導航:首頁 > 方管焊管 > 晶體管弧焊電源結構示意圖

晶體管弧焊電源結構示意圖

發布時間:2022-10-06 21:43:02

A. 全控型器件的電力場效應晶體管(Power MOSFET)

電力MOS場效應管
通常主要指絕緣柵型中的MOS型(Metal Oxide Semiconctor FET),簡稱電力MOSFET(Power MOSFET)
結型電力場效應晶體管一般稱作靜電感應晶體管(Static Inction Transistor——SIT)。 是一種單極型的電壓控制全控型器件。
特點——用柵極電壓來控制漏極電流
輸入阻抗高
驅動電路簡單,需要的驅動功率小。
開關速度快,工作頻率高。
熱穩定性優於GTR。
電流容量小,耐壓低,一般只適用於功率不超過10kW的電力電子裝置 。
電力MOSFET的種類
按導電溝道可分為P溝道和N溝道。
耗盡型——當柵極電壓為零時漏源極之間就存在導電溝道。
增強型——對於N(P)溝道器件,柵極電壓大於(小於)零時才存在導電溝道。
電力MOSFET主要是N溝道增強型。
電力MOSFET的結構
小功率MOS管是橫向導電器件。
電力MOSFET大都採用垂直導電結構,又稱為VMOSFET(Vertical MOSFET)。
按垂直導電結構的差異,分為利用V型槽實現垂直導電的VVMOSFET和具有垂直導電雙擴散MOS結構的VDMOSFET(Vertical Double-diffused MOSFET)。
這里主要以VDMOS器件為例進行討論。
電力MOSFET的工作原理(N溝道增強型VDMOS)
截止:漏源極間加正電源,柵源極間電壓為零。
P基區與N漂移區之間形成的PN結J1反偏,漏源極之間無電流流過。
導電:在柵源極間加正電壓UGS
當UGS大於UT時,P型半導體反型成N型而成為反型層,該反型層形成N溝道而使PN結J1消失,漏極和源極導電 。
電力MOSFET的基本特性
(1)靜態特性
漏極電流ID和柵源間電壓UGS的關系稱為MOSFET的轉移特性。
ID較大時,ID與UGS的關系近似線性,曲線的斜率定義為跨導Gfs。
(2)MOSFET的漏極伏安特性(即輸出特性):
截止區(對應於GTR的截止區)
飽和區(對應於GTR的放大區)
非飽和區(對應GTR的飽和區)
工作在開關狀態,即在截止區和非飽和區之間來回轉換。
漏源極之間有寄生二極體,漏源極間加反向電壓時導通。
通態電阻具有正溫度系數,對器件並聯時的均流有利。
(3)動態特性
開通過程
開通延遲時間td(on)
上升時間tr
開通時間ton——開通延遲時間與上升時間之和
關斷過程
關斷延遲時間td(off)
下降時間tf
關斷時間toff——關斷延遲時間和下降時間之和
MOSFET的開關速度
MOSFET的開關速度和Cin充放電有很大關系。
可降低驅動電路內阻Rs減小時間常數,加快開關速度。
不存在少子儲存效應,關斷過程非常迅速。
開關時間在10~100ns之間,工作頻率可達100kHz以上,是主要電力電子器件中最高的。
場控器件,靜態時幾乎不需輸入電流。但在開關過程中需對輸入電容充放電,仍需一定的驅動功率。
開關頻率越高,所需要的驅動功率越大。
電力MOSFET的主要參數
除跨導Gfs、開啟電壓UT以及td(on)、tr、td(off)和tf之外還有:
(1)漏極電壓UDS——電力MOSFET電壓定額
(2)漏極直流電流ID和漏極脈沖電流幅值IDM——電力MOSFET電流定額
(3)柵源電壓UGS—— UGS>20V將導致絕緣層擊穿 。
(4)極間電容——極間電容CGS、CGD和CDS
另一種介紹說明:
場效應管(Fjeld Effect Transistor簡稱FET )是利用電場效應來控制半導體中電流的一種半導體器件,故因此而得名。場效應管是一種電壓控制器件,只依靠一種載流子參與導電,故又稱為單極型晶體管。與雙極型晶體三極體相比,它具有輸入阻抗高、雜訊低、熱穩定性好、抗輻射能力強、功耗小、製造工藝簡單和便於集成化等優點。
場效應管有兩大類,結型場效應管JFET和絕緣柵型場效應管IGFET,後者性能更為優越,發展迅速,應用廣泛。圖Z0121 為場效應管的類型及圖形、符號。
一、結構與分類
圖 Z0122為N溝道結型場效應管結構示意圖和它的圖形、符號。它是在同一塊N型矽片的兩側分別製作摻雜濃度較高的P型區(用P 表示),形成兩個對稱的PN結,將兩個P區的引出線連在一起作為一個電極,稱為柵極(g),在N型矽片兩端各引出一個電極,分別稱為源極(s)和漏極(d)。在形成PN結過程中,由於P 區是重摻雜區,所以N一區側的空間電荷層寬度遠大 。
二、工作原理
N溝道和P溝道結型場效應管的工作原理完全相同,只是偏置電壓的極性和載流子的類型不同而已。下面以N溝道結型場效應管為例來分析其工作原理。電路如圖Z0123所示。由於柵源間加反向電壓,所以兩側PN結均處於反向偏置,柵源電流幾乎為零。漏源之間加正向電壓使N型半導體中的多數載流子-電子由源極出發,經過溝道到達漏極形成漏極電流ID。
1.柵源電壓UGS對導電溝道的影響(設UDS=0)
在圖Z0123所示電路中,UGS <0,兩個PN結處於反向偏置,耗盡層有一定寬度,ID=0。若|UGS| 增大,耗盡層變寬,溝道被壓縮,截面積減小,溝道電阻增大;若|UGS| 減小,耗盡層變窄,溝道變寬,電阻減小。這表明UGS控制著漏源之間的導電溝道。當UGS負值增加到某一數值VP時,兩邊耗盡層合攏,整個溝道被耗盡層完全夾斷。(VP稱為夾斷電壓)此時,漏源之間的電阻趨於無窮大。管子處於截止狀態,ID=0。
2.漏源電壓UGS對漏極電流ID的影響(設UGS=0)
當UGS=0時,顯然ID=0;當UDS>0且尚小對,P N結因加反向電壓,使耗盡層具有一定寬度,但寬度上下不均勻,這是由於漏源之間的導電溝道具有一定電阻,因而漏源電壓UDS沿溝道遞降,造成漏端電位高於源端電位,使近漏端PN結上的反向偏壓大於近源端,因而近漏端耗盡層寬度大於近源端。顯然,在UDS較小時,溝道呈現一定電阻,ID隨UDS成線性規律變化(如圖Z0124曲線OA段);若UGS再繼續增大,耗盡層也隨之增寬,導電溝道相應變窄,尤其是近漏端更加明顯。
由於溝道電阻的增大,ID增長變慢了(如圖曲線AB段),當UDS增大到等於|VP|時,溝道在近漏端首先發生耗盡層相碰的現象。這種狀態稱為預夾斷。這時管子並不截止,因為漏源兩極間的場強已足夠大,完全可以把向漏極漂移的全部電子吸引過去形成漏極飽和電流IDSS (這種情況如曲線B點):當UDS>|VP|再增加時,耗盡層從近漏端開始沿溝道加長它的接觸部分,形成夾斷區 。
由於耗盡層的電阻比溝道電阻大得多,所以比|VP|大的那部分電壓基本上降在夾斷區上,使夾斷區形成很強的電場,它完全可以把溝道中向漏極漂移的電子拉向漏極,形成漏極電流。因為未被夾斷的溝道上的電壓基本保持不變,於是向漏極方向漂移的電子也基本保持不變,管子呈恆流特性(如曲線BC段)。但是,如果再增加UDS達到BUDS時(BUDS稱為擊穿電壓)進入夾斷區的電子將被強電場加速而獲得很大的動能,這些電子和夾斷區內的原子碰撞發生鏈鎖反應,產生大量的新生載流予,使ID急劇增加而出現擊穿現象(如曲線CD段)。
由此可見,結型場效應管的漏極電流ID受UGS和UDS的雙重控制。這種電壓的控製作用,是場效應管具有放大作用的基礎。
三、特性曲線
1.輸出特性曲線
輸出特性曲線是柵源電壓UGS取不同定值時,漏極電流ID 隨漏源電壓UDS 變化的一簇關系曲線,如圖Z0124所示。由圖可知,各條曲線有共同的變化規律。UGS越負,曲線越向下移動)這是因為對於相同的UDS,UGS越負,耗盡層越寬,導電溝道越窄,ID越小。
由圖還可看出,輸出特性可分為三個區域即可變電阻區、恆流區和擊穿區。
◆可變電阻區:預夾斷以前的區域。其特點是,當0<UDS<|VP|時,ID幾乎與UDS呈線性關系增長,UGS愈負,曲線上升斜率愈小。在此區域內,場效應管等效為一個受UGS控制的可變電阻。
◆恆流區:圖中兩條虛線之間的部分。其特點是,當UDS>|VP|時,ID幾乎不隨UDS變化,保持某一恆定值。ID的大小隻受UGS的控制,兩者變數之間近乎成線性關系,所以該區域又稱線性放大區。
◆擊穿區:右側虛線以右之區域。此區域內UDS>BUDS,管子被擊穿,ID隨UDS的增加而急劇增加。
2.轉移特性曲線
當UDS一定時,ID與UGS之間的關系曲線稱為轉移特性曲線。實驗表明,當UDS>|VP|後,即恆流區內,ID 受UDS影響甚小,所以轉移特性通常只畫一條。在工程計算中,與恆流區相對應的轉移特性可以近似地用下式表示:Id=Idss(1-Ugs/Vp)(1-Ugs/Vp)
式GS0127中VP≤UGS≤0,IDSS是UGS=0時的漏極飽和電流。

B. 常用幾種電子控制型弧焊電源的主要電路結構是什麼

在供電系統中,單相或三相交流電網電壓,經輸入整流器整流和濾波器濾波後獲得逆變器所需的平滑的直流電壓。該直流電壓在電子功率開關系統中經逆變器的大功率開關器件(晶閘管、晶體管、場效應管或IGBT)組成的交替開關作用,變成幾千至幾萬赫的中高頻電流,再經過中高頻變壓器降至適合於焊接的幾十伏低電壓,並藉助於電子控制系統的控制電路和給定反饋電路及焊接迴路的阻抗,獲得焊接工藝所需的外特性和動特性。如果需要採用直流電進行焊接,還需經輸出整流器整流和濾波,把中高頻交流電變成直流輸出。將直流電變為交流電的過程稱為逆變,採用逆變技術製造的弧焊電源電源稱為逆變弧焊電源,弧焊逆變電源逆變電源從80年代初期至今已走過了20多年的路程。它是一種高效、節能、輕便的新型弧焊電源。
弧焊逆變電源主要由普通直流弧焊電源和逆變器組成主電路,通過逆變器把直流轉變成交流,頻率可調,正負半波通電時間比、正負半波電流比值也可以在一定范圍內自由調節。

C. 雙極性晶體管的結構

一個雙極性晶體管由三個不同的摻雜半導體區域組成,它們分別是發射極區域、基極區域和集電極區域。這些區域在NPN型晶體管中分別是N型、P型和N型半導體,而在PNP型晶體管中則分別是P型、N型和P型半導體。每一個半導體區域都有一個引腳端接出,通常用字母E、B和C來表示發射極(Emitter)、基極(Base)和集電極(Collector)。
基極的物理位置在發射極和集電極之間,它由輕摻雜、高電阻率的材料製成。集電極包圍著基極區域,由於集電結反向偏置,電子很難從這里被注入到基極區域,這樣就造成共基極電流增益約等於1,而共射極電流增益取得較大的數值。從右邊這個典型NPN型雙極性晶體管的截面簡圖可以看出,集電結的面積大於發射結。此外,發射極具有相當高的摻雜濃度。
在通常情況下,雙極性晶體管的幾個區域在物理性質、幾何尺寸上並不對稱。假設連接在電路中的晶體管位於正向放大區,如果此時將晶體管集電極和發射極在電路中的連接互換,將使晶體管離開正向放大區,進入反向工作區。晶體管的內部結構決定了它適合在正向放大區工作,所以反向工作區的共基極電流增益和共射極電流增益比晶體管位於正向放大區時小得多。這種功能上的不對稱,根本上是緣於發射極和集電極的摻雜程度不同。因此,在NPN型晶體管中,盡管集電極和發射極都為N型摻雜,但是二者的電學性質和功能完全不能互換。發射極區域的摻雜程度最高,集電極區域次之,基極區域摻雜程度最低。此外,三個區域的物理尺度也有所不同,其中基極區域很薄,並且集電極面積大於發射極面積。由於雙極性晶體管具有這樣的物質結構,因此可以為集電結提供一個反向偏置,不過這樣做的前提是這個反向偏置不能過大,以致於晶體管損壞。對發射極進行重摻雜的目的是為了增加發射極電子注入到基極區域的效率,從而實現盡量高的電流增益。
在雙極性晶體管的共射極接法里,施加於基極、發射極兩端電壓的微小變化,都會造成發射極和集電極之間的電流發生顯著變化。利用這一性質,可以放大輸入的電流或電壓。把雙極性晶體管的基極當做輸入端,集電極當做輸出端,可以利用戴維南定理分析這個二埠網路。利用等效的原理,可以將雙極性晶體管看成是電壓控制的電流源,也可以將其視為電流控制的電壓源。此外,從二埠網路的左邊看進去,基極處的輸入阻抗減小到基極電阻的,這樣就降低了對前一級電路的負載能力的要求。 NPN型晶體管是兩種類型雙極性晶體管的其中一種,由兩層N型摻雜區域和介於二者之間的一層P型摻雜半導體(基極)組成。輸入到基極的微小電流將被放大,產生較大的集電極-發射極電流。當NPN型晶體管基極電壓高於發射極電壓,並且集電極電壓高於基極電壓,則晶體管處於正向放大狀態。在這一狀態中,晶體管集電極和發射極之間存在電流。被放大的電流,是發射極注入到基極區域的電子(在基極區域為少數載流子),在電場的推動下漂移到集電極的結果。由於電子遷移率比空穴遷移率更高,因此現在使用的大多數雙極性晶體管為NPN型。
NPN型雙極性晶體管的電學符號如右圖,基極和發射極之間的箭頭指向發射極。 雙極性晶體管的另一種類型為PNP型,由兩層P型摻雜區域和介於二者之間的一層N型摻雜半導體組成。流經基極的微小電流可以在發射極端得到放大。也就是說,當PNP型晶體管的基極電壓低於發射極時,集電極電壓低於基極,晶體管處於正向放大區。
在雙極性晶體管電學符號中,基極和發射極之間的箭頭指向電流的方向,這里的電流為電子流動的反方向。與NPN型相反,PNP型晶體管的箭頭從發射極指向基極。 異質結雙極性晶體管(heterojunction bipolar transistor)是一種改良的雙極性晶體管,它具有高速工作的能力。研究發現,這種晶體管可以處理頻率高達幾百GHz的超高頻信號,因此它適用於射頻功率放大、激光碟機動等對工作速度要求苛刻的應用。
異質結是PN結的一種,這種結的兩端由不同的半導體材料製成。在這種雙極性晶體管中,發射結通常採用異質結結構,即發射極區域採用寬禁帶材料,基極區域採用窄禁帶材料。常見的異質結用砷化鎵(GaAs)製造基極區域,用鋁-鎵-砷固溶體(AlxGa1-xAs)製造發射極區域。採用這樣的異質結,雙極性晶體管的注入效率可以得到提升,電流增益也可以提高幾個數量級。
採用異質結的雙極性晶體管基極區域的摻雜濃度可以大幅提升,這樣就可以降低基極電極的電阻,並有利於降低基極區域的寬度。在傳統的雙極性晶體管,即同質結晶體管中,發射極到基極的載流子注入效率主要是由發射極和基極的摻雜比例決定的。在這種情況下,為了得到較高的注入效率,必須對基極區域進行輕摻雜,這樣就不可避免地使增大了基極電阻。
如左邊的示意圖中,代表空穴從基極區域到達發射極區域跨越的勢差;而則代表電子從發射極區域到達基極區域跨越的勢差。由於發射結具有異質結的結構,可以使,從而提高了發射極的注入效率。在基極區域里,半導體材料的組分分布不均,造成緩變的基極區域禁帶寬度,其梯度為以表示。這一緩變禁帶寬度,可以為少數載流子提供一個內在電場,使它們加速通過基極區域。這個漂移運動將與擴散運動產生協同作用,減少電子通過基極區域的渡越時間,從而改善雙極性晶體管的高頻性能。
盡管有許多不同的半導體可用來構成異質結晶體管,硅-鍺異質結晶體管和鋁-砷化鎵異質結晶體管更常用。製造異質結晶體管的工藝為晶體外延技術,例如金屬有機物氣相外延(Metalorganic vapour phase epitaxy, MOCVD)和分子束外延。

D. 縱向晶體管與橫向晶體管的原理及區別(詳細)

原理及區別:
(1)縱向PNP管:
是以P型襯底作為集電極,因此只有集成元器件之間採用PN結隔離槽的集成電路才能製作這種結構的管子。由於這種結構管子的載流子是沿著晶體管斷面的垂直方向運動的,故稱為縱向PNP管。這種管子的基區可准確地控制使其很薄,因此它的電流放大系數較大。由於縱向PNP管的集電極必須接到電路中電位的最低點,因而限制了它的應用。在電路中它通常作為射極跟隨器使用。
(2)橫向PNP管:
這種結構管子的載流子是沿著晶體管斷面的水平方向運動的,故稱為橫向PNP管。由於受工藝限制,基區寬度不可能很小,所以它的值相對較低,一般為十幾倍到二、三十倍。橫向PNP管的優點是:
發射結和集電結都有較高的反向擊穿電壓,所以它的發射結允許施加較高的反壓;另外它在電路中的連接方式不受任何限制,所以比縱向PNP管有更多的用途。它的缺點是結電容較大,特徵頻率fT較低,一般為幾~幾十兆赫。

E. 電焊機的構造

怎樣維修電焊機理論聯系實際,全面系統、通俗是闡述了維修電焊機的基本知識,包括電焊機維修基礎知識、電焊機的結構及技術數據、電焊機的維護與修理等。
怎樣維修電焊機可供從事電焊機維修工作的電工和電氣技術人員閱讀,也可供具有一定經驗的焊工及焊接技術人員參考。
目錄
前言
第一章 電焊機維修的基礎知識
第一節 概述
第二節 修理電焊機常用的設備、儀表及工具
第三節 弧焊電源的工藝特點
第二章 電焊機的結構及技術數據
第一節 弧焊變壓器
第二節 直流弧焊發電機
第三節 硅弧焊整流器
第四節 晶閘管、晶體管弧焊電源
第五節 埋弧焊機
第六節 鎢極氬弧焊機
第七節 CO2氣體保護焊機
第八節 電阻焊設備
第九節 其他焊接設備技術數據
第三章 電焊機的維護與修理
第一節 電焊機使用維修工作中的一般問題
第二節 電焊機的日常維修
第三節 電焊機的故障診斷與修理

您可能會感興趣 請買本書詳細閱讀,要是干修理的話經常用到!

F. 焊接設備的基本簡介

包括焊接能源設備、焊接機頭和焊接控制系統。①焊接能源設備:用於提供焊接所需的能量。常用的是各種弧焊電源,也稱電焊機。它的空載電壓為60~100伏,工作電壓為25~45伏特,輸出電流為50~1000安。手工電弧焊時,弧長常發生變化,引起焊接電壓變化。為使焊接電流穩定,所用弧焊電源的外特性應是陡降的,即隨著輸出電壓的變化,輸出電流的變化應很小。熔化極氣體保護電弧焊和埋弧焊可採用平特性電源,它的輸出電壓在電流變化時變化很小。弧焊電源一般有弧焊變壓器、直流弧焊發電機和弧焊整流器。弧焊變壓器提供的是交流電,應用較廣。直流弧焊發電機提供直流電,製造較復雜,消耗材料較多且效率較低,有漸被弧焊整流器取代的趨勢。弧焊整流器是20世紀50年代發展起來的直流弧焊電源,採用硅二極體或可控硅作整流器。60年代出現的用大功率晶體管組成的晶體管式弧焊電源,能獲得較高的控制精度和優良的性能,但成本較高。電阻焊的焊接能源設備中較簡單的是電阻焊變壓器,空載電壓范圍為1~36伏,電流從幾千到幾萬安。配用這種焊接能源設備的焊機稱為交流電阻焊機。其他還有低頻電阻焊機、直流脈沖電阻焊機、電容儲能電阻焊機和次級整流電阻焊機
②焊接機頭:它的作用是將焊接能源設備輸出的能量轉換成焊接熱,並不斷送進焊接材料,同時機頭自身向前移動,實現焊接。手工電弧焊用的電焊鉗,隨電焊條的熔化,須不斷手動向下送進電焊條,並向前移動形成焊縫。自動焊機有自動送進焊絲機構,並有機頭行走機構使機頭向前移動。常用的有小車式和懸掛式機頭兩種。電阻點焊和凸焊的焊接機頭是電極及其加壓機構,用以對工件施加壓力和通電。縫焊另有傳動機構,以帶動工件移動。對焊時需要有靜、動夾具和夾具夾緊機構,以及移動夾具和頂鍛機構。
③焊接控制系統:它的作用是控制整個焊接過程,包括控制焊接程序和焊接規范參數。一般的交流弧焊機沒有控制系統。高效或精密焊機用電子電路、數字電路和微處理機控制。

G. 等離子弧焊的組成結構

和鎢極氫弧焊一樣,按操作方式,等離子弧焊設備可分為手工焊和自動焊兩類。手工焊設備由焊接電源、焊槍、控制電路、氣路和水路等部分組成。自動焊設備則由焊接電源、焊槍、焊接小車(或轉動夾具)、控制電路、氣路及水路等部分組成。
焊接電源
下降或垂直下降特性的整流電源或弧焊發電機均可作為等離子弧焊接電源。用純氫作為離子氣時,電源空載電壓只需65-80V;用氫、氫混合氣時,空載電壓需110-120 0
大電流等離子弧都採用等離子弧,用高頻引燃非轉移弧,然後轉移成轉移弧。
30A以下的小電流微束等離子弧焊接採用混合型弧,用高頻或接觸短路回抽引弧。由於非轉移弧在非常焊接過程中不能切除因此一般要用兩個獨立的電源。
氣路系統
等離子弧焊機供氣系統應能分別供給可調節離子氣、保護氣、背面保護氣。為保證引弧和熄弧處的焊接質量,離子氣可分兩路供給,其中一路可經氣閥放空,以實現離子氣流衰減控制。
控制系統
手工等離子弧焊機的控制系統比較簡單,只要能保證先通離子氣和保護氣,然後引弧即可。自動化等離子弧焊機控制系統通常由高頻發生器,小車行走。填充焊口逆進拖動電路及程式控制電路組成。程式控制電路應能滿足提前送氣、高頻引弧和轉弧、離子氣遞增、延遲行走、電流和氣流衰減熄弧。延遲停氣等控制要求。
一種新開發的用於等離子弧焊的焊矩系統,採用反極性電極和選用100~200A焊接電流可以經濟有效地焊接鋁制零件,焊接質量很好。經對各種鋁鎂合金的焊接試驗表明:在焊接2~8mm的板材時,可以使用熔入和鎖孔式焊接技術。
使用電極極性可變的鎖孔技術進行等離子弧焊,可用來焊圓周焊縫,如AlMg3管道、法蘭盤以及GK-AlSi7Mg冷鑄合金製造的形狀各異的零件,能夠進行8mm壁厚材料的無坡口對焊連接。使用新開發的特殊氣體控制系統可以無缺陷地完成圓周焊縫的收尾焊接。由於只在鑄件一側才會產生氣孔,因此要確定鑄件熔化金屬的原子氫含量。如果鑄件熔化金屬中的氫含量低於0.3mL/100g,焊縫產生的氣孔就很少。採用此方法要修復的焊縫總長度可達39m,占整個焊縫長度的27.2%。
在研究開發最現代化的電源和控制技術條件下,採用等離子弧焊技術是一種質量最佳、經濟有效、重復性好的連接工藝。另外,通過調節電流,確保厚板等離子弧對接接頭焊接時產生鎖孔的感測器系統、導電的熔池支撐與被焊板材絕緣,並通過帶電的車架在等離子弧穿透時測量電流,並隨之移動。
這種新的工藝與TIG焊接相比具有如下特點:
(1)採用等離子弧焊時的特定工藝優點,不僅主要表現在微型等離子弧焊的板材厚度范圍方面,而且涉及使用鎖孔技術。
應用范圍包括:表面堆焊、噴塗和焊接。通過可調頻率使用低脈沖焊接電流,等離子弧焊可以更好的方式控制電弧能量的大小,能夠通過現代控制系統可靠地同步監測各種設定值的執行情況。晶體管的焊接電源,如 AUTOTIG系列,可以精確地按照技術規格的規定運行。
(2)用粉末等離子弧焊焊接薄板和管道時,具有焊接速度快、熱輸入小和變形小等優點。
(3)等離子弧焊接時,鎖孔技術的優點還清楚地在板厚達10mm的材料焊接方面體現。在應用技術中,粉末等離子弧焊接具有穩固的市場地位。這種新的工藝也將會在機器人上得到應用。
楊懷文
索引:等離子弧焊的幾個工藝參數
關鍵詞:焊接電流,焊接速度,噴嘴離工件的距離,等離於氣及流量,引弧及收弧,接頭形式和裝配要求,
(1)焊接電流
焊接電流是根據板厚或熔透要求來選定。焊接電流過小,難於形成小孔效應:焊接電流增大,等離子弧穿透能力增大,但電流過大會造成熔池金屬因小孔直徑過大而墜落,難以形成合格焊縫,甚至引起雙弧,損傷噴嘴並破壞焊接過程的穩定性。因此,在噴嘴結構確定後,為了獲得穩定的小孔焊接過程,焊接電流只能在某一個合適的范圍內選擇,而且這個范圍與離子氣的流量有關。
(2)焊接速度
焊接速度應根據等離子氣流量及焊接電流來選擇。其他條件一定時,如果焊接速度增大,焊接熱輸入減小,小孔直徑隨之減小,直至消失,失去小孔效應。如果焊接速度太低,母材過熱,小孔擴大,熔池金屬容易墜落,甚至造成焊縫凹陷、熔池泄漏現象。因此,焊接速度、離子氣流量及焊接電流等這三個工藝參數應相互匹配。
(3)噴嘴離工件的距離
噴嘴離工件的距離過大,熔透能力降低:距離過小,易造成噴嘴被飛濺物堵塞,破壞噴嘴正常工作。噴嘴離工件的距離一般取3~8mm。與鎢極氬弧焊相比,噴嘴距離變化對焊接質量的影響不太敏感。
(4)等離於氣及流量
等離子氣及保護氣體通常根據被焊金屬及電流大小來選擇。大電流等離子弧焊接時,等離子氣及保護氣體通常採取相同的氣體,否則電弧的穩定性將變差。小電流等離子弧焊接通常採用純氬氣作等離子氣。這是因為氧氣的電離電壓較低,可保證電弧引燃容易。
離子氣流量決定了等離子流力和熔透能力。等離子氣的流量越大,熔透能力越大。但等離子氣流量過大會使小孔直徑過大而不能保證焊縫成形。因此,應根據噴嘴直徑、等離子氣的種類、焊接電流及焊接速度選擇適當的離子氣流量。利用熔人法焊接時,應適當降低等離子氣流量,以減小等離子流力。
保護氣體流量應根據焊接電流及等離子氣流量來選擇。在一定的離子氣流量下,保護氣體流量太大,會導致氣流的紊亂,影響電弧穩定性和保護效果。而保護氣體流量太小,保護效果也不好,因此,保護氣體流量應與等離子氣流量保持適當的比例。
小孔型焊接保護氣體流量一般在15~30L/min范圍內。採用較小的等離子氣流量焊接時,電弧的等離子流力減小,電弧的穿透能力降低,只能熔化工件,形不成小孔,焊縫成形過程與TIG焊相似。這種方法稱為熔入型等離子弧焊接,適用於薄板、多層焊的蓋面焊及角焊縫的焊接。
(5)引弧及收弧
板厚小於3mm時,可直接在工件上引弧和收弧。利用穿孔法焊接厚板時,引弧及熄弧處容易產生氣孔、下凹等缺陷。對於直縫,可採用引弧板及熄弧板來解決這個問題。先在引弧板上形成小孔,然後再過渡到工件上去,最後將小孔閉合在熄弧板上。
大厚度的環縫,不便加引弧板和收弧板時,應採取焊接電流和離子氣遞增和遞減的辦法在工件上起弧,完成引弧建立小孔並利用電流和離子氣流量衰減法來收弧閉合小孔。
(6)接頭形式和裝配要求
工件厚度大於1.6mm時,小於表1-1列舉的厚度時,採用I形坡口,用穿孔法單面焊雙面成形一次焊透。工件厚度大於表1-1列舉的數值時,根據厚度不同,可開V形、U形或雙V形、雙U形坡口。
工件厚度小於1.6mm,採用微束等離子弧焊時,接頭形式有對接、卷邊對接、卷邊角接、端面接頭。當厚度小於0.8mm時,接頭裝配要求見表1-2。
摘要:提出了一種基於等離子弧焊的直接金屬成形新方法,通過對成形工藝的試驗研究,確定了焊接電流、成形速度與成形軌跡寬度之間的對應關系;針對成形輪廓的表面質量問題,實施了根據輪廓矢量進行切向送絲的填充方案;並採用循環水冷的溫控措施解決了成形過程的過熱問題。
送絲角度對成形軌跡的影響
本文在實驗中發現,對零件外輪廓進行掃描時,填充絲材送入的方向同外輪廓切向的夾角對輪廓成形的質量有顯著的影響。在直接金屬成形系統運動機構的早期設計中, 焊炬和送絲機構固定不動,保持送絲方向在空間上不變, 這樣當XY 二維工作台沿著成形輪廓插補運動時, 送絲方向與成形輪廓的運動方向就會形成一定的夾角α,如圖3。當夾角α較小時,軌跡成形所受影響不大,但是, 當α增加到一定程度後成形軌跡的表面波紋度開始增大,表面質量明顯變差。
圖4是不同送絲角度下成形軌跡的形貌。可以看出,送絲角度保持在小角度范圍內時,成形軌跡表面質量較好;而隨著送絲角度的增加,成形軌跡表面的波浪度增大;當送絲角度進一步增大時,熔化的焊絲不能進入熔池,團成球狀凝結於掃描路徑外側,不能形成完整的軌跡。
成形過程不均勻的熱場和力場分布,是造成這種現象的主要原因。小角度,特別是切向送絲時,焊絲送入的方向與焊接熱場移動的方向相符,焊絲能夠得到足夠的熱量迅速熔化,並與熔池形成搭橋過渡,順利進入熔池,如圖5。固定送絲方向時,隨著焊絲與軌跡切向夾角的增大,焊絲吸收的熱量減少,難以形成順利的搭橋過渡,焊絲熔化後團聚成球狀,難以送入熔池中心,在自重作用下落於熔池邊緣,如圖6。
成形件的外輪廓總是由各種形式的曲線構成的,如果在成形曲線的過程中保持送絲的角度不變,勢必會引起熔滴過渡的條件時好時壞,容易在曲線軌跡表面形成圖7中所示的積瘤、夾絲等缺陷。因此,成形過程中,為了保證成形軌跡輪廓的一致均勻性,應根據成形輪廓切向的變化,不斷調整送絲角度,使二者保持一致,如圖8。
為了方便送絲角度的動態調整,本文對直接金屬成形系統的機構部分進行了改進,將先前固定的焊炬和送絲機構置於回轉工作台上,回轉工作台通過步進電機在計算機系統的控制下可以隨掃描軌跡的走向自適應旋轉,以保證送絲機構沿掃描輪廓的切向均勻連續地送絲。圖9即為改進後的直接金屬成形系統部分實物照片,圖10是採用送絲角度調整後成形輪廓的外觀情況,通過送絲角度的調整,成形件的外觀質量得到了改善。
冷卻措施
在成形過程中,成形件要承受電弧熱量的連續輸入,從而造成其整體溫度升高,成形軌跡熱影響區變大,熔池金屬流動性增強等熱效應,這對於控製成形件表面質量極為不利。而焊後引起的整體熱變形對成形件的尺寸及形狀都有很大的影響。對於具有薄壁特徵的成形件,其傳熱途徑更為局限,因此,這種熱效應就更為嚴重(如圖11) 。因此,有必要採取可靠的傳熱措施,控製成形過程中成形件的熱量傳遞。
針對這種現象,本文在實驗中採用循環水冷的方法,增強成形過程中成形件的熱量傳遞。具體實施方法如圖12所示,將基底放入水槽中進行焊接成形;當成形過程中出現過熱效應時,開始通入循環冷卻水;並使冷卻水的液面始終與當前熔焊層保持3 mm~5 mm的距離,以保持良好的散熱效果。這樣可以大大改善成形件的熱傳遞過程,同時也可在一定程度上增強保護氣體的保護效果。
等離子是指在標准大氣壓下溫度超過3000℃的氣體,在溫度譜上可以把其看作為繼固態、液態、氣態之後的第四種物質狀態。等離子是由被激活的高子、電子、原子或分子組成。例如:它可通過自然界中的閃電產生。從1960年以後,等離子這個詞獲得了新的含義,那就是電弧通過渦流環或噴嘴壓縮而形成的高能量狀態,此原理被廣泛用於鋼鐵、化工及機械工程工業。
等離子弧焊是在鎢極氬弧焊的基礎上發展起來的一種焊接方法。鎢極氬弧焊使用的熱源是常壓狀態下的自由電弧,簡稱自由鎢弧。等離子弧焊用的熱源則是將自由鎢弧壓縮強化之後而獲得電離度更高的電弧等離子體,稱等離子弧,又稱壓縮電弧。兩者在物理本質上沒有區別,僅是弧柱中電離程度上的不同。經壓縮的電弧其能量密度更為集中,溫度更高。
等離子弧的最大電壓降是在弧柱區里,這是由於弧柱被強烈壓縮,使電場強度明顯增大的緣故。因此,等離子弧焊主要是利用弧柱等離子體熱來加熱金屬,而自由鎢弧是利用兩電極區產生的熱來加熱母材和電極金屬。
等離子弧的靜特性曲線接近U形(圖1-2)。與自由鎢弧比較最大區別是電弧電壓比自由鎢弧高。此外,在小電流時,自由鎢弧靜特性為陡降(負阻特性)的,易與電源外特性曲線相切,使電弧失穩。而等離子弧則為緩降或平的,易與電源外特性相交建立穩定工作。
表示了等離子弧與自由鎢弧的形態區別。等離子弧呈圓柱形,擴散角約5度左右,焊接時,當弧長發生波動時,母材的加熱面積不會發生明顯變化,而自由鎢弧呈圓錐形,其擴散角約45度,對工作距離變化敏感性大。
等離子弧的挺直度非常好。由於等離子弧是自由鎢弧經壓縮而成,故其挺度比自由鎢弧好,焰流速度大,可達300m/s以上,因而指向性好,噴射有力,其熔透能力強。
綜述
穿孔型等離子弧焊接最適於焊接厚度3~8mm不銹鋼、厚度12mm以下鈦合金、板厚2~6mm低碳或低合金結構鋼以及銅、黃銅、鎳及鎳合金的對接焊縫。這一厚度范圍內可不開坡口,不加填充金屬,不用襯墊的條件下實現單面焊雙面成形。厚度大於上述范圍時可採用V形坡口多層焊。
高溫合金焊接
用等離子弧焊焊接固溶強化和Al、Ti含量較低的時效強化高溫合金時,可以填充焊絲也可以不加焊絲,均可以獲得良好質量的焊縫。一般厚板採用小孔型等離子弧焊,薄板採用熔透型等離子弧焊,箔材用微束等離子弧焊。焊接電源採用陡降外特性的直流正極性,高頻引弧,焊槍的加工和裝配要求精度較高,並有很高的同心度。等離子氣流和焊接電流均要求能遞增和衰減控制。
焊接時,採用氬和氬中加適量氫氣作為保護氣體和等離子氣體,加入氫氣可以使電弧功率增加,提高焊接速度。氫氣加入量一般在5%左右,要求不大於15%。焊接時是否採用填充焊絲根據需要確定。選用填充焊絲的牌號與鎢極惰性氣體保護焊的選用原則相同。
高溫合金等離子弧焊的工藝參數與焊接奧氏體不銹鋼的基本相同,應注意控制焊接熱輸入。鎳基高溫合金小孔法自動等離子弧焊的工藝參數見表1-1。在焊接過程中應控制焊接速度,速度過快會產生氣孔,還應注意電極與壓縮噴嘴的同心度。高溫合金等離子弧焊接接頭力學性能較高,接頭強度系數一般大於90%。
鋁及鋁合金
等離子弧是以鎢極作為電極,等離子弧為熱源的熔焊方法。焊接鋁合金時,採用直流反接或交流。鋁及鋁合金交流等離子弧焊接多採用矩形波交流焊接電源,用氬氣作為等離子氣和保護氣體。對於純鋁、防銹鋁,採用等離子弧焊,焊接性良好;硬鋁的等離子弧焊接性尚可。
為了獲得高質量的焊縫應注意以下幾點。
a.焊前要加強對焊件、焊絲的清理,防止氫溶人產生氣孔,還應加強對焊縫和焊絲的保護。
b.交流等離子弧焊的許用等離子氣流量較小,流量稍大,等離子弧的吹力過大,鋁的液態金屬被向上吹起,形成凸凹不平或不連續的凸峰狀焊縫。為了加強鎢極的冷卻效果,可以適當加大噴嘴孔徑或選用多孔型噴嘴。
c.當板厚大於6mm時,要求焊前預熱100--200℃。板厚較大時用氦作等離子氣或保護氣,可增加熔深或提高效率。
d.需用的墊板和壓板最好用導熱性不好的材料製造(如不銹鋼)。墊板上加工出深度lmm、寬度20~40mm的凹槽,以使待焊鋁板坡口近處不與墊板接觸,防止散熱過快。
e.板厚不大於lOmm時,在對接的坡口上海間隔150mm點固焊一點;板厚大於l0mm時,每間隔300mm點固焊一點。點固焊採用與正常焊接相同的電流。
f.進行多道焊時,焊完前一道焊道後應用鋼絲或銅絲刷清理焊道表面至露出純凈的鋁表面為止。
表1-2列出純鋁自動交流等離子弧焊接的工藝參數。表1-3列出鋁合金直流等離子弧焊接的工藝參數。
鈦、鈦合金
等離子弧焊能量密度高、線能量大、效率高。厚度2.5~15mm的鈦及鈦合金板材採用小孔型方法可一次焊透,並可有效地防止產生氣孔,熔透型方法適於各種板厚,但一次焊透的厚度較小,3mm以上一般需開坡口。
鈦的彈性模量僅相當於鐵的1/2,因此在應力相同的條件下,鈦及鈦合金焊接接頭將發生比較顯著的變形。等離子弧的能量密度介於鎢極氬弧和電子束之間,用等離子弧焊接鈦及鈦合金時,熱影響區較窄,焊接變形也較易控制。微束等離子弧焊已經成功地應用於薄板的焊接。採用3~10A的焊接電流可以焊接厚度為0.08~0.6mm的板材。
由於液態鈦的密度較小,表面張力較大,利用等離子弧的小孔效應可以單道焊接厚度較大的鈦和鈦合金,保證不致發生熔池坍塌,焊縫成形良好。通常單道鎢極氬弧焊時工件的最大厚度不超過3mm,並且因為鎢極距離熔池較近,可能發生鎢極熔蝕,使焊縫滲入鎢夾雜物。等離子弧焊接時,不開坡口就可焊透厚度達15mm的接頭,不可能出現焊縫滲鎢現象。
鈦板等離子弧焊接的工藝參數見表1-4。TC4鈦合金等離子弧焊和TIG焊接接頭的力學性能見表1-5。
焊接航天工程中應用的TC4鈦合金高壓氣瓶的研究結果表明,等離子弧焊接頭強度與氬弧焊相當,強度系數均為90%,但塑性指標比氬弧焊接頭高,可達到母材的75%。根據30萬噸合成氨成套設備的生產經驗,用等離子弧焊接厚度10mm的TAl工業純鈦板材,生產率可比鎢極氬弧焊提高5~6倍,對操作的熟練程度要求也較低。
純鈦等離子弧焊的氣體保護方式與鎢極氬弧焊相似,可採用氬弧焊拖罩,但隨著板厚的增加、焊速的提高,拖罩要加長,使處於350℃以上的金屬得到良好保護。背面墊板上的溝槽尺寸一般寬度和深度各為2.0~3.0mm,同時背面保護氣體的流量也要增加。厚度15mm以上的鈦板焊接時,開6~8mm鈍邊的V形或U形坡口,用小孔型等離子弧焊封底,然後用熔透型等離子弧填滿坡口。用等離子弧封底可以減少焊道層數,減少填絲量和焊接角變形,提高生產率。熔透型多用於厚度3mm以下薄件的焊接,比鎢極氬弧焊容易保證焊接質量。
銀與鉑
銀與鉑都屬於貴金屬,價格昂貴。銀與鉑可製成板材、帶材、線材等常用於微電子,儀器儀表、醫葯等特殊產品或軍工產品。
銀與鉑電子器件的微束等離子弧接的工藝要點如下:
a.焊前將銀與鉑的接頭處清理干凈;
b.將兩種金屬預熱到400~500℃,
c.採用微束脈沖等離子弧,維弧電流為24A;
d.保護氣體流量為6L/min,離子氣流量為0.5L/min。
銀與鉑電子器件微束等離子弧焊接的工藝參數見表1-6

H. 晶體管的輸入端和輸出端輸出的是什麼是電子還是電流

1-晶體三極體的輸入端b(基極)、e(發射極)、c(集電極)輸出。

2-『半導體晶體三極體』與『玻殼電子管三極體』相比它們各為:

a『半導體晶體三極體』:電流控制元件。

b『玻殼電子管三極體』:電壓控制元件。

下圖是『半導體晶體三極體』以極小的基極I(電流)控制了較大的集電極I(電流)示意圖:

I. 晶體管控制mig/mag弧焊電源可焊什麼材料

MIG和MAG是熔化極氣體保護焊,MIG多用在焊接合金材料,通常採用混合氣及惰性氣體。是一種高效的焊接方式。
晶體管,你說的可控硅。是焊接電源的一種內部結構。就像汽車有柴油機、汽油機和電機都能提供動力。
目前焊接電源有三大類:可控硅,MOS管,IGBT,IGBT技術逐漸成熟是本來焊接電源的發展方向。

J. JYB-714液位晶體管繼電器的原理圖

工作原理:

5、6、7端分別接水箱的3個控測電極(7端為箱底電極、6端為次底是電極、5端為水滿電極),當水箱水位過低(低於次底電極)時,第一隻三極體基極呈低電平,三極體呈截止狀態,集電極呈高電平;第二隻三極體基極有足夠電流通過,三極體飽和導通,繼電器(K)得電吸合,常開觸點(2、3腳)閉合,外接接觸器得電吸合、水泵抽水供水箱。水箱水位逐漸上升,並盡管高於次底電極,因此時繼電器呈吸合狀態,6、7腳端導通而6、5腳 端斷開,第一隻三極體繼續呈截止狀態;當水位上升到水滿電極時,5、6端的電極經水阻通過電流到第一隻三極體基極,三極體飽和導通,集電極呈低電平,第二隻三極體基極無電流通過而截止,集電極呈高電平,繼電器失電復位切斷接接觸器電源,水泵停止。只有當水位回落低於黃線端子時再重復上述運行。

結構示意圖如下:

閱讀全文

與晶體管弧焊電源結構示意圖相關的資料

熱點內容
不銹鋼門右鎖怎麼分 瀏覽:510
46mnvs5是什麼鋼材 瀏覽:652
鋼鐵蜘蛛俠蜘蛛絲發射器怎麼做 瀏覽:757
千層蛋糕模具多少錢 瀏覽:794
不銹鋼過濾器用的是什麼濾芯 瀏覽:202
蛋糕模具可以什麼替代 瀏覽:476
焊接探傷電流多少 瀏覽:679
風管角碼模具多少錢一個 瀏覽:478
鋼材的吊牌怎麼看 瀏覽:826
操作平台護欄扶手最低多少 瀏覽:820
上海哪裡有模具補焊機 瀏覽:675
汽車腳踏鋁合金和abs哪個好 瀏覽:270
怎麼辨別鐵皮不銹鋼和鍍鋅板 瀏覽:243
南京鋼鐵年產量有多少 瀏覽:139
7米跨度鋼構怎麼做 瀏覽:123
鋼構大梁脊高怎麼算 瀏覽:600
直徑300毫米彎頭怎麼畫 瀏覽:343
鋼筋符號怎麼用手機打出來 瀏覽:5
鋼材經銷商利潤多少 瀏覽:617
什麼是環保的不銹鋼 瀏覽:302