① 储氢合金的发展
20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。
20世纪70年代,LaNi5和Mg2Ni在荷兰Philips与美国Brookhaven实验室相继被发现具有可逆的吸放氢能力并伴随的一系列物理化学机理变化。1973年起,LaNi5开始被试图作为二次电池负极材料采用,但由于其循环性能较差,未能成功。1984年,荷兰Philips公司成功解决了LaNi5合金在循环中的容量衰减问题,为MH/Ni电池发展扫清了最后一个障碍。

② 长期在生产储氢合金粉的环境中对身体有害吗
长期从事工业生产活动,一般对身体都会有些影响。不知道你们的具体生产方式是什么,主要是可能会吸入粉末颗粒,对肺部产生影响。
③ 贮氢合金的应用
目前在研和已投入使用的贮氢合金主要可分成:镁系、稀土系、钛系几类。主要的应用领域包括:
1)氢的贮存、净化和回收;
2)氢燃料发动机;
3)热—压传感器和热液激励器;
4)氢同位素分离和核反应堆中的应用;
5)空调、热泵及热贮存;
6)加氢及脱氢反应催化剂;
7)氢化物—镍电池。
等等。

④ 什么是储氢合金储氢
20世纪60年代,材料王国里出现了能储存氢的金属和合金。
储氢合金储氢,比氢气瓶的本领大多了。它储氢量大,使用方便,还可免去庞大的钢制容器。用氢时,将储氢合金加热,氢就能及时释放出来,而且还可通过调节加热温度和合金的成分来控制合金释放氢的快慢和数量。
⑤ 金属氢化物的优点和缺点
优点是储氢容量大,储氢密度大,安全性高
⑥ 储氢合金的简介
别看储氢合金的金属原子之间缝隙不大,但储氢本领却比氢气瓶的本领可大多了,因为它能像海绵吸水一样把钢瓶内的氢气全部吸尽。具体来说,相当于储氢钢瓶重量1/3的储氢合金,其体积不到钢瓶体积的1/10,但储氢量却是相同温度和压力条件下气态氢的1000倍,由此可见,储氢合金不愧是一种极其简便易行的理想储氢方法。采用储氢合金来储氢,不仅具有储氢量大、能耗低,工作压力低、使用方便的特点,而且可免去庞大的钢制容器,从而使存储和运输方便而且安全。

⑦ 什么是储氢合金电池
人们还利用储氢合金制作燃料电池和二次电池(蓄电池),这些电池具有安全、稳定和使用寿命长等优点。日本夏普公司研制的储氢合金二次电池,与一般的镍镉蓄电池相比,在相同的1.2伏电压下,其能量密度是后者的1.5~2倍。
这种储氢合金二次电池,以储氢合金作为负极,而以镍板作正极,并在正负极间充填含有碱溶液(电解液)的聚酷胺纤维。在电池中,储氢合金一方面进行氧化还原反应,另一方面进行氢离子的吸收和释放。与此同时,由于电子的得失在两电极上产生一定的电动势,将两极用导线接通,就会出现电流。
目前,制作二次电池较好的储氢合金是镧镍锌、钛镍硼、钒钛镍等。五、不锈钢
⑧ 储氢合金
应该是,储存了氢的储氢材料中,氢大多以H-离子形式存在,此时还原性很强,应该属于易燃品。
⑨ 储氢合金的主要用途:
由于目前大量使用的镍镉电池(Ni-Cd)中的镉有毒,使废电池处理复杂,环境受到污染,因此它将逐渐被用储氢合金做成的镍氢充电电池(Ni-MH)所替代。从电池电量来讲,相同大小的镍氢充电电池电量比镍镉电池高约1.5~2倍,且无镉的污染,现已经广泛地用于移动通讯、笔记本计算机等各种小型便携式的电子设备。目前,更大容量的镍氢电池已经开始用于汽油/电动混合动力汽车上,利用镍氢电池可快速充放电过程,当汽车高速行驶时,发电机所发的电可储存在车载的镍氢电池中,当车低速行驶时,通常会比高速行驶状态消耗大量的汽油,因此为了节省汽油,此时可以利用车载的镍氢电池驱动电动机来代替内燃机工作,这样既保证了汽车正常行驶,又节省了大量的汽油,因此,混合动力车相对传统意义上的汽车具有更大的市场潜力,世界各国目前都在加紧这方面的研究。

⑩ 简述储氢材料的特点与应用前景
储氢材料的特点与应用前景如下:
1、活化容易;
2、平衡压力适中且平坦,吸放氢平衡压差小;
3、抗杂质气体中毒性能好;
4、适合室温操作。

储氢材料一类能可逆地吸收和释放氢气的材料。最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。
不同储氢方式的比较:
1、气态储氢
气态储氢的 缺点:能量密度低;不太安全
2、液态储氢
液态储氢的缺点: 能耗高;对储罐绝热性能要求高
3、固态储氢
固态储氢的优点:体积储氢容量高;无需高压及隔热容器;安全性好,无爆炸危险;可得到高纯氢,提高氢的附加值。
常见储氢材料:
目前储氢材料有金属氢化物、碳纤维碳纳米管、非碳纳米管、玻璃储氢微球、络合物储氢材料以及有机液体氢化物。下面仅就合金、有机液体以及纳米储氢材料三个方面对储氢材料加以介绍。
1、合金储氢材料
储氢合金是指在一定温度和氢气压力下,能可逆的大量吸收、储存和释放氢气的金属间化合物,其原理是金属与氢形成诸如离子型化合物、共价型金属氢化物、金属相氢化物-金属间化合物等结合物,并在一定条件下能将氢释放出来。
2、液态有机物储氢材料
有机液体氢化物贮氢是借助不饱和液体有机物与氢的一对可逆反应, 即加氢和脱氢反应来实现的。加氢反应时贮氢,脱氢反应时放氢, 有机液体作为氢载体达到贮存和输送氢的目的。
3、纳米储氢材料
纳米储氢材料分为两种方式,一种是将原有的储氢材料纳米化,还有一种就是开发新的纳米材料作为储氢材料。
储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:
(1)对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量;
(2)纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定。金属氢化物能够大量生成,单位体积吸纳的氢的质量明显大于宏观颗粒;
(3)纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子,有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。;
(4)晶粒的细化使其硬度增加,贮氢合金的整体强度随晶粒尺寸的增加而增强,这对于抗酸碱及抗循环充放粉化,以及抵抗充放电形成的氧压对贮氢基体的冲击大有裨益,并且显著提高了贮氢合金耐腐蚀性。是一类能可逆地吸收和释放氢气的材料。
最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。20世纪70年代以后,由于对氢能源的研究和开发日趋重要。
首先要解决氢气的安全贮存和运输问题,储氢材料范围日益扩展至过渡金属的合金。如镧镍金属间化合物就具有可逆吸收和释放氢气的性质:
每克镧镍合金能贮存0.157升氢气,略为加热,就可以使氢气重新释放出来。LaNi5是镍基合金,铁基合金可用作储氢材料的有TiFe,每克TiFe能吸收贮存0.18升氢气。其他还有镁基合金,如Mg2Cu、Mg2Ni等,都较便宜。
储氢合金的应用方面很多,除了以上介绍的内容外,还在空调与制冷,热泵、热-压传感器、加氢和脱氢反应催化剂等方面都可得到应用。