Ⅰ 無縫管和焊接管有什麼區別
生產工藝來的不同、產源能不同、價格不同等。
1、生產工藝的不同
焊管是用帶鋼捲曲焊接而成;無縫管是用鋼坯穿孔而成管子上沒有焊接點。焊接鋼管是指用鋼帶或鋼板彎曲變形為圓形、方形等形狀後再焊接成的、表面有接縫的鋼管。 焊接鋼管採用的坯料是鋼板或帶鋼。無縫管是一種具有中空截面、周邊沒有接縫的長條鋼材。
2、產能不同
無縫管的產能低;焊管的產能高。20世紀30年代以來,隨著優質帶鋼連軋生產的迅速發展以及焊接和檢驗技術的進步,焊縫質量不斷提高,焊接鋼管的品種規格日益增多,並在越來越多的領域代替了無縫鋼管。焊接鋼管比無縫鋼管生產效率高。
3、價格不同
無縫管比較貴;焊接管價格比較便宜。焊接鋼管比無縫鋼管成本低。按焊接方法不同可分為電弧焊管、高頻或低頻電阻焊管、氣焊管、爐焊管、邦迪管等。
Ⅱ 無縫鋼管和精密冷拔無縫鋼管有什麼不同
生產用的設備不同.
精軋
無縫鋼管用的是鋼管冷軋機冷軋而成.(鋼管的表面光潔度好,尺寸更精版確,產量低權)
冷拔無縫鋼管用的是鋼管冷拔機冷拔而成.(表面光潔度次之,尺寸精度次之,產量高)
生產工藝不同自然有區別.
Ⅲ :熱軋無縫管和冷拔無縫管在製作工藝上有何區別..
無縫鋼管按照製作技術主要分為冷軋無縫鋼管和熱軋無縫鋼管,那就為大家介紹一下這兩種無縫鋼管的區別及其優缺點:
工藝上區別
1、 冷軋成型鋼允許截面出現局部屈曲,從而可以充分利用桿件屈曲後的承載力;而熱軋型鋼不允許截面發生局部屈曲。
2、熱軋型鋼和冷軋型鋼殘余應力產生的原因不同,所以截面上的分布也有很大差異。冷彎薄壁型鋼截面上的殘余應力分布是彎曲型的,而熱扎型鋼或焊接型鋼截面上殘余應力分布是薄膜型。
3、熱軋型鋼的自由扭轉剛度比冷軋型鋼高,所以熱軋型鋼的抗扭性能要優於冷軋型鋼。
優缺點不同
冷軋無縫管是指在常溫下,經過冷拉、冷彎、冷拔等冷加工把鋼板或鋼帶加工成各種型式的鋼材。
優點:成型速度快、產量高,且不損傷塗層,可以做成多種多樣的截面形式,以適應使用條件的需要;冷軋可以使鋼材產生很大的塑性變形,從而提高了鋼材的屈服點。
缺點: 1.雖然成型過程中沒有經過熱態塑性壓縮,但截面內仍然存在殘余應力,對鋼材整體和局部屈曲的特性必然產生影響;
2.冷軋型鋼樣式一般為開口截面,使得截面的自由扭轉剛度較低。在受彎時容易出現扭轉,受壓時容易出現彎扭屈曲,抗扭性能較差;
3.冷軋成型鋼壁厚較小,在板件銜接的轉角處又沒有加厚,承受局部性的集中荷載的能力弱。
熱軋無縫管是相對於冷軋無縫管而言的,冷軋無縫管是在再結晶溫度以下進行的軋制,而熱軋無縫管就是在再結晶溫度以上進行的軋制。
優點:可以破壞鋼錠的鑄造組織,細化鋼材的晶粒,並消除顯微組織的缺陷,從而使鋼材組織密實,力學性能得到改善。這種改善主要體現在沿軋制方向上,從而使鋼材在一定程度上不再是各向同性體;澆注時形成的氣泡、裂紋和疏鬆,也可在高溫和壓力作用下被焊合。
缺點:1.經過熱軋之後,鋼材內部的非金屬夾雜物(主要是硫化物和氧化物,還有硅酸鹽)被壓成薄片,出現分層(夾層)現象。分層使鋼材沿厚度方向受拉的性能大大惡化,並且有可能在焊縫收縮時出現層間撕裂。焊縫收縮誘發的局部應變時常達到屈服點應變的數倍,比荷載引起的應變大得多;
2.不均勻冷卻造成的殘余應力。殘余應力是在沒有外力作用下內部自相平衡的應力,各種截面的熱軋型鋼都有這類殘余應力,一般型鋼截面尺寸越大,殘余應力也越大。殘余應力雖然是自相平衡的,但對鋼構件在外力作用下的性能還是有一定影響。如對變形、穩定性、抗疲勞等方面都可能產生不利的作用。
3.熱軋的鋼材產品,對於厚度和邊寬這方面不好控制。我們熟知熱脹冷縮,由於開始的時候熱軋出來即使是長度、厚度都達標,最後冷卻後還是會出現一定的負差,這種負差邊寬越寬,厚度越厚表現的越明顯。所以對於大號的鋼材,對於鋼材的邊寬、厚度、長度,角度,以及邊線都沒法要求太精確。
Ⅳ 無縫鋼管熱軋管和冷拔管的區別是什麼
1、截面是否有局部屈曲:
冷軋成型鋼允許截面出現局部屈曲,從而可以充分利用桿件屈曲後的承載力。
熱軋型鋼不允許截面發生局部屈曲。
2、截面積殘余應力分布不同:
冷彎薄壁型鋼截面上的殘余應力分布是彎曲型的。
熱扎型鋼或焊接型鋼截面上殘余應力分布是薄膜型。
3、工藝流程不同:
熱軋工藝:管坯---加熱---穿孔---軋管---定徑---冷床---矯直---切管---檢驗---打包---發貨。
冷拔工藝:管坯---加熱---穿孔----熱軋(二穿)等---打頭--酸洗--磷化--冷拔--退火(可以多道次重復打頭至後工序)---矯直----切管---檢驗---打包---發貨。
(4)冷拔焊管與無縫管有什麼區別擴展閱讀:
熱軋工藝特點:
熱軋工藝能顯著降低能耗,降低成本。熱軋時金屬塑性高,變形抗力低,大大減少了金屬變形的能量消耗,而且能改善金屬及合金的加工工藝性能,即將鑄造狀態的粗大晶粒破碎,顯著裂紋癒合,減少或消除鑄造缺陷,將鑄態組織轉變為變形組織,提高合金的加工性能。
冷拔工藝特點。
管料從投入到加工成成品通常要經過多次冷變形並產生加工硬化,因而整個生產過程由多個准備工序和變形工序組成,且具有往復循環的特點,因而工序多,生產周期長、金屬消耗較大,生產效率較低,一般生產規模均不大。
Ⅳ 精密無縫鋼管和冷拔無縫鋼管的區別
第一:
精密無縫鋼管是一種通過冷軋或冷拔處理後的高精密的鋼管;全稱:冷軋或冷版拔精密無縫權鋼管。由於精密無縫鋼管內外壁無氧化層、承受高壓無泄漏、高精度、高光潔度、冷彎不變形、擴口、壓扁無裂縫等優點,所以主要用來生產氣動或液壓元件的產品,如氣缸或油缸,都是用無縫管。
第二:
冷拔精密無縫鋼管是用於機械結構、液壓設備的尺寸精度高和表面光潔度好的精密冷拔無縫管。選用精密無縫管製造機械結構或液壓設備等,冷拔無縫鋼管是機械加工製造業,零部件製造業的首選,可以大大節約機械加工工時,提高材料利用率,同時有利於提高產品質量。
區別在於生產的產品不同,優點不一樣。
Ⅵ 冷拔鋼管與冷拔或冷軋精密無縫管有什麼區別
冷軋和冷拔的工藝不同。冷軋與冷拔比,其優點在於加工道次少,加工精度高,表面質量好,不浪費材料。冷拔的優點設備簡單,模具簡單,冷作硬化效果好,力學性能比冷軋更佳。
Ⅶ 冷拔鋼管和無縫鋼管是一樣的東西嗎
可以說是一樣的東西。
冷拔鋼管是無縫鋼管的一種。
無縫鋼管可以是:熱軋鋼管,冷拔鋼管,熱擴鋼管,冷軋鋼管......
冷拔是鋼管生產過種中的一種工藝。
想了解更多,你可以訪問我的網路空間。
Ⅷ 無縫鋼管分熱軋管和冷拔管的區別與用途
熱軋管的精密度低於冷拔管,冷拔管在拔管的過程中會有油來潤滑,因此冷拔管表內面會有油,冷拔管的表容面相對於熱軋管比較細膩,熱軋管比較粗糙。
冷拔或冷軋精密無縫管(GB3639-83)是用於機械結構、液壓設備的尺寸精度高和表面光潔度好的冷拔或冷軋精密無縫管。選用精密無縫管製造機械結構或液壓設備等,可以大大節約機械加工工時,提高材料利用率,同時有利於提高產品質量。
熱軋無縫管分一般鋼管,低、中壓鍋爐鋼管,高壓鍋爐鋼管、合金鋼管、不銹鋼管、石油裂化管、地質鋼管和其它鋼管等。
Ⅸ 冷拔無縫鋼管與熱軋無縫鋼管的區別
高精度冷拔精密鋼管是一種新型高技術節能產品。,高精度冷拔精密鋼管的推廣應用對節約鋼材,提高加工工效,節約能源 所謂高精度冷拔管是指內、外徑尺寸精度(公差范圍)嚴格,內外表面光潔度、圓度、直度良好,壁厚均勻的精 該技術所生產的高精度冷拔管的主要技術指標已達到或部分超過國家標准GB8713--88和國際標准ISO4394/I-1980(E) 的要求。詳見下表: 主要技術指標與標准對照表
項 目 實際達到 GB8713-88 ISO4394/I
內徑尺寸公差 H8 H9 H10 H8 H9 H10 H8 H9 H10
直 線 度 0.3/1000 A: 0.3/1000 A: 0.5/1000
B: 1/1000 B: 1/1000
C: 1.5/1000 C: 1.5/1000
壁厚偏差 5壁厚 10壁厚 10壁厚
圓 度 0.04 無規定
焊接鋼管
焊接鋼管也稱焊管,是用鋼板或鋼帶經過捲曲成型後焊接製成的鋼管。焊接鋼管生產工藝簡單,生產效率高,品種規格多,設備投資少,但一般強度低於無縫鋼管。 20 世紀 30 年代以來,隨著優質帶鋼連軋生產的迅速發展以及焊接和檢驗技術的進步,焊縫質量不斷提高,焊接鋼管的品種規格日益增多,並在越來越多的領域代替了無縫鋼管。焊接鋼管按焊縫的形式分為直縫焊管和螺旋焊管。直縫焊管生產工藝簡單,生產效率高,成本低,發展較快。螺旋焊管的強度一般比直縫焊管高,能用較窄的坯料生產管徑較大的焊管,還可以用同樣寬度的坯料生產管徑不同的焊管。但是與相同長度的直縫管相比,焊縫長度增加 30~100% ,而且生產速度較低。因此,較小口徑的焊管大都採用直縫焊,大口徑焊管則大多採用螺旋焊。
1. 低壓流體輸送用焊接鋼管 ( GB/T3092-1993 )也稱一般焊管,俗稱黑管。是用於輸送水、煤氣、空氣、油和取暖蒸汽等一般較低壓力流體和其他用途的焊接鋼管。鋼管接壁厚分為普通鋼管和加厚鋼管;接管端形式分為不帶螺紋鋼管(光管)和帶螺紋鋼管。鋼管的規格用公稱口徑( mm )表示,公稱口徑是內徑的近似值。習慣上常用英寸表示,如 11/2 等。低壓流體輸送用焊接鋼管除直接用於輸送流體外,還大量用作低壓流體輸送用鍍鋅焊接鋼管的原管。
2. 低壓流體輸送用鍍鋅焊接鋼管 ( GB/T3091-1993 )也稱鍍鋅電焊鋼管,俗稱白管。是用於輸送水、煤氣、空氣、油及取暖蒸汽、暖水等一般較低壓力流體或其他用途的熱浸鍍鋅焊接(爐焊或電焊)鋼管。鋼管接壁厚分為普通鍍鋅鋼管和加厚鍍鋅鋼管;接管端形式分為不帶螺紋鍍鋅鋼管和帶螺紋鍍鋅鋼管。鋼管的規格用公稱口徑( mm )表示,公稱口徑是內徑的近似值。習慣上常用英寸表示,如 11/2 等。
3. 普通碳素鋼電線套管 ( GB3640-88 )是工業與民用建築、安裝機器設備等電氣安裝工程中用於保護電線的鋼管。
4. 直縫電焊鋼管 ( YB242-63 )是焊縫與鋼管縱向平行的鋼管。通常分為公制電焊鋼管、電焊薄壁管、變壓器冷卻油管等等。
5. 承壓流體輸送用螺旋縫埋弧焊鋼管 ( SY5036-83 )是以熱軋鋼帶卷作管坯,經常溫螺旋成型,用雙面埋弧焊法焊接,用於承壓流體輸送的螺旋縫鋼管。鋼管承壓能力強,焊接性能好,經過各種嚴格的科學檢驗和測試,使用安全可靠。鋼管口徑大,輸送效率高,並可節約鋪設管線的投資。主要用於輸送石油、天然氣的管線。
6. 承壓流體輸送用螺旋縫高頻焊鋼管 ( SY5038-83 )是以熱軋鋼帶卷作管坯,經常溫螺旋成型,採用高頻搭接焊法焊接的,用於承壓流體輸送的螺旋縫高頻焊鋼管。鋼管承壓能力強,塑性好,便於焊接和加工成型;經過各種嚴格和科學檢驗和測試,使用安全可靠,鋼管口徑大,輸送效率高,並可節省鋪設管線的投資。主要用於鋪設輸送石油、天然氣等的管線。
7. 一般低壓流體輸送用螺旋縫埋弧焊鋼管 ( SY5037-83 )是以熱軋鋼帶卷作管坯,經常溫螺旋成型,採用雙面自動埋弧焊或單面焊法製成的用於水、煤氣、空氣和蒸汽等一般低壓流體輸送用埋弧焊鋼管。
8. 一般低壓流體輸送用螺旋縫高頻焊鋼管 ( SY5039-83 )是以熱軋鋼帶卷作管坯,經常溫螺旋成型,採用高頻搭接焊法焊接用於一般低壓流體輸送用螺旋縫高頻焊鋼管。
9 .樁用螺旋焊縫鋼管 ( SY5040-83 )是以熱軋鋼帶卷作管坯,經常溫螺旋成型,採用雙面埋弧焊接或
高頻焊接製成的,用於土木建築結構、碼頭、橋梁等基礎樁用鋼管。
Ⅹ 冷拔無縫鋼管和熱軋無縫鋼管從外表上如何區別
區別從外表看:冷拔無縫管長度一般要短於熱軋無縫管。壁厚方面冷拔無縫管要比熱軋無縫管勻。
無縫鋼管的製造工藝
熱軋(擠壓無縫鋼管):
圓管坯→加熱→穿孔→三輥斜軋、連軋或擠壓→脫管→定徑(或減徑)→冷卻→矯直→水壓試驗(或探傷)→標記→入庫無縫鋼管是用鋼錠或實心管坯經穿孔製成毛管,然後經熱軋、冷軋或冷撥製成。無縫鋼管的規格用外徑*壁厚毫米數表示。無縫鋼管分熱軋和冷軋(撥)無縫鋼管兩類。熱軋無縫鋼管分一般鋼管,低、中壓鍋爐鋼管,高壓鍋爐鋼管、合金鋼管、不銹鋼管、石油裂化管、地質鋼管和其它鋼管等。冷軋(撥)無縫鋼管除分一般鋼管、低中壓鍋爐鋼管、高壓鍋爐鋼管、合金鋼管、不銹鋼管、石油裂化管、其它鋼管外,還包括碳素薄壁鋼管、合金薄壁鋼管、不銹薄壁鋼管、異型鋼管。熱軋無縫管外徑一般大於32mm,壁厚2.5-75mm,冷軋無縫鋼管處徑可以到6mm,壁厚可到0.25mm,薄壁管外徑可到5mm壁厚小於0.25mm,冷軋比熱軋尺寸精度高。
一般用無縫鋼管是用10、20、30、35、45等優質碳結鋼16Mn、5MnV等低合金結構鋼或40Cr、30CrMnSi、45Mn2、40MnB等合結鋼熱軋或冷軋製成的。10、20等低碳鋼製造的無縫管主要用於流體輸送管道。45、40Cr等中碳鋼製成的無縫管用來製造機械零件,如汽車、拖拉機的受力零件。一般用無縫鋼管要保證強度和壓扁試驗。熱軋鋼管以熱軋狀態或熱處理狀態交貨;冷軋以熱以熱處理狀態交貨。
熱軋,顧名思義,軋件的溫度高,因此變形抗力小,可以實現大的變形量。以鋼板的軋制為例,一般連鑄坯厚度在230mm左右,而經過粗軋和精軋,最終厚度為1~20mm。同時,由於鋼板的寬厚比小,尺寸精度要求相對低,不容易出現板形問題,以控制凸度為主。對於組織有要求的,一般通過控軋控冷來實現,即控制精軋的開軋溫度、終軋溫度
冷拔(軋)無縫鋼管:
圓管坯→加熱→穿孔→打頭→退火→酸洗→塗油(鍍銅)→多道次冷拔(冷軋)→坯管→熱處理→矯直→水壓試驗(探傷)→標記→入庫力學性能
鋼材力學性能是保證鋼材最終使用性能(機械性能)的重要指標,它取決於鋼的化學成分和熱處理制度。在鋼管標准中,根據不同的使用要求,規定了拉伸性能(抗拉強度、屈服強度或屈服點、伸長率)以及硬度、韌性指標,還有用戶要求的高、低溫性能等。
①抗拉強度(σb)
試樣在拉伸過程中,在拉斷時所承受的最大力(Fb),出以試樣原橫截面積(So)所得的應力(σ),稱為抗拉強度(σb),單位為N/mm2(MPa)。它表示金屬材料在拉力作用下抵抗破壞的最大能力。計算公式為:
式中:Fb--試樣拉斷時所承受的最大力,N(牛頓);So--試樣原始橫截面積,mm2。
②屈服點(σs)
具有屈服現象的金屬材料,試樣在拉伸過程中力不增加(保持恆定)仍能繼續伸長時的應力,稱屈服點。若力發生下降時,則應區分上、下屈服點。屈服點的單位為N/mm2(MPa)。
上屈服點(σsu):試樣發生屈服而力首次下降前的最大應力;下屈服點(σsl):當不計初始瞬時效應時,屈服階段中的最小應力。
屈服點的計算公式為:
式中:Fs--試樣拉伸過程中屈服力(恆定),N(牛頓)So--試樣原始橫截面積,mm2。
③斷後伸長率(σ)
在拉伸試驗中,試樣拉斷後其標距所增加的長度與原標距長度的百分比,稱為伸長率。以σ表示,單位為%。計算公式為:
式中:L1--試樣拉斷後的標距長度,mm;L0--試樣原始標距長度,mm。
④斷面收縮率(ψ)
在拉伸試驗中,試樣拉斷後其縮徑處橫截面積的最大縮減量與原始橫截面積的百分比,稱為斷面收縮率。以ψ表示,單位為%。計算公式如下:
式中:S0--試樣原始橫截面積,mm2;S1--試樣拉斷後縮徑處的最少橫截面積,mm2。
⑤硬度指標金屬材料抵抗硬的物體壓陷表面的能力,稱為硬度。根據試驗方法和適用范圍不同,硬度又可分為布氏硬度、洛氏硬度、維氏硬度、肖氏硬度、顯微硬度和高溫硬度等。對於管材一般常用的有布氏、洛氏、維氏硬度三種。
A、布氏硬度(HB)
用一定直徑的鋼球或硬質合金球,以規定的試驗力(F)壓入式樣表面,經規定保持時間後卸除試驗力,測量試樣表面的壓痕直徑(L)。布氏硬度值是以試驗力除以壓痕球形表面積所得的商。以HBS(鋼球)表示,單位為N/mm2(MPa)。其計算公式為:式中:F--壓入金屬試樣表面的試驗力,N;D--試驗用鋼球直徑,mm;d--壓痕平均直徑,mm。
測定布氏硬度較准確可靠,但一般HBS只適用於450N/mm2(MPa)以下的金屬材料,對於較硬的鋼或較薄的板材不適用。在鋼管標准中,布氏硬度用途最廣,往往以壓痕直徑d來表示該材料的硬度,既直觀,又方便。
無縫鋼管