A. 焊接的方法有几种
金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随 ...
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。
另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。
对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。
厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。
搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。
采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。
角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。
焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法
B. 焊接有几种焊法
1.焊条电弧焊
焊条电弧焊是利用焊条与工件之间建立起来的稳定燃烧的电弧,使焊条和工件熔化,从而获得牢固焊接接头的工艺方法。焊接过程中,药皮不断地分解、熔化而生成气体及溶渣,保护焊条端部、电弧、熔池及其附近区域,防止大气对熔化金属的有害污染。焊条芯也在电弧热作用下不断熔化,进入熔池,组成焊缝的填充金属。
2.埋弧焊
埋弧焊(含埋弧堆焊及电渣堆焊等)是一种电弧在焊剂层下燃烧进行焊接的方法。其固有的焊接质量稳定、焊接生产率高、无弧光及烟尘很少等优点,使其成为压力容器、管段制造、箱型梁柱等重要钢结构制作中的主要焊接方法。
3.氩弧焊
氩弧焊,是使用氩气作为保护气体的一种焊接技术。 又称氩气体保护焊。就是在电弧焊的周围通上氩气保护气体,将空气隔离在焊区之外,防止焊区的氧化。
氩弧焊技术是在普通电弧焊的原理的基础上,利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成熔池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化,因此可以焊接不锈钢、铁类五金金属。
4.气焊
二保焊(全称二氧化碳气体保护焊)工艺适用于低碳钢和低合金高强度钢各种大型钢结构工程焊接,其焊接生产率高,抗裂性能好,焊接变形小,适应变形范围大,可进行薄板件及中厚板件焊接。
C. 焊接的方法可分为哪几大类各有什么特点
1、熔焊——加热欲接合之工件使之局部熔化形成熔池,熔池冷却凝固后便接合,必要时可加入熔填物辅助,它是适合各种金属和合金的焊接加工,不需压力。
2、压焊——焊接过程必须对焊件施加压力,属于各种金属材料和部分金属材料的加工。
3、钎焊——采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。
(3)焊缝为什么用2种焊接方法扩展阅读:
焊接防范措施:
1、焊接切割作业时,将作业环境10M范围内所有易燃易爆物品清理干净,应注意检查作业环境的地沟、下水道内有无可燃液体和可燃气体,以及是否有可能泄漏到地沟和下水道内可燃易爆物质,以免由于焊渣、金属火星引起灾害事故。
2、高空焊接切割时,禁止乱扔焊条头,对焊接切割作业下方应进行隔离,作业完毕应做到认真细致的检查,确认无火灾隐患后方可离开现场。
3、应使用符合国家有关标准、规程要求的气瓶,在气瓶的贮存、运输、使用等环节应严格遵守安全操作规程。
4、对输送可燃气体和助燃气体的管道应按规定安装、使用和管理,对操作人员和检查人员应进行专门的安全技术培训。
5、焊补燃料容器和管道时,应结合实际情况确定焊补方法。实施置换法时,置换应彻底,工作中应严格控制可燃物质的含影实施带压不置换法时,应按要求保持一定的电压。工作中应严格控制其含氧量。要加强检测,注意监护,要有安全组织措施。
D. 常用焊接方法分类
焊接是一种不可拆卸的连接方法;它通过加热,加压或两者兼施的方法使两个分离的零件结合在一起。
焊接的方法很多,按其焊接过程的特点,可把它们归纳为熔焊、压焊和钎焊三大类。
熔焊:一般来说,是将两个被焊的工件局部加热到熔化状态,同时加入(也可不加入)填充金属,形成共同的熔池,冷却后则形成牢固的接头。这是一种常用的焊接方法,它包括手工电弧焊和气焊等。
压焊:是利用焊接时施加一定的压力,使两焊接件接触处的金属结合在一起的连接方法。这种焊接根据焊接时是否加热又可分为两种形式:一种是将被焊金属接触处局部加热至塑性状态或局部熔化状态,然后施加一定的压力,使金属结合在一起;另一种形式是不进行加热,只是在金属的接触面上施加足够大的压力,借助于压力所引起的塑性变形,使原子间相互接近而获得牢固的压挤焊接点。属于前者的有锻焊、接触焊、摩擦焊;属于后者的有冷压焊、爆炸焊。
钎焊:是把熔点比焊件低的钎料和焊件共同加热,在焊件不熔化而钎料熔化的情况下,两种材料互相扩散形成钎焊接头。钎焊又有硬钎焊和软纤焊之分。钎焊加热温度低,变形小,接头光滑平整。
在地勘钻探施工中,通常使用的焊接方法是手工电弧焊(又称电焊)和气焊与气割。
(一)电焊
如图4-38所示为手工电弧焊焊接过程简图;1为电焊机,2为焊钳,3为焊条,4是被焊接的工件。工作时,金属电焊条夹在焊钳里和电源的一极相连接,工件则和电源的另一极相连。操作时,使焊条和工件瞬时接触以形成短路,随即提起焊条,使之与工件距离2~4mm,从而引燃电弧。被焊工件与焊条在电弧加热下熔化形成共同的熔池5,随着电弧沿着焊缝不断移动,新的熔池不断形成,原先熔池冷却凝固形成一条牢固的连接焊缝。图中箭头a表示随着焊条不断熔化而需要的焊条送进运动。
图4-38 手工电弧焊
1—电焊机;2—焊钳;3—焊条;4—焊件;5—熔池
1.手工电弧焊工艺
手工电弧焊工艺包括焊接接头、焊缝在空间的位置和焊接规范三个方面。
(1)焊接接头
用焊接方法把两块钢板连接在一起的地方叫作焊接接头。
焊接接头由焊缝、熔合区和热影响区组成。焊缝是指焊件经焊接后所形成的结合部分。热影响区是指焊件受热的影响(但未熔化)而发生金相组织和力学性能变化的区域。熔合区则是由焊缝向热影响区过渡的区域。为了保证焊缝可靠熔透和成形良好,熔池有良好的结晶条件;在焊前将焊件的待焊部位加工成一定几何形状的沟槽,这就叫开坡口。
根据被焊工件的结构形状、厚度及工作条件对接头质量的要求不同,焊接接头有对接、搭接、T形接、角接和卷边接等形式。
1)对接接头。如图4-39所示的形式;两焊件端面相对平行的接头称为对接接头。它的受力情况较好,应力集中程度较小,是各种结构中采用最多的一种接头形式。接头的坡口形式很多,常用的有:①I形坡口。如图4-39a所示形式。一般适用于厚度小于6mm钢板的对接。采用单面焊或双面焊即可焊透,为了使电弧能深入金属进行加热,保证焊透,接边之间可留0~2.5mm间隙。被焊工件厚度增大时,间隙也需相应增大,否则可能引起未焊透。这种接头的接边制备和装配较方便,需用焊条量少,焊接生产率较高。②Y形坡口。如图4-39b所示形式。适用于板厚为3~26mm。③双Y形坡口。如图4-39c所示。适用于板厚12~60mm。④带钝边U形坡口。如图4-39d所示形式。适用于板厚20~60mm。⑤带钝边双U形坡口。如图4-39e所示形式。适用于板厚大于30mm。各种坡口的坡口角度、根部间隙、钝边(接边直边部分高度)、根部半径R等尺寸(图4-39)。
图4-39 对接接头(单位:mm)
a—I形坡口;b—Y形坡口;c—双Y形坡口;d—带钝边U形坡口;e—带钝边双U形坡口
2)搭接接头。如图4-40所示的形式。由两块钢板部分搭叠,沿着一块板或两块板的边缘进行焊接,或在上面一块钢板上开孔,采用塞焊把两块钢板焊在一起的接头称为搭接接头。图4-40中,l、c和塞焊点间距由设计确定。搭接接头一般用于厚度为10~20mm的板料焊接,搭接的长度一般为板厚的3~5倍。必须两面施焊,一般承载能力不高。这种接头消耗钢板较多,增加了结构的自重,在受外力作用时,因两工件不在同一平面上,能产生很大的力矩,使焊缝应力复杂,所以接头承载能力低,在结构设计中应尽量避免采用搭接接头。
图4-40 搭接接头(单位:mm)
3)T形接头。如图4-41所示的形式。由两块钢板成T字形结合的接头称为T形接头。有的又把它称为丁字接头。T形接头也可开I形、带钝边单边V形、带钝边双单边V形以及带钝边双J形坡口等形式。T形接头钢板厚度在2~30mm时,可采用I形坡口(图4-41a);它通常是不需要焊透的,但需要保证两边焊脚K等于工件厚度。当立板较厚或对于重要焊接而又需要焊透时,应采用如图4-41b、图4-41c、图4-41d所示形式的坡口。
图4-41 T形接头(单位:mm)
4)角接接头。如图4-42所示的形式。它是在两块钢板的端部组成30~150°角度的连接接头。同样根据工件厚度和强度要求可分为I形坡口的平接或错接,带钝边的单边V形和双单边V形、Y形坡口等形式。一般焊接件可采用如图4-42a所示的形式。若工件厚度在10mm以上时,为了保证焊透,可使两工件搭接上3~5mm(图4-42b);若操作方便,还可在两工件之间保持l~2mm的间隙再焊接(图4-42c)。
图4-42 角接接头(单位:mm)
5)卷边接头。如图4-43所示形式。一般适用于厚度在2mm以下的薄金属板。焊前将接头边缘用弯板机或手工进行卷边;焊时可不加填充金属,靠电弧熔化卷边,待金属凝固后即形成焊缝。卷边接头的特点是接边的制备和装配方便,生产率高,但承载能力低,只能用于载荷较小的薄壳结构。
图4-43 卷边接头
(2)焊缝在空间的位置
焊接时按照焊缝在空间的位置可分为平焊、立焊、横焊和仰焊几种形式。如图4-44a所示形式为平焊;如图4-44b所示形式为横焊和立焊;如图4-44c所示形式为仰焊。平焊操作方便,易保证质量,仰焊工艺性差。
图4-44 焊缝在空间的位置
(3)焊接规范
焊接规范包括所用焊条直径的大小、焊接电流和焊接速度三个方面的内容。它是影响焊接质量和生产率的重要因素。因为焊接速度取决于焊条直径和焊接电流。所以焊接规范主要指的是焊条直径和焊接电流。
焊条直径的选择依据是工件厚度和接头形式,原则上在保证焊接质量的前提下尽可能选用大直径焊条,从而可以提高生产率。
2.电焊设备机具
(1)电焊机
目前国内使用的电焊设备有直流弧电焊机、交流弧电焊机和焊接整流器三种。在施工现场常用的是交流弧电焊机(图4-45)。其主体为一个特殊降压变压器。空载电压60~70V,工作电压30V,电流调节范围为50~450A,交流弧电焊机结构简单,维修方便,价格低但电弧稳定性较差。
图4-45 BX1-330交流弧电焊机
1—初级绕组;2,3—次级绕组;4—动铁心;5—静铁心;6—接线板;7—摇把
对电焊设备一般必须满足以下一些要求:
1)要有较高的空载电压以便引弧,同时又要保证工作安全,所以一般控制在50~90V之间。
2)短路电流不能太大,防止损坏设备。
3)电焊机要有保证电弧稳定的特殊性能。
4)焊接电流可以调节,以适应焊接件厚薄的变化。
(2)电焊用具
需配备电焊钳、面罩、焊接电缆、焊条箱、尖头手锤、钢丝刷和刷子等。另外,焊接时,工作人员必须戴皮革手套穿帆布工作服,戴脚盖及穿绝缘胶鞋,以防触电和烧伤。
(二)气焊与气割
1.气焊
(1)气焊工作原理
气焊是利用乙炔在空气中燃烧所产生的热量来熔化工件和焊丝进行焊接。
由于气焊有焊接温度比电弧焊低,加热缓慢,热量比较分散,生产率低,焊后易变形等弱点。所以气焊主要适用于焊薄钢板,有色金属及其合金,工具钢和铸铁等。乙炔为无色气体,其分子式为C2H2,它是由电石(CaC2)和水作用而获得的。
CaC2+2H2O→Ca(OH)2十C2H2
乙炔在空气中燃烧可产生2200℃的温度。而在纯氧中燃烧时则可获得3200℃的高温。
(2)气焊需要配备设备
1)氧气瓶。用来贮存氧气的一种容器,贮氧最高压力为150×105Pa。
2)减压阀种容器。用来将氧气瓶中的高压氧降低到工作压力,约(3~4)×105Pa,并保持焊接过程中压力的稳定。
3)乙炔发生器。如图4-46所示的形式,是使水和电石接触产生乙炔的装置。其种类很多,较为普遍的是,浸水式乙炔发生器。乙炔发生器的工作原理是将电石装在与浮筒连在一起的电石筐中,当电石与筒中的水接触后即发生反应放出乙炔气,乙炔气贮存在浮筒内通过导管引出。随着反应的不断进行,浮筒内贮存的乙炔越来越多,压力不断升高,使浮筒逐渐上升。当浮筒内乙炔气的压力超过工作所需压力时,浮筒上升的高度刚好可使电石离开水面,从而使反应停止。当浮筒内压力下降时,浮筒也下降使电石和水接触,反应继续进行,压力回升。从而保证焊接中压力的稳定。从浮筒中导出的乙炔首先要通过一个回火防止器再进入乙炔输送管道。回火防止器的目的是防止乙炔火焰倒流入乙炔发生器中而引起爆炸。回火的原因,往往是由于焊枪喷嘴堵塞,使混合气体喷出的速度小于燃烧速度而造成的。
图4-46 乙炔发生器
1—电石;2—浮筒;3—电石筐;4—乙炔瓶
4)焊炬(又称焊枪)。如图4-47所示形式。它是使乙炔和氧按一定比例而混合获得气焊火焰的工具。使用时,先微开氧气调节阀,再开乙炔调节阀,进行点火,然后再逐渐开大氧气调节阀,将火焰调整合适,一手拿焊枪,一手拿焊丝,沿焊缝移动进行焊接(图4-48)。
图4-47 射吸式焊炬的构造
1—乙炔调节阀;2—乙炔管;3—氧气管;4—氧气调节阀;5—喷嘴;6—射吸管;7—混合气管;8—焊嘴
2.气割
(1)气割工作原理
氧气切割称为气割。
气割时先用氧-乙炔火焰将切割处金属加热到燃烧弹点,再通过喷射高压氧气流将金属剧烈氧化成熔渣从切口中吹掉,从而将金属分开(图4-49),切割时采用切割器(图4-50)。
图4-48 气焊
图4-49 气割
图4-50 射吸式割炬的构造
1—氧气进口;2—乙炔进口;3—乙炔调节阀;4—氧气调节阀;5—高压氧气阀;6—喷嘴;7—射吸管;8—混合气管;9—高压氧气管;10—割嘴
气割的过程是首先将混合的氧、乙炔气体从割嘴喷出(图4-50),利用点燃的预热火焰将切割处金属加热至燃点,再由中央喷出口射出高压纯氧气流将溶渣吹走。
(2)气割适用范围
气割一般只适用于切割低、中碳钢,高碳钢因燃点与熔点接近,切割质量差。铸铁熔点低于它的燃点,故不能气割。有色金属因导热性好,易氧化也不能气割。
E. 焊接有几种焊法
焊接种类方法:
1、焊条电弧焊:
原理——用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。属气-渣联合保护。
主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。
应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。适用于(上述行业中)各种金属材料、各种厚度、各种结构形状的焊接。
2、埋弧焊(自动焊):
原理——电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。属渣保护。
主要特点——焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高;不适合焊接薄板(焊接电流小于100A时,电弧稳定性不好)和短焊缝。
应用——广泛用于造船、锅炉、桥梁、起重机械及冶金机械制造业中。凡是焊缝可以保持在水平位置或倾斜角不大的焊件,均可用埋弧焊。板厚需大于5毫米(防烧穿)。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢、复合钢材等。
3、二氧化碳气体保护焊(自动或半自动焊):
原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。属气保护。主要特点——焊接生产率高;焊接成本低;焊接变形小(电弧加热集中);焊接质量高;操作简单;飞溅率大;很难用交流电源焊接;抗风能力差;不能焊接易氧化的有色金属。
4、MIG/MAG焊(熔化极惰性气体/活性气体保护焊):
MIG焊原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。保护气通常是氩气或氦气或它们的混合气。MIG用惰性气体,MAG在惰性气体中加入少量活性气体,如氧气、二氧化碳气等。
5、TIG焊(钨极惰性气体保护焊)
原理——在惰性气体保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可不加填充焊丝),形成焊缝的焊接方法。焊接过程中电极不熔化。
6、等离子弧焊
原理——借助水冷喷嘴对电弧的拘束作用,获得高能量密度的 等离子弧进行焊接的方法。
(5)焊缝为什么用2种焊接方法扩展阅读:
焊接注意事项:
一、电弧的长度
电弧的长度与焊条涂料种类和药皮厚度有关系。但都应尽可能采取短弧,特别是低氢焊条。电弧长可能造成气孔。短弧可避免大气中的O2、N2等有害气体侵入焊缝金属,形成氧化物等不良杂质而影响焊缝质量。
二、焊接速度
适宜的焊接速度是以焊条直径、涂料类型、焊接电流、被焊接物的热容量、结构开头等条件有其相应变化,不能作出标准的规定。保持适宜的焊接速度,熔渣能很好的覆盖着熔潭。使熔潭内的各种杂质和气体有充分浮出时间,避免形成焊缝的夹渣和气孔。在焊接时如运棒速度太快,焊接部位冷却时,收缩应力会增大,使焊缝产生裂缝。
焊丝选用的要点
焊丝的选择要根据被焊钢材种类、焊接部件的质量要求、焊接施工条件(板厚、坡口形状、焊接位置、焊接条件、焊后热处理及焊接操作等待)、成本等综合考虑。
F. 焊接有几种焊法
有6种焊法,分别是1、焊条电弧焊:原理——用手工操作焊条进行焊接的电弧焊方法。2、埋弧焊(自动焊):原理——电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。3、二氧化碳气体保护焊(自动或半自动焊):原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。4、MIG/MAG焊(熔化极惰性气体/活性气体保护焊):MIG焊原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。5、TIG焊(钨极惰性气体保护焊)原理——在惰性气体保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可不加填充焊丝),形成焊缝的焊接方法。焊接过程中电极不熔化。6、等离子弧焊原理——借助水冷喷嘴对电弧的拘束作用,获得高能量密度的 等离子弧进行焊接的方法。
G. 目前焊接方法有哪几种
常用的焊接方式如下:
1、直线形运条法。采用这种运条法焊接时,焊条不做横向摆动,沿焊接方向做直线移动。它常用于Ⅰ形坡口的对接平焊,多层焊的第一层焊或多层多道焊。
2、直线往复运条法。采用这种运条方法焊接时,焊条末端沿焊缝的纵向做来回摆动。它的特点是焊接速度快,焊缝窄,散热快。它适用于薄板和接头间隙较大的多层焊的第一层焊。
3、锯齿形运条法。采用这种运条方法焊接时,焊条末端做锯齿形连续摆动及向前移动,并在两边稍停片刻。摆动的目的是为了控制熔化金属的流动和得到必要的焊缝宽度,以获得较好的焊缝成形。
这种运条方法在生产中应用较广,多用于厚钢板的焊接,平焊、仰焊、立焊的对接接头和立焊的角接接头。
4、月牙形运条法。采用这种运条方法焊接时,焊条的末端沿着焊接方向做月牙形的左右摆动。摆动的速度要根据焊缝的位置、接头形式、焊缝宽度和焊接电流值来决定。同时需在接头两边停留片刻,这是为了使焊缝边缘有足够的熔深,防止咬边。
这种运条方法的特点是金属熔化良好,有较长的保温时间,气体容易析出,熔渣也易于浮到焊缝表面上来,焊缝质量较高,但焊出来的焊缝余温较高。这种运条方法的应用范围和锯齿形运条法基本相同。
5、三角形运条法。采用这种运条方法焊接时,焊条末端做连续三角形运动,并不断向前移动。按照摆动形式的不同,可分为斜三角形和正三角形两种,斜三角形运条法适用于焊接平焊和仰焊位置的T形接头焊缝和有坡口的横焊缝,其优点是能够借焊条的摆动来控制熔化金属,促使焊缝成形良好。
正三角形运条法只适用于开坡口的对接接头和T形接头焊缝的立焊,特点是能一次焊出较厚的焊缝断面,焊缝不易产生夹渣等缺陷,有利于提高生产效率。
6、圆圈形运条法。采用这种运条方法焊接时.焊条末端连续做正圆圈或斜圆圈形运动,并不断前移。正圆圈形运条法适用于焊接较厚焊件的平焊缝,其优点是熔池存在时间长,熔池金属温度高,有利于溶解在熔池中的氧、氮等气体的析出,便于熔渣上浮。
斜圆圈形运条法适用于平、仰位置T形接头焊缝和对接接头的横焊缝,其优点是利于控制熔化金属不受重力影响而产生下淌现象,有利于焊缝成形。