『壹』 工程上常利用冷作硬化來提高鋼筋的屈服強度,達到節約鋼材的目的
硬化來提高鋼筋的屈服強度,達到節約鋼材的目的 [理工學科] 是提高鋼筋的屈服極限還是屈服強度? 它們有區別嗎
『貳』 鋼筋的冷拉能提高鋼筋的什麼強度
鋼筋的冷拉能提高鋼筋的屈服強度。
鋼筋在常溫下經過冷拉可達到除銹、調直提高強度內和節約鋼材的目的。容
鋼筋在經冷加工產生一定的塑性變形後,其屈服強度、硬度提高,而塑性和韌性降低,這種現象稱為冷加工硬化。另外,鋼筋的強度、硬度和脆性會隨方置時間而增長這種現象稱為時効。
『叄』 提高材料屈服強度的措施有哪些,依據是什麼
屈服強度:是金屬材料發生屈服現象時的屈服極限,亦即抵抗微量塑性變形的應力。對於無明顯屈服的金屬材料,規定以產生0.2%殘余變形的應力值為其屈服極限,稱為條件屈服極限或屈服強度。大於此極限的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
影響屈服強度的內在因素有:結合鍵、組織、結構、原子本性。
如將金屬的屈服強度與陶瓷、高分子材料比較可看出結合鍵的影響是根本性的。從組織結構的影響來看,可以有四種強化機制影響金屬材料的屈服強度,這就是:(1)固溶強化;(2)形變強化;(3)沉澱強化和彌散強化;(4)晶界和亞晶強化。沉澱強化和細晶強化是工業合金中提高材料屈服強度的最常用的手段。在這幾種強化機制中,前三種機制在提高材料強度的同時,也降低了塑性,只有細化晶粒和亞晶,既能提高強度又能增加塑性。
影響屈服強度的外在因素有:溫度、應變速率、應力狀態。
隨著溫度的降低與應變速率的增高,材料的屈服強度升高,尤其是體心立方金屬對溫度和應變速率特別敏感,這導致了鋼的低溫脆化。應力狀態的影響也很重要。雖然屈服強度是反映材料的內在性能的一個本質指標,但應力狀態不同,屈服強度值也不同。我們通常所說的材料的屈服強度一般是指在單向拉伸時的屈服強度。
傳統的強度設計方法,對塑性材料,以屈服強度為標准,規定許用應力[σ]=σys/n,安全系數n因場合不同可從1.1到2或更大,對脆性材料,以抗拉強度為標准,規定許用應力[σ]=σb/n,安全系數n一般取6。
需要注意的是,按照傳統的強度設計方法,必然會導致片面追求材料的高屈服強度,但是隨著材料屈服強度的提高,材料的抗脆斷強度在降低,材料的脆斷危險性增加了。
屈服強度不僅有直接的使用意義,在工程上也是材料的某些力學行為和工藝性能的大致度量。例如材料屈服強度增高,對應力腐蝕和氫脆就敏感;材料屈服強度低,冷加工成型性能和焊接性能就好等等。因此,屈服強度是材料性能中不可缺少的重要指標。
『肆』 如何提高鋼材的力學性能
690206855 和我是一個團隊的,支持 690206855 的回答。
『伍』 如何提高鋼鐵的屈服強度和較好的韌性
除了在成分上盡量降低碳含量,增加錳和鈦等合金元素以外,熱處理進行回火處理就是改善性能的手段。
『陸』 提高低碳鋼的屈服強度有哪些方法
通常的強化方法都可以提高低碳鋼的屈服強度。形變強化,熱處理強化(普通淬火,固溶處理或時效,滲碳處理,表面淬火),復合強化(如形變+熱處理)等。
『柒』 提高金屬材料強度的途徑有哪些
1. 金屬材料強度
金屬及合金主要是以金屬鍵合方式結合的晶體。完美金屬的理論抗拉強度是指與結合鍵能(結合力和結合能)相關的材料物理量(雙原子作用模型),其影響因素可以從該模型去考慮(如溫度、鍵能、原子間距、點陣結合方式、原子尺寸、電負性電子濃度等,這些在金屬材料學應該都有);
由於實際的金屬及合金材料並非完美晶體,存在點、線、面缺陷(空位、位錯、晶界相界等)或畸變,為此材料強度遠低於它的理論強度。從缺陷的角度去考慮材料強化。工程及應用中最廣的的屈服強度,該強度發生在材料的塑性變形緊密相關,可以從金屬滑移及其機制去分析材料機制,(如位錯機制等,阻礙位錯運動的方式都為強化機制,如細晶強化、時效、固溶、形變強化)
2. 鋼的強化方式:
鋼一般指在鐵碳相圖中碳含量小於等於2.1%的一類鐵合金;其強化方式可以結合理論進行推廣。在考研相關問題中可以以有馬氏體相變的鋼為例進行述說。
結合化學成分、強化機制—固溶強化、相變強化、時效強化、奧氏體細晶強化,展開說明。
3.強度提高途徑則根據各類影響因素去歸納(熱處理、合金成分調整、形變硬化……)
『捌』 如何提高鋼材屈服強度
屈服強度:是金屬復材料發生屈制服現象時的屈服極限,亦即抵抗微量塑性變形的應力。對於無明顯屈服的金屬材料,規定以產生0.2%殘余變形的應力值為其屈服極限,稱為條件屈服極限或屈服強度。大於此極限的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
『玖』 為什麼冷拔後會提高鋼筋的屈服強度
因為金屬的復塑性變制形是通過位錯運動來實現的.塑性變形過程中,位錯運動的阻力主要來自位錯本身.而在冷加工時,依靠機械使鋼筋塑性變形時其位錯交互作用的增強、位錯密度提高和變形抗力增大這些方面的相互促進,很快導致金屬強度和硬度的提高.
冷拉可提高屈服度節約材料,將熱軋鋼筋用冷拉設備加力進行張拉,經冷拉時效後使之伸長.冷拉後,屈服強度可提高20%-25%,可節約鋼材10%-20%,冷拔此工藝比純拉伸作用強烈,鋼筋不僅受拉,而且同時受到擠壓作用,經過一次或多次冷拔後得到的冷拔低碳鋼絲其屈服點可提高40%~60%,抗拉強度高,塑性低,脆性大,具有硬質鋼材特點.但是脆性同時會增加。
『拾』 什麼措施能提高鋼材拉伸屈服強度
要看是成材後還是成材前,如果是成材後的話最好是進行熱處理,如果是製造期間,可以過精煉、加鉻、鋁等一類的合金