纵向、横向水平杆的跨度
[υ]——容许扰度,应按下表采用。
(4)连接扣件的抗滑承载力计算
纵向、横向水平杆与立杆连接时,其扣件的抗滑承载力应符合下式规定:
r≤[r]
r——纵向、横向水平杆传给立杆的竖向作用力(q*l)
[r]——扣件抗滑承载力设计值。
(5)立杆的稳定性计算
立杆的稳定性计算:
≤[f]
n——模板支架计算立杆的轴向力设计值
n=1.2∑ngk+1.4
∑nqk
∑ngk——模板及支架自重、新浇混凝土自重与钢筋自重产生的轴向力的总和。
∑nqk——施工人员及施工设备荷载标准值、振捣混凝土时产生的荷载标准值产生的轴向力总和。
ф——轴心受压构件的稳定系数,应根据长细比λ取值,
当λ>250时,ф=7320/λ2
a——立杆的截面面积。
[f]——钢材的抗弯强度设计值。
(6)立杆地基承载力计算
根据试验结果,荷载板底面的应力与其沉量的关系曲线如下图所示。从图中可看出,在荷载作用下地基土的变形。如果荷载应力超过p0,地基承载变形将发生突变,丧失地基承载力。所以立杆基础底面的平均压力一定要满足下式要求:
p≤[fg]
p——立杆基础底面的平均压力,
[fg]——地基承载力设计值,
门式钢管脚手架
以门架、交叉支撑、连接棒、挂扣式脚手板或水平架、锁臂等组成基本结构,再设置水平加固杆、剪刀撑、扫地杆、封口杆、托座与底座的一种标准化钢管脚手架。
1、门式钢管脚手架设计计算
桥梁施工采用的门式钢管脚手架一样一般作为模板支架,承受混凝土结构物施工荷载(见上图)。脚手架的承载能力也采用了现行结构统一的设计表达形式。即同样采用按概率极限状态设计法。
与扣件钢管脚手架不同,门式钢管脚手架的主要破坏形式是在抗弯刚度弱的门架平面外多波鼓曲失稳破坏。由于门式钢管脚手架的基本单元,门架是一个框架结构,在施工荷载作用下,施工层的门架杆件在门架平面内受局部弯矩作用。因此门式钢管脚手架主要是靠门架立杆轴心受压将竖向荷载传给基础的,风荷载作用时,将在门架平面方向产生弯矩,这也要靠门架的立杆轴心力组成力偶矩来抵抗。总之,门式钢管脚手架主要受轴压力。既计算主要评定门式钢管脚手架的稳定性,其公式如下:
n≤[nd]
n——作用于一榀门架的轴向力设计值
[nd]——一榀门架的稳定承载力设计值。
2、门式钢管脚手架地基承载力计算与扣件式钢管脚手架计算相同。
p≤[fg]
p——立杆基础底面的平均压力,
[fg]——地基承载力设计值,
通过以上对脚手架的稳定性和地基承载力的验算,取得了脚手架支撑体系安全施工的理论依据。
门式脚手架与扣件式脚手架比较
1、施工工艺比较 :
门式脚手架:1)装拆方便,施工工效高;约为扣件式脚手架的2~3倍。2)工人劳动相对强度较低。
扣件式脚手架:1)装拆比较方便,施工工效较低。
2、搭设高度比较:
门式脚手架:搭设高度一般≤45米。
扣件式脚手架: 搭设高度一般≤50米。
3、经济效益比较:
门式脚手架:1)用钢量较省。2)脚手架部件规格品种多,一次性投资大。3)脚手架管理困难,保养不易。
扣件式脚手架:1)用钢量较多。2)脚手架一次性投资小。
4、文明施工比较
门式脚手架:脚手架组装标准化,排列整齐,美观。
扣件式脚手架:脚手架组装尚可。
安全施工应当特别注意的问题
在脚手架搭使用期间中严禁拆除交叉支撑、加固杆件、扫地杆等。作业层的施工荷载一定要符合设计要求,不得超载。
搭设钢管脚手架的场地必须平整坚实,并严格作好排水工作。
❷ 有谁了解大弯矩电杆
环形混凝土大弯矩电杆,最小直径为230mm,最大直径830mm,内部结构为普通碳钢钢筋和高强丝组合而成,通过高速离心机进行离心,然后放入蒸汽池快速成型脱模。环形混凝土大弯矩电杆它具有预应力电杆的宁断不弯的特性和非预应力的宁弯不断的韧性。环形混凝土大弯矩电杆多用于终端杆、转角杆、直线耐张杆。在用于终端和转角是大弯矩电杆的每基重量是钢管杆的一倍,在用于直线耐张杆时每基重量是钢管杆的60%-80%。其根部链接使用的是法兰盘和地脚螺栓链接。但是大弯矩电杆的每基用钢量比钢管杆节约80%。每基的造价比钢管杆降低了20%-30%。
❸ 脚手架立杆受力怎样计算
脚手架立杆受力计算:
计算立杆段的轴向力设计值N,应按下列公式计算:
1、 不组合风荷载时
N=1.2(NG1k+NG2k)+1.4ΣNQK
2、组合风荷载时
N=1.2(NG1k+NG2k)+0.85×1.4ΣNQk
式中:
NG1k——脚手架结构自重标准值产生的轴向力;
NG2k——构配件自重标准值产生的轴向力;
ΣNQk——施工荷载标准值产生的轴向力总和,内、外立杆可按一纵距(跨)内离工荷载总和的1/2取值。
(3)钢管杆根部弯矩怎么确定扩展阅读:
扣件式脚手架的优缺点
1、优点
1)承载力较大。当脚手架的几何尺寸及构造符合规范的有关要求时,一般情况下,脚手架的单管立柱的承载力可达15kN~35kN(1.5tf~3.5tf,设计值)。
2)装拆方便,搭设灵活。由于钢管长度易于调整,扣件连接简便,因而可适应各种平面、立面的建筑物与构筑物用脚手架。
3)比较经济,加工简单,一次投资费用较低;如果精心设计脚手架几何尺寸,注意提高钢管周转使用率,则材料用量也可取得较好的经济效果。扣件钢管架折合每平方米建筑用钢量约15公斤。
2、缺点
1)扣件(特别是它的螺杆)容易丢失;
螺栓拧紧扭力矩不应小于40N·m,且不应大于65N·m;
2)节点处的杆件为偏心连接,靠抗滑力传递荷载和内力,因而降低了其承载能力;
3)扣件节点的连接质量受扣件本身质量和工人操作的影响显著。
❹ 钢管的抗弯强度怎么计算
计算公式:R=(3F*L)/(2b*h*h)
F—破坏载荷
L—跨距
b—宽度
h—厚度
螺旋钢管的规格要求内应在进出口贸易合同中列明容。一般应包括标准的牌号(种类代号 )、钢筋的公称直径、公称重量(质量)、规定长度及上述指标的允差值等各项。我国标准推荐公称直径为8、10、12、16、20、40mm的螺旋钢管系列。
供货长度分定尺和倍尺二种。我国出口螺纹钢定尺选择范围为6~12m,日本产螺纹钢定尺选择范围为3.5~10m。
(4)钢管杆根部弯矩怎么确定扩展阅读
钢管长度
A、通常长度(又称非定尺长度):凡长度在标准规定的长度范围内而且无固定长度要求的,均称为通常长度。例如结构管标准规定:热轧(挤压、扩)钢管3000mm~12000mm;冷拔(轧)钢管2000mmm~10500mm。
B、定尺长度:定尺长度应在通常长度范围内,是合同中要求的某一固定长度尺寸。但实际操作中都切出绝对定尺长度是不大可能的,因此标准中对定尺长度规定了允许的正偏差值。
以结构管标准为:
生产定尺长度管比通常长度管的成材率下降幅度较大,生产企业提出加价要求是合理的。加价幅度各企业不尽一致,一般为基价基础上加价10%左右。
❺ 计算脚手架管的最多弯矩为什么除以8
你说的是不是按简支梁计算的最大弯矩公式1/8q·L² ?
均布荷载下,简支梁跨中截面的最大弯矩值=1/8q·L²,q是均布荷载KN/m,L是跨度m。
JGJ130-2011《建筑施工扣件式钢管脚手架安全技术规范》里规定,双排架的横杆是按均布荷载下简支梁计算。纵杆是应按均布荷载下三等跨连续梁计算其截面的最大弯矩值=﹣1/10q·L² 。
❻ 钢管支架承重计算
钢管架承重支撑荷载计算
采用Φ 48×3.5mm 钢管,用扣件连接。
1.荷值计算:
钢管架体上铺脚手板等自重荷载值 0.4KN/㎡
钢管架上部承重取值 2.0 KN/ ㎡
合计: 2.4 KN/ ㎡
钢管架立杆轴心受力、稳定性计算
根据钢管架设计,钢管每区分格为 1.5× 1=1.5 ㎡,立杆间距取值 1.5 米,
验算最不利情况下钢管架受力情况。则每根立杆竖向受力值为: 1.5× 2.4=3.6
KN
现场钢管架搭设采用Φ 48 钢管, A=424 ㎜ 2
钢管回转半径: I =[(d 2+d12)/4]1/2 =15.9 ㎜
钢管架立杆受压应力为:
=N/A=4.25/424=10.02N/ ㎜ 2
安钢管架立杆稳定性计算受压应力:
长细比:λ =l/I =1500/I=94.3; 查表得: ?=0.594
δ =N/ ? A=4.25/424*0.594=16.87N/ ㎜ 2< f = 205N/ ㎜ 2
钢管架立杆稳定性满足要求。
横杆的强度和刚度验算其抗弯强度和挠度计算如下:
δ=Mmax/ w=(2400*1500)/(10*5000)=132/ ㎜ 2< f = 205N/ ㎜ 2
其中δ 横杆最大应力
Mmax 横杆最大弯矩
W 横杆的截面抵抗距,取 5000 ㎜ 3
根据上述计算钢管架横杆抗弯强度满足要求。
Wmax=ql 4/150EI=(2200*1500 4 /1000)/(150*2060*100*12.19*1000)
= 2.99 ㎜ < 3 ㎜
其中 Wmax 挠度最大值
q 均布荷载
..
.
l
立杆最大间距
E
钢管的弹性模量, 2.06 × 100 KN/ ㎜ 2
I
截面惯性距, 12.19 × 100 ㎜ 4
根据上述计算钢管架横杆刚度满足要求 .
扣件容许荷载值验算。
本钢管架立杆未采用对接扣件连接,
❼ 钢管的抗弯强度设计值是多少
计算构件的强度、稳定性与连接强度时,应采用荷载效应基本组合的设计值。永久钢管的抗弯强度主要是根据机械制造基础那本书,上面有钢材的各种力学性能指标
❽ 钢管杆GJ什么型号
大城市线路通道有限,多回路架起使用越来越多,在这种条件下,城市钢管杆在城市电力线路中优势越发明显,另外,跟着Q390、Q420甚至更高强度的钢材使用,钢管杆能够规划得愈加紧凑、漂亮。但正是由于钢管杆这些特点,钢管杆的钢材用量比较大,其资料费用在整个线路工程中所占的份额也远比自立式铁塔高。归纳考虑制造工艺、施工办法(包括运送装置)以及运行维护和环境要素,本文结合以往工程规划经历,提出钢管杆规划优化经历和办法,以达到减轻分量、节省钢材并下降工程造价的意图。
钢管杆的截面及分段
经过分析比较钢管杆截面特性,环形截面具有较好的受力特性,其次是十六边形,再次是十二边形……边数越多受力越优、资料相对耗用小,但加工难度增大。
由于钢管杆壁厚逐渐变化,需求分若干段,一基杆塔中心法兰不宜超越4个。但又受到运送和模压、热镀锌的工艺约束,每段杆段长度宜确定在10m左右,当壁厚较大时(>22mm),还应依据加工厂的设备才能恰当减少段长,否则将无法压制。
关于电力钢管杆的一些常用型号有哪些?钢管杆力学性能相关核算
由《架空送电线路钢管杆规划技能规定》相关条文知道,钢管杆力学模型为一个悬臂梁,由水平力FH引起的扰度;由弯矩M引起的扰度;式中;L1为力或弯矩效果点高度;c、和φ分别为与截面形状有关的常数;E为钢材弹性模量,近似为常数。
法兰螺栓的较大拉力可按公式核算,其间:M为法兰所受弯矩;N为法兰所受的轴向效果力,压力时取用负值;Yi―螺栓中心到旋转轴的间隔;Y1―受力较大螺栓中心到旋转轴的间隔。
钢管杆的根径、梢径及锥度
从钢管杆相关特性核算公式上能够知道,钢管杆的挠度与截面惯性矩IB成反比,对其扰度操控起决议性效果的是根径的数值,钢管杆根径DG对挠度的奉献远远大于壁厚t。在其他外形参数不变的情况下,扩大梢径或根径尺度,均可使钢管杆的整体刚度明显进步。钢管杆的锥度巨细由杆的荷载巨细决议荷载越大,弯矩包络图斜率就越大,然后需求越大的锥度以保证受力合理。但由于挠度操控的要求,梢径不能过小,故锥度过大又必然导致根径过大,一方面浪费资料,一起严重影响漂亮。
通常,直线杆的梢径取250~400mm,锥度取1/75左右;0~20°转角杆取300~500mm,锥度取1/65左右;20~40°转角杆取400~600mm,锥度取1/55左右;40~60°转角杆取500~700mm,锥度取45左右;60~90°转角杆取600~800mm,锥度取1/35左右。
当杆塔荷载不一起,归纳占地、漂亮、资料量、挠度等要素,杆塔的梢径和锥度应该依据荷载巨细进行优化。
对于输电线路的钢管杆,特别是转角钢管杆,其规划选材成果往往是挠度操控而非强度操控。现在已经有多种钢管杆核算软件,能够经过核算确定一个较合理的钢管杆根部尺度,然后在软件建立相关模型,使用软件核算功用调整杆身截面尺度、直径、壁厚和锥度等,直到满足规程相关规定为止。然后减少手艺核算的工作量,一起也利于钢管杆核算优化,进步资料的使用率,规划出更轻的钢管杆。