㈠ 鈦及鈦合金應用什麼領域
各類牌號的鈦材的主要性能及用途類別牌號主要特性用途舉例碘法鈦TAD這是以碘化物法所獲得的高純度鈦,故稱碘法鈦,或稱化學純鈦。但是,其中仍然還有氧.氮.碳.這類間隙雜質元素,它們對純鈦的力學性能影響很大。隨著鈦的純度提高,鈦的強度、硬度明顯下降。故起特點是:化學性穩定性很好,但強度很底。由於高純度的鈦強度較低,它作為結構材料應用意義不大,故在工業中很少用。目前在工業中廣泛使用的是工業純鈦和鈦合金。 工業純鈦TA1TA2TA3工業純鈦與化學純鈦不同之處是:它含有較多的氧.氮.碳及多種其它雜志元素(如鐵.硅等),它實質上是一種低合金含量的鈦合金。與化學純鈦相比,由於含有較多的雜志元素使其強度大大提高,它的力學性能與化學性與不銹鋼相似(但和鈦合金相比,強度仍然較低)。工業純鈦的特點是:強度不高,但塑性好,易於加工成行,沖壓、焊接、可切割加工性能良好;在大氣,海水,濕氯氣及氧化性、中性、弱還原性介質中具有良好的耐蝕性,抗氧化性優於大多數奧氏體不銹鋼但耐熱性較差,使用溫度不太高。工業純鈦按其雜質含量的不同,分為TA1.TA2和TA3三個牌號。這三種工業純鈦的間隙雜質元素是逐漸增加的,故其機械強度和硬度也隨之逐級增加,但塑性.韌性相應下降。工業上常用的純鈦是TA2,因其耐蝕性能和綜合力學性能適中。對耐腐和強度要求較高時可採用TA3。對要求較好的成型性能時可採用TA1。 (1)主要用作工作溫度360度以下,受力不大但要求高塑性的沖壓件和耐蝕結構零件,例如:飛機的骨架及蒙皮,發動機附件,船舶用耐海水腐蝕管道、閥門、泵。海水淡化系統零部件,化工上的熱交換器.泵體、蒸餾塔、冷卻器、攪拌器、三通、葉輪、堅固件、離子泵、壓縮機氣閥以及柴油發動機活塞、連桿、葉簧等。(2)TA1.TA2在鐵含量為0.095%,氧含量為0.08%,氫含量為0.0009%,氮含量為0.0062%時,具有很好的低溫韌性和高的低溫強度,可用作-259℃以下的低溫結構材料。 α型鈦合金TA4這類合金在室溫和使用溫度下有α型單相態,不能熱處理強化(追滅是唯一的處理方式),,主要依靠固溶強化。室溫強度一般低於β型和α+β型鈦合金(但高於工業純鈦),而在高溫(500℃--600℃)下的強度和蛻變,強度卻是三類鈦合金中最高的,且組織穩定,抗氧化性和焊接性能好,耐蝕性和可切削加工性能也較好,但塑性低(熱塑性仍然良好)室溫沖壓性能差。其中使用最廣的是TA7,它在退火狀態下具有中等強度和足夠的塑性,焊接性能良好,可在500℃以下使用,當其間隙雜質元素(氧、氫、氮等)含量極低時,再超低溫時還具有良好的韌性和綜合力學性能,是優良的超低溫合金之一。 抗拉強度比工業純鈦稍高,可做中等強度范圍的結構材料,國內主要用作焊絲。TA5TA6用於400℃以下在腐蝕介質中工作的零件及焊接件,如飛機蒙皮,骨架零件,壓氣機殼體、葉片、船舶零件等。TA7500℃以下長期工作的結構零件和各種模鍛件,短時使用可到900℃。亦可用作超低溫(-233℃)部件(如超低溫用的容器)。TA8500℃長期工作的零件,可用於製造發動機壓氣機盤和葉片。但合金的組織穩定性較差。在使用上受到一定限制。β 型鈦合金TB2這類合金的的主要合金元素是鉬、鉻、釩等β穩定性化元素.在正火或級火時很容易將高溫β相保留到室溫,獲得介穩定的β單相組織,故稱β型鈦合金。β型鈦合金可熱處理強化,有較高的強度,焊接性能和壓力加工性能良好;但性能不夠穩定,熔煉工藝復雜,故應用不如α型、α+β型鈦合金廣泛。在350℃以下工作的零件,主要用於製造各種整體熱處理(固容.時效)的板材沖壓件和焊接件;如壓氣機葉片、輪盤、軸類等重載荷旋轉件,以及飛機的構件等。TB2的合金一般在固溶處理狀態下交貨,再固容,時效後使用。α+β型鈦合金TC1TC2這類合金在高溫是α+β型兩相組織,因而得名為α+β型鈦合金。它具有良好的綜合力學性能,大多可熱處理強化(但TC1、TC2、TC7不能熱處理強化),鍛造、沖壓及焊接性能較好,可切削加工,室溫強度高。150--500度以下且有較好的耐熱性,有的(如TC1、TC2、TC3、TC4)並有良好的低溫韌性和良好的抗海水應力腐蝕及抗熱鹽應力腐蝕能力。缺點是不夠穩定。這類合金以TC4應用最為廣泛,用量約占現有鈦合金生產量的一半。該合金不僅具有良好的室溫、高溫、低溫力學性能,且在多種介質中具有優異的耐腐蝕性,同時可焊接、冷熱成型並可熱處理強化;因而在宇航,船舶,兵器以及化工等工業部門均獲得廣泛應用.400℃以下工作的沖壓件,焊接件以及模段件和彎曲加工的各種零件。這兩種合金還可用做低溫結構材料。TC3TC4400℃以下長期工作的零件,結構用的鍛件,各種容器、泵、低溫部件,船艦耐壓殼體、坦克附帶等,強度比TC1、TC2高。TC6可在450℃以下使用,主要用作飛機發動機結構材料。TC7TC9500℃以下長期工作的零件,主要用在飛機噴氣發動機的壓氣機盤和葉片上。TC10450℃以下長期工作的零件,如飛機結構零件。起落支架,蜂窩聯結件、導彈發動機外殼,武器結構件等。
㈡ 鈦合金的應用
自1795年發現鈦至今已有200多年的歷史,但是由於鈦的熔點高、化學性質十分活潑,塑性良好的純鈦很難製取;鈦錠的冶煉需在真空中進行;製造工藝復雜,從而使得鈦及其合金長期不能廣泛用於工業生產。從20世紀50年代開始,由於航空航天技術的迫切需要,鈦工業得到了迅速的發展。現在,鈦及鈦合金不僅是航空航天工業中不可缺少的結構材料,在造船、化工、冶金、醫療等方面也獲得了廣泛的應用[1]。
鈦合金的應用決定於鈦及鈦合金的特點和對產品的要求。概括起來,鈦及鈦合金的特點有如下[1~4]。
①鈦的密度小、比強度高。鈦的密度為4510kg/m^3,介於鋁(2700kg/m^3)和鐵(7600kg/m^3)之間。鈦合金的比強度高於鋁合金和鋼。
②鈦合金的工作溫度范圍較寬,低溫鈦合金在-253℃還能保持良好的塑性,而耐熱鈦合金的工作溫度可達550℃左右,其耐熱性明顯高於鋁合金和鎂合金,如果克服了550℃以上的氧化污染問題,其使用溫度還可能進一步提高。
③鈦及鈦合金還具有優良的抗蝕性,特別是在海水和海洋大氣環境中抗蝕性極高,這使其在應用於艦艇和水上飛機上時具有很大的競爭優勢;鈦在各種濃度的硝酸、鉻酸中都很穩定,溫度升高,反應也慢。此外純鈦在鹼溶液中和大多數有機酸和化合物中的抗蝕性也很高;而且,鈦的腐蝕性能的突出特直是不發生居部腐蝕和晶間腐蝕,一般為均勻腐蝕。
④鈦的化學活性很高,極易受氫、氧、氮的污染,難以冶煉和加工,使得生產成本較高。
⑤導熱性差(只有鐵的1/5,鋁的1/3),摩擦系數大(0.42),抗磨性也較差,故在切削加工時,容易使工件及刀具溫度升高,造成粘刀,降低刀具壽命,故切削加工性差。
⑥彈性模量低,影響構件的剛度,也使細長構件的使用受到限制,不過在某些情況下,也可利用鈦的σs/E比值大的特點製作彈性元件。
目前鈦合金的主要用途可大致分為三類,即噴氣發動機、航空構架和工量
應用。
鈦合金可分為兩種主要類別:耐蝕合金和結構合金。耐蝕合金通常為單相。相並加有不多的固溶強化添加劑及。穩定元素,如鈀和鋁。這些合金用於化學、能源、造紙及食品加工工業以及生產高耐蝕性管材、熱交換器、閥門外套及容器。除了極優越的耐蝕性外,單相。合金具有良好的焊接性能,易於加工製造,但強度相對較低。而結構合金可分為四種:近α合金、α+β合金、β合金以及鈦鋁金屬間化合物[5]。1954年Ti-6A1-4V被採用,這個合金很快成為迄今為止最重要的鈦合金,因為它有極佳的綜合力學性能及良好的加工能力。在由美國主要鈦生產廠家供應的市場中,耐蝕合金占總產量的25%,Ti-6Al-4V為60%,餘下的15%則為其他結構合金。鈦合金能達到令人滿意的綜合力學性能,因而使它們成為許多航空航天及商業應用的備選材料。但是,由於鈦合金零件價格昂貴,限制了它們的應用范圍。
在美國,鈦合金主要應用於宇航領域;在日本,大部分鈦用於非航空航天方面。目前,全世界約有30多個國家從事鈦合金的研究和開發,其中美、俄兩國研究鈦合金歷史較長,實力最強。表9—2為世界各國鈦的消費結構比較,從消費結構上看,美國、西歐和俄羅斯,鈦材的60%~70%用於航空航天領域,民用工業相對較少, 日本和中國則不同,民用工業領域里鈦消費量約佔85%—90%,航空航天領域約佔10%~15%。
在每種市場中對鈦合金產品的要求是基於特定用途的具體要求,例如,噴氣式發動機的要求主要集中在高溫抗拉強度、蠕變強度和高溫下的穩定性,第二位的性能考慮則是疲勞強度和斷裂韌性。航空構架則是要求高抗拉強度並結合有良好的疲勞強度和斷裂韌性。製造構件的難易也是一個重要的考慮。工業應用則要求在各種介質中有良好的抗蝕性作為一基本考慮,並要求適當的強度、成形能力及相對於其他抗蝕合金有可以競爭的價格。
㈢ 鈦合金是什麼有什麼特性
鈦是20世紀50年代發展起來的一種重要的結構金屬,鈦合金強度高、耐蝕性好、耐熱性高。20世紀50~60年代,主要是發展航空發動機用的高溫鈦合金和機體用的結構鈦合金。
特性:
1、首先肯定是鈦靶可以做出很多種顏色,比如鈦灰色,槍灰色,黑色,仿金色,咖啡色,藍色,紫色等等還有很多。
2、其次鈦附著力很好,對於陶瓷和玻璃基片也具有非常好的附著力,所以鈦可用於附著力較差膜材的底膜材料。鈦也可用作薄膜電阻或薄膜電容器的製作材料。
3、鈦對活性氣體的吸附性很強,蒸發在汞壁上的新鮮Ti膜形成一個高吸附能力的表面,有著優異的吸氣性能,幾乎能和除惰性氣體以外的所有氣體發生化學反應。這一性質使得Ti在超高真空抽氣系統中作為吸氣劑而得到廣泛的應用,如用在鈦升華泵、濺射離子泵中等。
4、耐腐蝕性能,鈦是一種非常活潑的金屬,其平衡電位很低,在介質中的熱力學腐蝕傾向大。但實際上鈦在許多介質中很穩定,如鈦在氧化性、中性和弱還原性等介質中是耐腐蝕的。
(3)鈦及鈦合金的特點和應用有哪些擴展閱讀:
鈦合金是以鈦為基礎加入其他元素組成的合金。鈦有兩種同質異晶體:882℃以下為密排六方結構α鈦,882℃以上為體心立方的β鈦。
氧、氮、碳和氫是鈦合金的主要雜質。氧和氮在α相中有較大的溶解度,對鈦合金有顯著強化效果,但卻使塑性下降。通常規定鈦中氧和氮的含量分別在0.15~0.2%和0.04~0.05%以下。
氫在α相中溶解度很小,鈦合金中溶解過多的氫會產生氫化物,使合金變脆。通常鈦合金中氫含量控制在 0.015%以下。氫在鈦中的溶解是可逆的,可以用真空退火除去。
鈦合金在潮濕的大氣和海水介質中工作,其抗蝕性遠優於不銹鋼;對點蝕、酸蝕、應力腐蝕的抵抗力特別強;對鹼、氯化物、氯的有機物品、硝酸、硫酸等有優良的抗腐蝕能力。但鈦對具有還原性氧及鉻鹽介質的抗蝕性差。
㈣ 鈦合金的優缺點是什麼
一、優點
1、強度高,鈦合金的密度一般在4.51g/立方厘米左右,僅為鋼的60%,純鈦的密度才接近普通鋼的密度,一些高強度鈦合金超過了許多合金結構鋼的強度。
2、熱強度高,使用溫度比鋁合金高幾網路,在中等溫度下仍能保持所要求的強度,可在450~500℃的溫度下長期工作這兩類鈦合金在150℃~500℃范圍內仍有很高的比強度,而鋁合金在150℃時比強度明顯下降。鈦合金的工作溫度可達500℃,鋁合金則在200℃以下。
3、抗蝕性好,鈦合金在潮濕的大氣和海水介質中工作,其抗蝕性遠優於不銹鋼;對點蝕、酸蝕、應力腐蝕的抵抗力特別強;對鹼、氯化物、氯的有機物品、硝酸、硫酸等有優良的抗腐蝕能力。但鈦對具有還原性氧及鉻鹽介質的抗蝕性差。
4、低溫性能好,鈦合金在低溫和超低溫下,仍能保持其力學性能。低溫性能好,間隙元素極低的鈦合金,如TA7,在-253℃下還能保持一定的塑性。因此,鈦合金也是一種重要的低溫結構材料。
5、化學活性大,鈦的化學活性大,與大氣中O、N、H、CO、CO2、水蒸氣、氨氣等產生強烈的化學反應。
6、導熱彈性小,鈦的導熱系數λ=15.24W/(m.K)約為鎳的1/4,鐵的1/5,鋁的1/14,而各種鈦合金的導熱系數比鈦的導熱系數約下降50%。
二、缺點
1、鈦及鈦合金主要限制是在高溫與其它材料的化學反應性差。此性質迫使鈦合金與一般傳統的精煉、熔融和鑄造技術不同,甚至經常造成模具的損壞。
2、鈦合金的價格變的十分昂貴。因此它們剛開始大多用在飛機結構、航空器,以及用在石油和化學工業等高科技工業。
㈤ 鈦合金的主要用途是什麼
1、航空航天領域用鈦大國集中在西方國家,尤其是美國,60%的鈦材都應用到這個領域。亞洲國家,日本和中國在此領域中鈦的投入量均在10%左右。但是近年來隨著亞洲航空航天的飛速發展,鈦在航空航天領域的消費量將會隨之增長。從全球角度來看,航空業對鈦市場起著決定性的作用,從歷史上看,鈦行業大的周期輪回都和航空業的冷暖密切相關。
2、民用飛機
(1)減輕結構重量、提高結構效率
(2)符合高溫部位的使用要求
(3)符合與復合材料結構相匹配的要求
(4)符合高抗蝕性和長壽命的要求
3、軍事飛機
軍用武器的開發與采購不斷向著輕便、靈活方向發展,為了滿足戰斗機對戰斗性能要求,除了採用先進的設計技術外,還必須採用額性能優良的材料以及先進的工藝製造技術。大量選用鈦合金、提高先進鈦合金應用水平就是重要措施之一。
自20世紀60年代以來,國外軍用飛機的鈦量逐年增加,當前歐美設計的各種先進軍用戰斗機和轟炸機中鈦合金用量已經穩定在20%以上,並且新機型的用鈦量佔比正在大幅提升。
4、汽車
降低燃油消耗、減少有害廢棄物(CO2、NOX 等)排放已經成為汽車行業技術進步的主要動力和方向之一。研究表明,輕量化是實現節省燃料、減少污染的有效措施。汽車的質量每降低10%,燃料消耗可節省8%-10%,廢氣排放可減少10%。
在駕駛方面,汽車輕量化後加速性能提高,車輛控制穩定性、噪音、振動方面也都有改善。從碰撞安全性考慮,汽車輕量化後,碰撞時慣性小,制動距離減少。
汽車輕量化的首選途徑就是用高比強度的輕質材料,如鋁、鎂、鈦等替代傳統的汽車材料(鋼鐵)。2009年全球汽車用鈦量已達3000噸。鈦在賽車上的應用已有許多年的歷史目前賽車幾乎都使用了鈦材,日本汽車用鈦已超過600噸,隨著全球汽車工業的發展,汽車用鈦還在快速增加。
5、醫療行業
鈦在醫療領域有著廣泛的應用。鈦與人體骨骼接近,對人體組織具有良好的生物相容性、無毒副作用。人體植入物是與人的生命和健康密切相關的特殊的功能材料。同其它金屬材料相比較,使用鈦及鈦合金的優勢主要有以下幾點:
1 質輕;2 彈性模量低;3無磁性;4 無毒性;5 抗腐蝕性;6 強度高、韌性好。
外科植入物中的鈦合金用量正以每年5%-7%的速度增長。採用鈦及鈦合金製造的股骨頭、髖關節、肱骨、顱骨、膝關節、肘關節、肩關節、掌指關節、頜骨以及心辨膜、腎辨膜、血管擴張器、夾板、假體、緊固螺釘等上百種金屬件移植到人體中,取得了良好的效果,被醫學界給予了很高的評價。
6、化工行業
鈦具有優良的耐腐蝕性能、力學性能和工藝性能,被廣泛應用於國民經濟許多部門。特別是在化工生產中,用鈦代替不銹鋼、鎳基合金和其它稀有金屬作為耐腐蝕材料。這對增加產量,提高產品質量,延長設備使用壽命,減少消耗,降低能耗,降低成本,防止污染,改善勞動條件和提高勞動生產率等方面都有十分重要的意義。
7、海洋工程
隨著科學技術的發展和陸地資源日趨枯竭,人類開發利用海洋已經提到日程上來了。鈦對於海水有優異的耐蝕性能,大量運用於海水淡化、艦船、海洋熱能開發和海底資源開采等領域。
8、日常生活
鈦在日常生活中的應用非常廣泛,可謂無處不在,例如高爾夫球頭、自行車車架、網球拍、輪椅、眼鏡架等都會應用到鈦。
鈦以其輕質、強度高的特性在體育用品中的應用,從最早的網球拍、羽毛球拍逐步擴展到了高爾夫球頭、球桿以及賽車等。
2008年我國體育休閑占總消費量的13%,其中僅高爾夫球頭和球桿的用鈦量就超過了1000噸。鈦合金做成的自行車車架也頗受歡迎,目前有近50價公司生產鈦自行車,美國早已是最大的鈦自行車生產商和消費國。
鈦輕質的特點也應用到眼鏡架中,而且鈦又不易與皮膚發生過敏,並且鈦表面經陽極處理可有絢麗色彩,因此從20世紀80年代初就開始應用於鏡架中。
(5)鈦及鈦合金的特點和應用有哪些擴展閱讀
鈦被認為是一種稀有金屬,這是由於在自然界中其存在分散並難於提取。但其相對豐富,在所有元素中居第十位。 鈦的礦石主要有鈦鐵礦及金紅石,廣布於地殼及岩石圈之中。鈦亦同時存在於幾乎所有生物、岩石、水體及土壤中。
從主要礦石中萃取出鈦需要用到克羅爾法 或亨特法。鈦最常見的化合物是二氧化鈦,可用於製造白色顏料。其他化合物還包括四氯化鈦(TiCl4)(作催化劑和用於製造煙幕作空中掩護)及三氯化鈦(TiCl3)(用於催化聚丙烯的生產)。
㈥ 鈦和鈦合金的優點和用途,包括它的物理性質和化學性質
鈦是20世紀50年代發展起來的一種重要的結構金屬,鈦合金因具有比強度高、耐蝕性好、耐熱性高等特點而被廣泛用於各個領域。世界上許多國家都認識到杴合金材料的重要性,相繼對其進行研究開發,並得到了實際應用。 第一個實用的鈦合金是1954年美國研製成功的Ti-6Al-4V合金,由於它的耐熱性、強度、塑性、韌性、成形性、可焊性、耐蝕性和生物相容性均較好,而成為鈦合金工業中的王牌合金,該合金使用量已佔全部鈦合金的75%~85%。其他許多鈦合金都可以看做是Ti-6Al-4V合金的改型。 20世紀50~60年代,主要是發展航空發動機用的高溫鈦合金和機體用的結構鈦合金,70年代開發出一批耐蝕鈦合金,80年代以來,耐蝕鈦合金和高強鈦合金得到進一步發展。耐熱鈦合金的使用溫度已從50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出現,使鈦在發動機的使用部位正由發動機的冷端(風扇和壓氣機)向發動機的熱端(渦輪)方向推進。結構鈦合金向高強、高塑、高強高韌、高模量和高損傷容限方向發展。 另外,20世紀70年代以來,還出現了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形狀記憶合金,並在工程上獲得日益廣泛的應用。 目前,世界上已研製出的鈦合金有數百種,最著名的合金有20~30種,如Ti-6Al-4V、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。 鈦合金可以分為α、α+β、β型合金及鈦鋁金屬間化合物(TixAl,此處x=1)四類。 2. 鈦合金的新進展 近年來,各國正在開發低成本和高性能的新型鈦合金,努力使鈦合金進入具有巨大市場潛力的民用工業領域陽。國內外鈦合金材料的研究新進展主要體現在以下幾方面。 (1)高溫鈦合金。 世界上第一個研製成功的高溫鈦合金是Ti-6Al-4V,使用溫度為300-350℃。隨後相繼研製出使用溫度達400℃的IMI550、BT3-1等合金,以及使用溫度為450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。目前已成功地應用在軍用和民用飛機發動機中的新型高溫鈦合金有.英國的IMI829、IMI834合金;美國的Ti-1100合金;俄羅斯的BT18Y、BT36合金等。表7為部分國家新型高溫鈦合金的最高使用溫度[26]。 近幾年國外把採用快速凝固/粉末冶金技術、纖維或顆粒增強復合材料研製鈦合金作為高溫鈦合金的發展方向,使鈦合金的使用溫度可提高到650℃以上[1,27,29,31]。美國麥道公司採用快速凝固/粉末冶金技術戚功地研製出一種高純度、高緻密性鈦合金,在760℃下其強度相當於目前室溫下使用的鈦合金強度[26]。 (2)鈦鋁化合物為基的鈦合金。 與一般鈦合金相比,鈦鋁化合物為基鈉Ti3Al(α2)和TiAl(γ)金屬間化合物的最大優點是高溫性能好(最高使用溫度分別為816和982℃)、抗氧化能力強、抗蠕變性能好和重量輕(密度僅為鎳基高溫合金的1/2),這些優點使其成為未來航空發動機及飛機結構件最具競爭力的材料[26]。 目前,已有兩個Ti3Al為基的鈦合金Ti-21Nb-14Al和Ti-24Al-14Nb-#v-0.5Mo在美國開始批量生產。其他近年來發展的Ti3Al為基的鈦合金有Ti-24Al-11Nb、Ti25Al-17Nb-1Mo和Ti-25Al-10Nb-3V-1Mo等[29]。TiAl(γ)為基的鈦合金受關注的成分范圍為Ti-(46-52)Al-(1-10)M(at.%),此處M為v、Cr、Mn、Nb、Mn、Mo和W中的至少一種元素。最近,TiAl3為基的鈦合金開始引起注意,如Ti-65Al-10Ni合金[1]。 (3)高強高韌β型鈦合金。 β型鈦合金最早是20世紀50年代中期由美國Crucible公司研製出的B120VCA合金(Ti-13v-11Cr-3Al)。β型鈦合金具有良好的冷熱加工性能,易鍛造,可軋制、焊接,可通過固溶-時效處理獲得較高的機械性能、良好的環境抗力及強度與斷裂韌性的很好配合。新型高強高韌β型鈦合金最具代表性的有以下幾種[26,30]: Ti1023(Ti-10v-2Fe-#al),該合金與飛機結構件中常用的30CrMnSiA高強度結構鋼性能相當,具有優異的鍛造性能; Ti153(Ti-15V-3Cr-3Al-3Sn),該合金冷加工性能比工業純鈦還好,時效後的室溫抗拉強度可達1000MPa以上; β21S(Ti-15Mo-3Al-2.7Nb-0.2Si),該合金是由美國鈦金屬公司Timet分部研製的一種新型抗氧化、超高強鈦合金,具有良好的抗氧化性能,冷熱加工性能優良,可製成厚度為0.064mm的箔材; 日本鋼管公司(NKK)研製成功的SP-700(Ti-4.5Al-3V-2Mo-2Fe)鈦合金,該合金強度高,超塑性延伸率高達2000%,且超塑成形溫度比Ti-6Al-4V低140℃,可取代Ti-6Al-4V合金用超塑成型-擴散連接(SPF/DB)技術製造各種航空航天構件; 俄羅斯研製出的BT-22(TI-5v-5Mo-1Cr-5Al),其抗拉強度可達1105MPA以上 (4)阻燃鈦合金。常規鈦合金在特定的條件下有燃烷的傾向,這在很大程度上限制了其應用。針對這種情況,各國都展開了對阻燃鈦合金的研究並取得一定突破。羌國研製出的Alloy c(也稱為Ti-1720),名義成分為50Ti-35v-15Cr(質量分數),是一種對持續燃燒不敏感的阻燃鈦合金,己用於F119發動機。BTT-1和BTT-3為俄羅斯研製的阻燃鈦合金,均為Ti-Cu-Al系合金,具有相當好的熱變形工藝性能,可用其製成復雜的零件[26]。 (5)醫用鈦合金。 鈦無毒、質輕、強度高且具有優良的生物相容性,是非常理想的醫用金屬材料,可用作植人人體的植人物等。目前,在醫學領域中廣泛使用的仍是Ti-6Al-4v ELI合金。但後者會析出極微量的釩和鋁離子,降低了其細胞適應性且有可能對人體造成危害,這一問題早已引起醫學界的廣泛關注。羌國早在20世紀80年代中期便開始研製無鋁、無釩、具有生物相容性的鈦合金,將其用於矯形術。日本、英國等也在該方面做了大量的研究工作,並取得一些新的進展。例如,日本已開發出一系列具有優良生物相容性的α+β鈦合金,包括Ti-15Zr-4Nb_4ta-0.2Pd、Ti-15Zr-4Nb-aTa-0.2Pd-0.20~0.05N、Ti-15Sn-4Nb-2Ta-0.2Pd和Ti-15Sn-4nb-2Ta-0.2Pd-0.20,這些合金的腐蝕強度、疲勞強度和抗腐蝕性能均優於Ti-6Al-4v ELI。與α+β鈦合金相比,β鈦合金具有更高的強度水乎,以及更好的切口性能和韌性,更適於作為植入物植入人體。在美國,已有5種β鈦合金被推薦至醫學領域,即TMZFTM(TI-12Mo-^Zr-2Fe)、Ti-13Nb-13Zr、Timetal 21SRx(TI-15Mo-2.5Nb-0.2Si)、Tiadyne 1610(Ti-16Nb-9.5Hf)和Ti-15Mo。估計在不久的將來,此類具有高強度、低彈性模量以及優異成形性和抗腐蝕性能的廬鈦合金很有可能取代目前醫學領域中廣泛使用的Ti-6Al-4V ELI合金[28,32]。
㈦ 鈦合金的主要應用領域是什麼
鈦合金具有強度高而密度又小,機械性能好,韌性和抗蝕性能很好。鈦合金的工藝性能差,切削加工困難,在熱加工中,非常容易吸收氫氧氮碳等雜質。還有抗磨性差,生產工藝復雜。鈦的工業化生產是1948年開始的。航空工業發展的需要,使鈦工業以平均每年約 8%的增長速度發展。世界鈦合金加工材年產量已達4萬余噸,鈦合金牌號近30種。使用最廣泛的鈦合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工業純鈦(TA1、TA2和TA3)。
鈦合金主要用於製作飛機發動機壓氣機部件,其次為火箭、導彈和高速飛機的結構件。60年代中期,鈦及其合金已在一般工業中應用,用於製作電解工業的電極,發電站的冷凝器,石油精煉和海水淡化的加熱器以及環境污染控制裝置等。鈦及其合金已成為一種耐蝕結構材料。此外還用於生產貯氫材料和形狀記憶合金等。
鈦合金是航空航天工業中使用的一種新的重要結構材料,比重、強度和使用溫度介於鋁和鋼之間,但比鋁、鋼強度高並具有優異的抗海水腐蝕性能和超低溫性能。1950年美國首次在F-84戰斗轟炸機上用作後機身隔熱板、導風罩、機尾罩等非承力構件。60年代開始鈦合金的使用部位從後機身移向中機身、部分地代替結構鋼製造隔框、梁、襟翼滑軌等重要承力構件。鈦合金在軍用飛機中的用量迅速增加,達到飛機結構重量的20%~25%。70年代起,民用機開始大量使用鈦合金,如波音747客機用鈦量達3640公斤以上。馬赫數大於 2.5的飛機用鈦主要是為了代替鋼,以減輕結構重量。又如,美國SR-71 高空高速偵察機(飛行馬赫數為3,飛行高度26212米),鈦占飛機結構重量的93%,號稱「全鈦」飛機。當航空發動機的推重比從4~6提高到8~10,壓氣機出口溫度相應地從200~300°C增加到500~600°C時,原來用鋁製造的低壓壓氣機盤和葉片就必須改用鈦合金,或用鈦合金代替不銹鋼製造高壓壓氣機盤和葉片,以減輕結構重量。70年代,鈦合金在航空發動機中的用量一般占結構總重量的20%~30%,主要用於製造壓氣機部件,如鍛造鈦風扇、壓氣機盤和葉片、鑄鈦壓氣機機匣、中介機匣、軸承殼體等。航天器主要利用鈦合金的高比強度,耐腐蝕和耐低溫性能來製造各種壓力容器、燃料貯箱、緊固件、儀器綁帶、構架和火箭殼體。人造地球衛星、登月艙、載人飛船和太空梭 也都使用鈦合金板材焊接件。 詳細的產品可以去尋材問料ap-裡面了解
㈧ 鈦合金的優點是什麼
以鈦為基加入其他合金元素組成的合金稱作鈦合金。鈦合金具有密度低、比強度高、抗腐蝕性能好、工藝性能好等優點,是較為理想的航天工程結構材料。
研究范圍:
鈦合金可分為結構鈦合金和耐熱鈦合金,或α型鈦合金、β型鈦合金和α+β型鈦合金。研究范圍還包括鈦合金的成形技術、粉末冶金技術、快速凝固技術、鈦合金的軍用和民用等。
應用:
鈦合金是一種新型結構材料,它具有優異的綜合性能,如密度小(~4.5g
cm-3),比強度和比斷裂韌性高,疲勞強度和抗裂紋擴展能力好,低溫韌性良好,抗蝕性能優異,某些鈦合金的最高工作溫度為550??C,預期可達700??C。因此它在航空、航天、化工、造船等工業部門獲得日益廣泛的應用,發展迅猛。輕合金、鋼等的(σ0.2/密度)與溫度的關系,鈦合金的比強高於其他輕金屬、鋼和鎳合金,並且這一優勢可以保持到500??C左右,因此某些鈦合金適於製造燃氣輪機部件。鈦產量中約80%用於航空和宇航工業。例如美國的B-1轟炸機的機體結構材料中,鈦合金約佔21%,主要用於製造機身、機翼、蒙皮和承力構件。F-15戰斗機的機體結構材料,鈦合金用量達7000kg
,約占結構重量的34%。波音757客機的結構件,鈦合金約佔5%,用量達3640
kg。麥克唐納
道格拉斯(Mc-Donnell-Dounlas)公司生產的DC10飛機,鈦合金用量達5500kg,占結構重量的10%以上。在化學和一般工程領域的鈦用量:美國約占其產量的15%,歐洲約佔40%。由於鈦及其合金的優異抗蝕性能,良好的力學性能,以及合格的組織相容性,使它用於製作假體裝置等生物材料。
特點:
鈦金屬的密度較小,為4.5g/cm3,僅為鐵的60%,通常與鋁、鎂等被稱為輕金屬,其相應的鈦合金、鋁合金、鎂合金則稱為輕合金。世界上許多國家都認識到鈦合金材料的重要性,相繼對鈦合金材料進行研究開發,並且得到了實際應用。
鈦是二十世紀五十年代發展起來的一種重要的結構金屬,鈦合金因具有比強度高、耐蝕性好、耐熱性高、易焊接等特點而被廣泛用於各個領域,尤其是強度高、易焊接性能有利於高爾夫桿頭的製造。
第一個實用的鈦合金是1954年美國研製成功的Ti-6Al(鋁)-4V(礬)合金。Ti-6Al-4V合金在耐熱性、強度、塑性、韌性、成形性、可焊性、耐蝕性和生物相容性方面均達到較好水平。Ti-6Al-4V合金使用量已佔全部鈦合金的75~85%。許多其它合金可以看作是Ti-6Al-4V合金的改型。
目前,世界上已研製出的鈦合金有數百種,最著名的合金有二十至三十種,例如,有Ti-6Al-4V</SPAN>、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、Ti-811、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1100、BT9、BT20、IMI829、IMI834等;用於球桿製造的有10-2-3,SP700,15-3-3-3(通常所說的β鈦),22-4,DAT51。
鈦合金可以分為α、α+β、β型合金及鈦鋁金屬間化合物(TixAl,此處x=1或3)四類。下表列出了四類典型鈦合金及特點。
類別
典型合金
特點
α
Ti-5Al-2.5Sn
Ti-6Al-2Sn-4Zr-2Mo
強韌性一般,焊接性能好
抗氧化強,蠕變強度較高
較少應用在高爾夫球刊刊頭製造上
α+β
Ti-6Al-4V
Ti-6Al-2Sn-4Zr-6Mo
強韌性中上,可熱化處理強,可焊
疲勞性能好,多應用於鑄造刊頭
如鐵桿、球道木等
β
Ti-13V-11Cr-3Al
Sp700
Ti-15va-3Cr-3Al-3Ni
強度高,熱處理強化能力強
可鍛性及冷成型性能好
可適用多種焊接方式
TixAl
Ti3Al(α2)及TiAl(Y0
㈨ 鈦合金有什麼優點
1、強度高
鈦合金的密度一般在4.51g/立方厘米左右,僅為鋼的60%,純鈦的密度才接近普通鋼的密度,一些高強度鈦合金超過了許多合金結構鋼的強度。
2、熱強度高
使用溫度比鋁合金高幾網路,在中等溫度下仍能保持所要求的強度,可在450~500℃的溫度下長期工作這兩類鈦合金在150℃~500℃范圍內仍有很高的比強度,而鋁合金在150℃時比強度明顯下降。鈦合金的工作溫度可達500℃,鋁合金則在200℃以下。
3、抗蝕性好
鈦合金在潮濕的大氣和海水介質中工作,其抗蝕性遠優於不銹鋼;對點蝕、酸蝕、應力腐蝕的抵抗力特別強;對鹼、氯化物、氯的有機物品、硝酸、硫酸等有優良的抗腐蝕能力。但鈦對具有還原性氧及鉻鹽介質的抗蝕性差。
(9)鈦及鈦合金的特點和應用有哪些擴展閱讀:
鈦合金的用途:
鈦合金具有強度高而密度又小,機械性能好,韌性和抗蝕性能很好。另外,鈦合金的工藝性能差,切削加工困難,在熱加工中,非常容易吸收氫氧氮碳等雜質。還有抗磨性差,生產工藝復雜。鈦的工業化生產是1948年開始的。
航空工業發展的需要,使鈦工業以平均每年約
8%的增長速度發展。世界鈦合金加工材年產量已達4萬余噸,鈦合金牌號近30種。使用最廣泛的鈦合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工業純鈦(TA1、TA2和TA3)。
參考資料來源:網路—鈦合金
㈩ 鈦合金有哪些性質和用途
鈦和鈦合金被認為是21世紀的重要金屬材料,它們具有很多優良的性能,如熔點高、密度小(鈦的密度僅為4.5g/cm3)、可塑性好、易於加工、機械性能好等。尤其是鈦和鈦合金的抗腐蝕性能非常好,即使把它們放到海水中數年,取出後仍光亮如初,其抗腐蝕性能遠優於不銹鋼,因此被廣泛用於火箭、導彈、太空梭、船舶、化工和通信設備等。