① 请问记忆合金的原理是什么
记忆合金是一种原子排列很有规则、体积变为小于0.5%的马氏体相变合金。这种合金在外力作用下会产生变形,当把外力去掉,在一定的温度条件下,能恢复原来的形状。由于它具有百万次以上的恢复功能,因此叫做"记忆合金"。此外,记忆合金还具有无磁性、耐磨耐蚀、无毒性的优点,因此应用十分广泛。
现在已经发现了几十种不同记忆功能的合金,比如钛-镍合金,金-镉合金,铜-锌合金等。
记忆合金产品在医学上的应用; 1、钛镍形状记忆合金下尿路扩展支架 2、记忆合金食道支架 3、记忆合金作为防伪材料的应用 4、医用高强度记忆合金矫形棒 5、一种记忆合金薄壁管内支架 6、网格状记忆合金超弹性文胸托杯 7、记忆合金食道支架 8、记忆合金人体椎体 9、记忆合金防伪标志 10、单侧骨皮质记忆合金钉 11、一种记忆合金易拆卸环抱式加压接骨器 12、记忆合金无声脉动电机 13、记忆合金脊柱棒 14、形状记忆合金温控器 15、灭火器用记忆合金弹簧收缩式感温驱动装置
② 记忆金属是什么
记忆金属是一钟合金,它可以在较低的温度中被随意制成一种形状,然后加温后又能变回原来的形状,具有记忆性,因此我们称之为“记忆金属”。
记忆金属,把一根直铁丝弯成直角(90° ),一松开,它就要回复一点,形成大于90° 的角度。把一根弯铁丝调直,必须把它折到超过180°后再松开,这样它就能正好回复到直线状态。
例如,镍-钛合金在40℃以上和40℃以下的晶体结构是不同的,但温度在40℃上下变化时,合金就会收缩或膨胀,使得它的形态发生变化。这里,40℃就是镍-钛记忆合金的“变态温度”。各种合金都有自己的变态温度。
上述那种高温合金的变态温度很高。在高温时它被做成螺旋状而处于稳定状态。在室温下强行把它拉直时,它却处于不稳定状态,因此,只要把它加热到变态温度,它就立即恢复到原来处于稳定状态的螺旋形状了。
(2)记忆合金是什么扩展阅读:
形状记忆合金的高温相具有较高的结构对称性,通常为有序立方结构。在Ms温度以下,单一取向的高温相转变成具有不同取向的马氏体变体。
当在Ms温度以下使这种材料变形以制成元件时,材料内与应力方向处于不利地位的马氏体变体不断消减;处于有利地位的则不断生长。最后转变成具有单一取向的有序马氏体的元件。
如再度加热到As点以上,这种对称性低的、单一取向的马氏体发生逆转变时,又形成先前的单一取向的高温相。
对应于这种微观结构的可逆性转变,便恢复了材料在高温时的宏观形状,这就是所谓的单程形状记忆。经过某种工艺处理的记忆元件,冷却到Ms以下时,可恢复到低温时的形状,则称为双程形状记忆效应。
③ 什么叫记忆金属或记忆合金他们有什么重要作用
记忆金属:形状记忆合金是一种特殊的合金,存在一个记忆温度,在记忆温度以下可以任意加工,当温度回到记忆温度时,可以恢复到加工前的形状,在未来,它将是工程主要材料之一比如说钛,在加热后,会恢复到加工前的形状
形状记忆合金是一种特殊的合金,存在一个记忆温度,在记忆温度以下可以任意加工,当温度回到记忆温度是,可以恢复到加工前的形状
形状记忆合金的研究、发现至今为止已有十几种记忆合金体系。包括Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、NiAl、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等
④ 记忆合金的主要成分是什么
形状记忆合金的研究、发现至今为止已有十几种记忆合金体系。包括Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、NiAl、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等
记忆合金是一种原子排列很有规则、体积变为小于0.5%的马氏体相变合金。这种合金在外力作用下会产生变形,当把外力去掉,在一定的温度条件下,能恢复原来的形状。由于它具有百万次以上的恢复功能,因此叫做"记忆合金"。当然它不可能像人类大脑思维记忆,更准确地说应该称之为"记忆形状的合金"。此外,记忆合金还具有无磁性、耐磨耐蚀、无毒性的优点,因此应用十分广泛。科学家们现在已经发现了几十种不同记忆功能的合金,比如钛-镍合金,金-镉合金,铜-锌合金等。
⑤ 记忆合金属于什么材料
形状记忆材料。
形状记忆合金(shape memory alloys,SMA)是通过热弹性与马氏体相变及其逆变而具有形状记忆效应(shape memory effect,SME)的由两种以上金属元素所构成的材料。形状记忆合金是目前形状记忆材料中形状记忆性能最好的材料。
迄今为止,人们发现具有形状记忆效应的合金有50 多种。在航空航天领域内的应用有很多成功的范例。
人造卫星上庞大的天线可以用记忆合金制作。发射人造卫星之前,将抛物面天线折叠起来装进卫星体内,火箭升空把人造卫星送到预定轨道后,只需加温,折叠的卫星天线因具有“记忆”功能而自然展开,恢复抛物面形状。
(5)记忆合金是什么扩展阅读:
起源发展:
1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。
记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。
⑥ 记忆合金是什么东西
记忆合金是一种原子排列很有规则、体积变为小于0.5%的马氏体相变合金。这种合金在外力作用下会产生变形,当把外力去掉,在一定的温度条件下,能恢复原来的形状。由于它具有百万次以上的恢复功能,因此叫做"记忆合金"。当然它不可能像人类大脑思维记忆,更准确地说应该称之为"记忆形状的合金"。此外,记忆合金还具有无磁性、耐磨耐蚀、无毒性的优点,因此应用十分广泛。科学家们现在已经发现了几十种不同记忆功能的合金,比如钛-镍合金,金-镉合金,铜-锌合金等。
何为记忆合金
19世纪70年代,世界材料科学中出现了一种具有“记忆”形状功能的合金。记忆合金是一种颇为特别的金属条,它极易被弯曲,我们把它放进盛着热水的玻璃缸内,金属条向前冲去;将它放入冷水里,金属条则恢复了原状。在盛着凉水的玻璃缸里,拉长一个弹簧,把弹簧放入热水中时,弹簧又自动的收拢了。凉水中弹簧恢复了它的原状,而在热水中,则会收缩,弹簧可以无限次数的被拉伸和收缩,收缩再拉开。这些都由一种有记忆力的智能金属做成的,它的微观结构有两种相对稳定的状态,在高温下这种合金可以被变成任何你想要的形状,在较低的温度下合金可以被拉伸,但若对它重新加热,它会记起它原来的形状,而变回去。这种材料就叫做记忆金属(memory metal)。它主要是镍钛合金材料。例如,一根螺旋状高温合金,经过高温退火后,它的形状处于螺旋状态。在室温下,即使用很大力气把它强行拉直,但只要把它加热到一定的“变态温度”时,这根合金仿佛记起了什么似的,立即恢复到它原来的螺旋形态。这是怎么回事?难道合金也具有人类那样的记忆力?
原来不是那么回事!这只是利用某些合金在固态时其晶体结构随温度发生变化的规律而已。例如,镍-钛合金在40oC以上和40oC以下的晶体结构是不同的,但温度在40oC上下变化时,合金就会收缩或膨胀,使得它的形态发生变化。这里,40oC就是镍-钛记忆合金的“变态温度”。各种合金都有自己的变态温度。上述那种高温合金的变态温度很高。在高温时它被做成螺旋状而处于稳定状态。在室温下强行把它拉直时,它却处于不稳定状态,因此,只要把它加热到变态温度,它就立即恢复到原来处于稳定状态的螺旋形状了。
分类及应用
形状记忆合金可以分为三种:
(1)单程记忆效应
形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
(2)双程记忆效应
某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
(3)全程记忆效应
加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
三种记忆效应如下图所示。
目前已开发成功的形状记忆合金有TiNi基形状记忆合金、铜基形状记忆合金、铁基形状记忆合金等。
最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。
形状记忆合金的具体应用如下。
工业应用:
(1)利用单程形状记忆效应的单向形状恢复。如管接头、天线、套环等。
(2)外因性双向记忆恢复。即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。
(3)内因性双向记忆恢复。即利用双程记忆效应随温度升降做反复动作,如热机、热敏元件等。但这类应用记忆衰减快、可靠性差,不常用。
(4)超弹性的应用。如弹簧、接线柱、眼镜架等。
医学应用:
TiNi合金的生物相容性很好,利用其形状记忆效应和超弹性的医学实例相当多。如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、避孕器、心脏修补元件、人造肾脏用微型泵等。
高科技应用展望:
20世纪是机电学的时代。传感——集成电路——驱动是最典型的机械电子控制系统,但复杂而庞大。形状记忆材料兼有传感和驱动的双重功能,可以实现控制系统的微型化和智能化,如全息机器人、毫米级超微型机械手等。21世纪将成为材料电子学的时代。形状记忆合金的机器人的动作除温度外不受任何环境条件的影响,可望在反应堆、加速器、太空实验室等高技术领域大显身手。
记忆合金 谈到合金,当然要讲最有趣的合金--记忆合金。金属具有记忆,是一个偶然的发现:60年代初,美国海军的一个研究小组从仓库领来一些镍钛合金丝做实验,他们发现这些合金丝弯弯曲曲,使用起来很不方便,于是就把这些合金丝一根根拉直。在试验过程中,奇怪的现象发生了,他们发现,当温度升到一定的数值时,这些已经拉直的镍钛合金丝突然又恢复到原来的弯曲状态,他们是善于观察的有心人,又反复做了多次试验,结果证实了这些细丝确实具?"记忆"。
美国海军研究所的这一发现,引起了科学界的极大兴趣,大量科学家对此进行了深入的研究。发现铜锌合金、铜铝镍合金、铜钼镍合金、铜金锌合金等也都具有这种奇特的本领。人们可以在一定的范围内,根据需要改变这些合金的形状,到了某一特定的温度,它们就自动恢复到自己原来的形状,而且这“改变--恢复”可以多次重复进行,不管怎么改变,它们总是能记忆自己当时的形状,到了这一温度,就丝毫不差地原形再现。人们把这种现象叫作形状记忆效应,把具有这种形状记忆效应的金属叫作形状记忆合金,简称记忆合金。
为什么这些合金能具有这种形状记忆效应?它们是怎样记住自己的原形?用一般金属键理论、自由电子理论是难以解释合金的这种记忆效应的。记忆合金在一定的温度条件下能回复到原形,为核外电子的运动--随温度变化的运动,提供了绝佳的例证。
正是由于合金的形成是在高温条件下液态金属的互熔,由于液态金属的结构元排异,导致了这种元素的结构元与另一种金属的结构元相互均布,凝固后,其微观结构是不同种类的结构元成比例的有序排列,电磁力是构成合金物体的主要内聚力。
电磁力是由价和电子的运转所形成,而电子的运转速率随温度条件而变化的,所以,物体内的电磁力(大小、方向、作用点)也是随温度条件而变化。由此导致了金属物体的内力随温度条件而变化,只是这些变化在小温差范围内不明显,只有在较大温度变化(几百摄氏度)时才有表现。
一般金属在受力后,能产生塑性变形,如一根铁丝被折弯了,在折弯部位,电磁力受到外力的干扰,导致产生电磁力的价和电子的运转平面作出微量调整,一次塑性变形就完成了。
记忆合金由于是不同种类的结构元相互掺和均布,尽管结构元的个子、电磁力的大小不同,但各自都加快了自身的价和运转,在一定的温度条件下相邻相安。在受到外力后,电磁力受到外力的干扰,价和电子的运转平面作出微量角度调整,物体产生塑性变形,在此塑性变形中,部分调整后的价和电子的运转是不舒展的。当温度条件变化时价和电子的速率随之变化,当温度回复到相安舒展的(转变温度)条件时,不舒展的价和电子的运转立即回复到当时的速率,电磁力随之发生变化,使相邻结构元的价和运转也都作出相应的调整,全部回复到原来的舒展状态,于是整个物体也都回复到了原来的状态。这就是记忆合金的记忆过程。
其实,金属的记忆早就被发现:把一根直铁丝弯成直角(90° ),一松开,它就要回复一点,形成大于90° 的角度。把一根弯铁丝调直,必须把它折到超过180°后再松开,这样它就能正好回复到直线状态,这就是中国成语中所讲的矫枉过正。还有记忆力更好的合金就是弹簧,(这里所说的是钢制弹簧,钢是铁碳合金)弹簧牢牢地记住了自己的形状,外力一撤除,马上回复到自己的原来的样子,只是弹簧的记忆温度很宽,不像记忆合金这样有一个特定的转变温度,从而有了一些特别的功用。
利用记忆合金在特定温度下的形变功能,可以制作多种温控器件,可以制作温控电路、温控阀门,温控的管道连接。人们已经利用记忆合金制作了自动的消防龙头--失火温度升高,记忆合金变形,使阀门开启,喷水救火。制作了机械零件的连接、管道的连接,飞机的空中加油的接口处就是利用了记忆合金--两机油管套结后,利用电加热改变温度,接口处记忆合金变形,使接口紧密滴水(油)不漏。制作了宇宙空间站的面积几百平米的自展天线--先在地面上制成大面积的抛物线形或平面天线,折叠成一团,用飞船带到太空,温度转变,自展成原来的大面积和形状。
记忆合金目前已发展到几十种,在航空、军事、工业、农业、医疗等领域有着用途,而且发展趋势十分可观,它将大展宏图、造福于人类。
形状记忆合金的研究、发现至今为止已有十几种记忆合金体系。包括Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、NiAl、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等
⑦ 什么是记忆合金有什么作用
◆什么是记忆合金:
记忆合金是一种原子排列很有规则、体积变为小于0.5%的马氏体相变合金。这种合金在外力作用下会产生变形,当把外力去掉,在一定的温度条件下,能恢复原来的形状。由于它具有百万次以上的恢复功能,因此叫做"记忆合金"。当然它不可能像人类大脑思维记忆,更准确地说应该称之为"记忆形状的合金"。此外,记忆合金还具有无磁性、耐磨耐蚀、无毒性的优点,因此应用十分广泛。科学家们现在已经发现了几十种不同记忆功能的合金,比如钛-镍合金,金-镉合金,铜-锌合金等。
◆记忆合金的应用:
早期应用是管路接头,还有用于温度控制装置(譬如温度控制的疏水阀)、集成电路引线、汽车零件等等。
工业应用:
(1)利用单程形状记忆效应的单向形状恢复。如管接头、天线、套环等。
(2)外因性双向记忆恢复。即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。
(3)内因性双向记忆恢复。即利用双程记忆效应随温度升降做反复动作,如热机、热敏元件等。但这类应用记忆衰减快、可靠性差,不常用。
(4)超弹性的应用。如弹簧、接线柱、眼镜架等。
医学应用:
TiNi合金的生物相容性很好,利用其形状记忆效应和超弹性的医学实例相当多。如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、避孕器、心脏修补元件、人造肾脏用微型泵等。
高科技应用展望:
20世纪是机电学的时代。传感——集成电路——驱动是最典型的机械电子控制系统,但复杂而庞大。形状记忆材料兼有传感和驱动的双重功能,可以实现控制系统的微型化和智能化,如全息机器人、毫米级超微型机械手等。21世纪将成为材料电子学的时代。形状记忆合金的机器人的动作除温度外不受任何环境条件的影响,可望在反应堆、加速器、太空实验室等高技术领域大显身手。
⑧ 记忆合金的材料是什么
记忆合金的主要成分是镍和钛。它独有的物理特性是当温度达到某一数值时,材料内部的晶体结构会发生变化从而导致外形的变化。例如应用于外科手术的记忆合金医用支架。
记忆合金按材料有很多种,主要应用的有:钛镍合金,金镉合金,铜锌合金。记忆合金是通过热弹性与马氏体相变及其逆变而具有形状记忆效应,由两种以上金属元素所构成的材料。形状记忆合金是目前形状记忆材料中形状记忆性能最好的材料。
迄今为止,发现具有形状记忆效应的合金有50多种。一般金属材料受到外力作用后,首先发生弹性变形,达到屈服点,就产生塑性变形,压力消除后留下永久变形。但有些材料,在发生了塑性变形后,经过合适的热过程,能够回复到变形前的形状,这种现象叫做形状记忆效应。
具有形状记忆效应的金属一般是由两种以上金属元素组成的合金,称为形状记忆合金。目前已开发成功的形状记忆合金有基形状记忆合金,铜基形状记忆合金,铁基形状记忆合金等。
⑨ 形状记忆合金是什么有哪些特点
形状记忆合金是由两种以上化学元素组成的原料。形状记忆合金是现阶段形状记忆原材料中形状记忆特性最好是的原材料。到迄今为止,大家早已发觉了50多种多样具备形状记忆效用的铝合金。航天航空行业的运用有很多取得成功的事例。航天器上极大的无线天线可以用记忆合金制成。在发送航天器以前,将抛物面天线伸缩放进通讯卫星中,火箭升空将航天器送至预订路轨后,只需加温。伸缩的卫星锅因为具备记忆力作用,当然进行,修复抛物面形状。
形状记忆合金的另一个关键特性是伪延展性(也称之为超延展性,superelasticity),主要表现为在外面力的作用下,形状记忆合金比一般金属材料具备更高的形变恢复力,即载入全过程中造成的大应变力会伴随着卸载掉而修复。这类特性广泛运用于医药学、工程建筑避震和日常日常生活。比如,前边提及的人工合成人体骨骼、伤骨固定不动充压器、口腔科矫正器等。与一般原材料相比,形状记忆合金制造的眼镜框可以承受较大的变形,而不会破坏(不适用形状记忆效用,只是在变形后温度修复)。
你还知道形状记忆合金的哪些知识呢?欢迎在评论区留言~
⑩ 什么是记忆合金
70年代,世界材料科学中出现了一种具有“记忆”形状能力的合金。例如,一根螺旋状高温合金,经高温退火后,它的形状处于螺旋状态。在室温下,即使花很大力气把它强行拉直,但只要把它加热到一定的“变态温度”时,这根合金仿佛记起了什么似的,立即恢复到它原来的螺旋形态。这是怎么回事?难道合金也具有人那样的记忆力?
不!这只是利用某些合金在固态时其晶体结构随温度发生变化的规律而已。例如,镍-钛合金在40℃以上和40℃以下的晶体结构是不同的,当温度在40℃上下变化时,合金就会收缩或膨胀,使形态发生变化。这里,40℃就是镍-钛合金的“变态温度”。各种合金都有自己的变态温度。上述那种高温合金的变态温度很高。在高温时它被做成螺旋状是处于稳定状态。在室温下把它强行拉直时,它却处于不稳定状态,因此,只要把它加热到变态温度,它就立即恢复到原来处于稳定状态的螺旋形状了。
至今,发现具有“记忆”形状能力的合金已达80种,有些已在某些领域获得实际应用。例如,通常的铆接必须从一边插入铆钉,在另一边用气锤将铆钉的头锤扁。但是,遇到封闭的容器或开口狭窄的容器,你根本无法深入到容器里去作业,这时可用“记忆合金”事前做成两头都是扁的铆钉,在低温下把一端的扁头硬压成插孔大小的圆柱状。铆接时,只要从低温箱中将铆钉取出,迅速插入被铆容器的插孔内,再把铆钉加热到变态温度以上,原先被压圆的一端便自动回复成扁形,这样就把容器牢固地铆紧了。用记忆合金接合断骨也很有发展前途。用金属材料接合断骨时,必须把它的两端在插入接孔后再弯成勾形,以防脱落。这一过程与订书钉将纸订合在一起很相似。可是这种操作会给病人增加很多痛苦。有了记忆合金后这个难题就迎刃而解了。事先在室温下将合金板制成两端都是倒勾形的,在低温下将其拉直成形(就像订书钉一样),再将冷冻的形合金接到断骨两端,合金受体温加热后立即恢复原状,从而把断骨牢牢接合在一起。