⑴ 铸铁拉伸与低碳钢拉伸的应力应变曲线有何区别
低碳钢拉伸有明显的屈服过程和屈服极限,铸铁没有。
⑵ 实验所得低碳钢应力应变曲线是否为真实应力应变曲线,为什么
弹性变形阶段:此时低碳钢拉伸曲线服从胡克定律,
屈服阶段:低碳回钢逐渐发生塑形的屈服现象答,原理是低碳钢内部的位错之类的缺陷逐渐发生一定的滑移,拉伸过后可以观察到到滑移线。
均匀塑性变形阶段:此时局部的缺陷滑移结束,试件进入整体的均匀滑移阶段
局部塑性变形阶段:钢材的塑性告罄,在局部可能发生应力集中的区域发生颈缩,具体表现为某一区域出现局部的塑性变形,并最终在此处断裂。
这些也是我在大学学的,差不多就是这样,全部手打。。望楼主采纳。。吼吼!!!!
⑶ 实验所得低碳钢应力应变曲线是否为真实应力应变曲线,为什么
实验所得低碳钢应力应变曲线是真实应力应变曲线,因为实验仪器会专采集每一个时刻属的应力值作为曲线上的点,长时间也就连成了线;
低碳钢(low carbon steel)为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,故又称软钢。它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。
⑷ 什么是应力应变曲线
应力应变曲线
stress-strain curve
在工程中,应力和应变是按下式计算的:
应力(工程应力或名义应力)σ=P/A。,应变(工程应变或名义应变)ε=(L-L。)/L。
式中,P为载荷;A。为试样的原始截面积;L。为试样的原始标距长度;L为试样变形后的长度。
这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线相似,只是坐标不同。从此曲线上,可以看出低碳钢的变形过程有如下特点:
当应力低于σe 时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,σe 为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。
当应力超过σe 后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。
当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到σb时试样的均匀变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。
在σb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到σk时试样断裂。σk为材料的条件断裂强度,它表示材料对塑性的极限抗力。
上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。下图是真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。
真应力-应变曲线
⑸ 低碳钢拉伸实验应力-应变曲线,分几个阶段
分4个阶段:
(1)弹性阶段ob:这一阶段试样的变形完全是弹性的,全部卸除荷载后,试样将恢复其原长。此阶段内可以测定材料的弹性模量E。
(2)屈服阶段bc:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线。
(3)强化阶段ce试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
(4)颈缩阶段和断裂Bef试样伸长到一定程度后,荷载读数反而逐渐降低。此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断。
(5)低碳钢的应力应变曲线是否就是真实的应力应变曲线为什么扩展阅读:
低碳钢的变形过程有如下特点:
1、当应力低于σe时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,σe为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。
2、当应力超过σe后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。
3、当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到σb时试样的均匀变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。
在σb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到σk时试样断裂。σk为材料的条件断裂强度,它表示材料对塑性的极限抗力。
⑹ 低碳钢拉伸时的应力—应变曲线,分为那几个阶段个阶段的特征和指标是什么
分4个阶段:
(1)弹性阶段ob:这一阶段试样的变形完全是弹性的,全部卸除荷载后,试专样将恢复其原长。属
(2)屈服阶段bc:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。
(3)强化阶段ce试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
(4)颈缩阶段和断裂Bef试样伸长到一定程度后,荷载读数反而逐渐降低。
(6)低碳钢的应力应变曲线是否就是真实的应力应变曲线为什么扩展阅读
低碳钢优点
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此,其冷成形性良好可采用卷边、折弯、冲压等方法进行冷成形。这种钢材具有良好的焊接性。碳含量很低的低碳钢硬度很低,切削加工性不佳,正火处理可以改善其切削加工性。
低碳钢有较大的时效倾向,既有淬火时效倾向,还有形变时效倾向。当钢从高温较快冷却时,铁素体中碳、氮处于过饱和状态,它在常温也能缓慢地形成铁的碳氮物,因而钢的强度和硬度提高,而塑性和韧性降低,这种现象称为淬火时效。低碳钢即使不淬火而空冷也会产生时效。
⑺ 真应力应变曲线与应力应变曲线有什么区别
一、内容上的区别:
1、真应力—真应变曲线
任一瞬时的真实应力s'和真实应变E与相应的和之间都存在着差异,进入塑性以后这种差异逐渐增大。在均匀变形阶段,真实应力为
s=p/A=p/A。*A。/A
根据塑性变形体积V不变的假设(V= AL0=AL)
有s=pL/ A0L0= (1+e)s',
s为真实应力,e=(L-L0)/ L称相对应变或真实应变。
在受拉实验中,e大于0,这说明在均匀变形的范围内,真应力恒大于名义应力,而真应变恒小于名义应变。在弹性阶段由于应变值极小,二者的差异极小,没有必要加以区分。
2、应力应变曲线
曲线的形状反应材料在外力作用下发生的脆性、塑性、屈服、断裂等各种形变过程。这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线外形相似,但是坐标不同。
原理上,聚合物材料具有粘弹性,当应力被移除后,一部分功被用于摩擦效应而被转化成热能,这一过程可用应力应变曲线表示。金属材料具有弹性变形性,若在超过其屈服强度之后 继续加载,材料发生塑性变形直至破坏。这一过程也可用应力应变曲线表示。
二、计算上的区别:
1、真应力—真应变曲线
在拉伸过程中由于试样任一瞬时的面积A和标距L(L=L0+△L)随时都在变化,而名义应力和名义应变是按初始面积A0和标距L0计算的。
2、应力应变曲线
从此曲线上,可以看出低碳钢的变形过程有如下特点:
当应力低于σe 时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,σe 为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。
当应力超过σe 后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。
当应力超过σs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到σb时试样的均匀变形阶段即告终止,此最大应力σb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。
在σb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到σf时试样断裂。σf为材料的条件断裂强度,它表示材料对塑性的极限抗力。
上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。
它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。
(7)低碳钢的应力应变曲线是否就是真实的应力应变曲线为什么扩展阅读:
应力应变曲线相关研究:
脆性是岩石的一种重要性质,岩石的许多力学行为都与其脆性有关。总结现有的基于强度、应力–应变曲线、加卸载试验、硬度、矿物成分等脆性指标,并详细分析这些指标在评价岩石脆性时的局限性。
为合理、准确评价岩石的脆性程度,提出一种建立在应力–应变曲线峰后应力降的相对大小和绝对速率基础上、能够考虑岩石塑性屈服特性和应力状态影响的新的脆性指标,并开展单轴和三轴压缩实验对新指标进行检验。
试验结果表明:水泥砂浆和大理岩脆性程度均随围压增大而减小,相同应力状态下大理岩脆性程度均大于水泥砂浆,这与二者实际脆性程度相符;单轴试验条件下灰岩、大理岩、花岗岩和红砂岩的脆性程度依次减小,破坏时的轴向应变逐渐增大,这与“应变越低脆性程度越大”吻合。
试验结果可很好地验证该脆性指标的可靠性,研究成果对丰富和改进现有的岩石脆性特征评价方法具有重要意义。
采用Gleeble-1500D热模拟试验机对TB8钛合金进行了常温压缩变形试验,温度为恒温25℃,应变速率范围为0.01~10 s-1。研究了TB8合金常温下流变应力行为,对合金的常温变形机制进行初步的探讨。
实验结果表明:TB8材料具有明显的应变速率敏感性,并得到固溶态TB8材料的数学模型。模型计算结果和实验结果显示,该模型可以较好地预测固溶态TB8材料在冷变形时的塑性流动应力。