A. 鑄鋼件為啥會有裂紋
鑄鋼件有裂紋是常見的缺陷之一,也是危害最大的缺陷。1、成型過程中形成的裂紋專又分為熱裂屬和冷裂 2、氣割,碳刨,焊補時形成的裂紋。
防止措施:1、鑄件設計和工藝上採取措施改變和減少局部熱節 2、工藝上採取放裂紋,冷鐵 3、提高鋼水質量,減少夾雜物 4、氣割,碳刨,焊補採用預熱,後熱去應力措施。
B. 焊接時低合金鋼出現焊接問題應採取哪些措施,焊接方法,焊接工藝參數、焊接材料有哪些,是怎麼焊前預熱的
一、焊接時低合金鋼出現焊接問題
強度級別較低的低合金高強鋼,如300~400MPa級,由於鋼中合金元素含量較少,其焊接性良好,接近於低碳鋼。隨著鋼中合金元素的增加,強度級別提高,鋼的焊接性也逐漸變差,出現的主要問題是:
1、熱影響區的淬硬傾向 含碳時較少、強度級別較低的鋼種,如09Mn2、09Mn2Si、09MnV鋼等,淬硬傾向很小。隨著強度級別的提高,淬硬傾向也開始加大,如16Mn、15MnV鋼焊接時,快速度冷卻會導致在熱影響區出現馬氏體組織。
2、冷裂紋 低合金高強鋼焊接時,熱影響區的冷裂紋傾向加大,並且這種冷裂紋往往具有延遲的性質,危害性很大。例如,材料為18MnMoNb鋼壁厚 115mm 的一大型容器,由於預熱溫度不夠,焊後在熱影響區形成大量冷裂紋。
低合金高強鋼的定位焊縫很容易開裂,其原因是由於焊縫尺寸小、長度短、冷卻速度快,這種開裂屬於冷裂紋性質。
3、熱裂紋 一般情況下,強度等級為294~392MPa的熱軋、正火鋼,熱裂傾向較小,但在厚壁壓力容器的高稀釋率焊道(如根部焊道或靠近坡口邊緣的多層埋弧焊焊道)中也會出現熱裂紋。電渣焊時,若母材的含碳量偏高並含鎳時,電渣焊縫中可能會出現呈八字形分布的熱裂紋。
強度等級為800~1176MPa的中碳調質鋼(如30CrMnSiA鋼),焊接時熱裂的敏感性較大。
4、粗晶區脆化 熱影響區中被加熱至 1100℃ 以上的粗晶區,當焊接線能量過大時,粗晶區的晶粒將迅速長大或出現魏氏組織而使韌性下降,出現脆化段。
13 試述低合金高強鋼焊接時的主要工藝措施。
⑴預熱 預熱是防止裂紋的有效措施,並且還有助於改善接頭性能。但預熱會惡化勞動條件,使生產工藝復雜化,過高的預熱溫度還會降低接頭韌性。因此,焊前是否需要預熱以及預熱溫度的確定應根據鋼材的成分(碳當量)、板厚、結構形狀、剛度大小以及環境溫度等決定。
⑵焊接線能量的選擇 含碳低的熱軋鋼(09Mn2、09MnNb鋼等)以及含碳量偏下限的16Mn鋼焊接時,因為這些鋼的冷裂淬硬、脆化等傾向小,所以對焊接線能量沒有嚴格的限制。焊接含碳量偏高的16Mn鋼時,為降低淬硬傾向,焊接線能量應偏大一點。對於含V、Nb、Ti的鋼種,為降低熱影響區粗晶脆化所造成的不利影響,應選擇較小的焊接線能量。如15MnVN鋼的焊接線能量應控制在40~45kJ/cm以下。
對於碳及合金元素含量較高而屈服點為490MPa的正火鋼(如18MnMoNb鋼等),因淬硬傾向大,應選擇較大的焊接線能量,但當採用焊前預熱時,為了避免過熱傾向,可以適當地減少線能量。
⑶後熱及焊後熱處理 後熱是指焊接結束或焊完一條焊縫後,將焊件立即加熱至150~250℃范圍內,並保溫一段時間,使接頭中的氫擴散逸出,防止延遲裂紋產生。
對於厚壁容器、高剛性的焊接結構以及一些在低溫、耐蝕條件下工作的構件,焊後應及時進行消除應力的高溫回火,其目的是消除焊接殘余應力,改善組織。
焊後立即進行高溫回火的焊件,無需再進行後熱處理。
二、16Mn鋼的焊接工藝
16Mn鋼屬於碳錳鋼,碳當量為0.345%~0.491%,屈服點等於343MPa(強度級別屬於343MPa級)。16Mn鋼的合金含量較少,焊接性良好,焊前一般不必預熱。但由於16Mn鋼的淬硬傾向比低碳鋼稍大,所以在低溫下(如冬季露天作業)或在大剛性、大厚度結構上焊接時,為防止出現冷裂紋,需採取預熱措施。不同板厚及不同環境溫度下16Mn鋼的預熱溫度,見表8。
16Mn鋼手弧焊時應選用E50型焊條,如鹼性焊條E5015、E5016,對於不重要的結構,也可選用酸性焊條E5003、E5001。對厚度小、坡口窄的焊件,可選用E4315、E4316焊條。
焊接16Mn鋼的預熱溫度
焊件厚度 (mm) 不同氣溫下的預熱溫度計(℃)
16以上 不低於- 10℃ 不預熱,- 10℃ 以下預熱100~150℃
16~24 不低於- 5℃ 不預熱,- 5℃ 以下預熱100~150℃
25~40 不低於 0℃ 不預熱, 0℃ 以下預熱100~150℃
40以上 均預熱100~150℃
16Mn鋼埋弧焊時H08MnA焊絲配合焊劑HJ431(開I形坡口對接)或H10Mn2焊絲配合焊劑HJ431(中板開坡口對接),當需焊接厚板深坡口焊縫時,應選用H08MnMoA焊絲配合焊劑HJ431。
16Mn鋼是目前我國應用最廣的低合金鋼,用於製造焊接結構的16Mn鋼均為16MnR和16Mng鋼。
三、18MnMoNb鋼的焊接工藝
18MnMoNb鋼的屈服點等於490MPa(屬於490MPa級鋼),由於碳及合金鋼元素的含量都較高,所以淬火硬傾向及冷裂傾向均比16Mn鋼大。焊接工藝要點:
1)除電渣焊外,焊前對焊件應採取預熱措施,預熱溫度控制在150~ 180℃ 。對於剛度較大的接頭,預熱溫度應提高至180~ 230℃ 。焊後或中斷焊接時,應立即進行250~ 350℃ 的後熱處理。
2)為保證接頭性能和質量,應適當控制焊接線能量,如手弧焊時,焊接線能量應控制在24kJ/cm以下;埋弧焊時,焊接線能量應控制在35kJ/cm以下。但焊接線能量不能過小,否則焊接接頭易出現淬硬組織和降低韌性。同時,層間溫度應控制在預熱溫度和 300℃ 之間。
4)焊後應進行熱處理。電渣焊接頭熱處理的方式是900~ 980℃ 正火加630~ 670℃ 回火。手弧焊及埋弧焊接頭進行消除焊接殘余應力的高溫回火處理,回火溫度比一般鋼材回火溫度低 30℃ 左右。
18MnMoNb鋼手弧焊時應選用E60型焊條,如鹼性焊條E6015、E6016,
18MnMoNb鋼埋弧焊時H08Mn2MoA焊絲配合焊劑HJ431。
以上是兩種典型的低合金鋼的焊接方法,焊接工藝參數、焊接材料選擇的焊接要點望閱讀後能得到一些啟發,以後在焊接低合金鋼是能派上用處。希望你能早日掌握此技術,祝你成功。
C. 低合金高強鋼的焊接經常會出現冷裂紋、熱裂紋問題,有沒有什麼改善措施呢
鋼結構焊接常出現的另一質量問題是產生焊接裂紋。分為熱裂紋和冷裂紋兩類。
熱裂紋是指高溫下所產生的裂紋,又稱高溫裂紋或結晶裂紋,通常產生在焊縫內部,有時也可能出現在熱影響區,表現形式有:縱向裂紋、橫向裂紋、根部裂紋弧坑裂紋和熱影響區裂紋。其產生原因是由於焊接熔池在結晶過程中存在著偏析現象,低熔點共晶和雜質在結晶過程中以液態間層形式存在從而形成偏析,凝固以後強度也較低。當焊接應力足夠大時,就會將液態間層或剛凝固不久的固態金屬拉開,形成裂紋。此外,如果母材的晶界上也存在有低熔點共晶和雜質,當焊接拉應力足夠大時,也會被拉開。總之,熱裂紋的產生是冶金因素和力學因素共同作用的結果。
針對其產生原因,其預防措施如下:
限制母材及焊接材料(包括焊條、焊絲、焊劑和保護氣體)中易偏析元素和有害雜質的含量,特別應控制硫、磷的含量和降低含碳,一般用於焊接的鋼材中硫的含量不應大於0.045%,磷的含量不應大於0.055%;另外鋼材含碳量越離,焊接性能越差,一般焊縫中碳的含量控制在0.10%以下時,熱裂紋敏感性可大大降低。二是調整焊縫金屬的化學成分,改善焊縫組織,細化焊縫品粒,以提高其塑性,減少或分散偏析程度,控制低熔點共品的有害影響。三是採用鹼性焊條或焊劑,以降低焊縫中的雜質含攝,改善結晶時的偏析程度。適當提高焊縫的形狀系數,採用多層多道焊接方法,避免中心線偏析,也可防止中心線裂紋。另外在操作時採用合理的焊接順序和方向,採用較小的焊接線能超,整體預熱和錘擊法,收弧時填滿弧坑等工藝措施,也能預防熱裂紋的產生。
冷裂紋一般是指焊縫在冷卻過程中溫度降到馬氏體轉變溫度范圍內(300~200℃以下)產生的裂紋。可以在焊接後立即出現,也可以在焊接以後的較長時間才發生,故也稱為延遲裂紋。其形成的基本條件有3個:焊接接頭形成淬硬組織;擴散氫的存在和濃集;存在著較大的焊接拉伸應力。
冷裂紋的預防措施主要有幾方面:
一是選擇合理的焊接規范和線能,改善焊縫及熱影響區組織狀態,如焊前預熱、控制層間溫度、焊後緩冷或後熱等以加快氫分子逸出;
二是採用鹼性焊條或焊劑,以降低焊縫中的擴散氧含量。
三是焊條和焊劑在使用前應嚴格按照規定的要求進行烘乾(低氫焊條300℃~350℃保溫lh;酸性焊條l00℃~l50℃保溫lh;焊劑200℃~250°保溫2h),認真清理坡口和焊絲,汰除油污、水分和銹斑等臟物,以減少氫的來源。
四是焊後及時進行熱處理。一種是進行退火處理,以消除內應力,使淬火組織回火,改善其韌性;二是進行消氫處理,使氫從焊接接頭中充分逸出。除此之外,選材上提高鋼材質量,減少鋼材中的層狀夾雜物,工藝上採取可降低焊接應力的各種措施,也都是必要的。
D. 鑄鋼件:低碳鋼鑄件、中碳鋼鑄件、高碳鋼鑄件鑄造工藝有什麼不同
低碳鋼鑄件、中碳鋼鑄件、高碳鋼鑄件鑄造工藝區別:
一、冒口設計區別
高碳鋼體積收縮率大專,設計冒口相對屬較大;中碳鋼次之,低碳鋼體積收縮率最小;
二、澆注溫度區別
高碳鋼澆注溫度低,中碳鋼次之,低碳鋼澆注溫度最高;
三、凝固方式區別
高碳鋼呈整體凝固趨勢,低碳鋼為逐層凝固,中碳鋼處於中間凝固狀態。所以,高碳鋼補貼距離短,需加大工藝補貼,以強化補縮通道,實現順序凝固;
四、線收縮率不同
高碳鋼線收縮率小,低碳鋼收縮率大,中碳鋼在中間。隨含碳量增加線收縮率逐漸減小。
五、鋼水含氧量不同
低碳鋼含氧量高,高碳鋼含氧量低,中碳鋼含氧量處於中間。脫氧時低碳鋼加Al量最大,依次是中碳鋼、高碳鋼。
E. 大型鑄鋼件冷裂紋的產生原因及防止方法
熱裂紋是鑄件在凝固末期或凝固後不久尚處於強度和塑性很低狀態下,因鑄件固態收縮受阻而引起的裂紋。熱裂紋是鑄鋼件、可鍛鑄鐵件和某些輕合金鑄件生產中常見的鑄造缺陷之一。熱裂紋在晶界萌生並沿晶界擴展,其形狀粗細不均,曲折而不規則。裂紋的表面呈氧化色,無金屬光澤。鑄鋼件裂紋表面近似黑色,而鋁合金則呈暗灰色。外裂紋肉眼可見,可根據外形和斷口特徵與冷裂區分。
熱裂紋又可分為外裂紋和內裂紋。在鑄件表面可以看到的熱裂紋稱為外裂紋。外裂紋常產生在鑄件的拐角處、截面厚度急劇變化處或局部疑固緩慢處、容易產生應力集中的地方。其特徵是表面寬內部窄,呈撕裂狀。有時斷口會貫穿整個鑄件斷面。熱裂紋的另一特徵是裂紋沿晶粒邊界分布。內裂紋一般發生在鑄件內部最後凝固的部位裂紋形狀很不規則,斷面常伴有樹枝晶,通常情況下,內裂紋不會延伸到鑄件表面。