导航:首页 > 合金材料 > 如何从金锡合金分离出金

如何从金锡合金分离出金

发布时间:2022-06-09 12:55:53

❶ 金锡焊料、铅锡焊料热膨胀曲线

金锡共晶焊料处于共晶点位置,熔点为280℃,焊接温度只需300 ℃~310 ℃ ,仅比熔点高出20 ℃~30 ℃ 。在焊接过程中,基于合金的共晶成分,很小的过热度就能使合金熔化并润湿器件;另外,金锡共晶合金的凝固过程进行得也很快。因此,金锡共晶合金的使用能够大大缩短整个焊接过程周期。
金锡合金的流动性和浸润性很好,和无氧铜可以很好的浸润,没有问题的。清洗干净的
金锡合金焊料与无氧铜,可以在真空中或还原保护性气体中进行钎焊。

❷ 关於中国剑文化!

一、剑之历史

剑的来历要追溯到轩辕黄帝时代。据《黄帝本纪》记载:“帝采首山之铜铸剑,以天文古字铭之”;又有“昔葛天卢之山发而出金,蚩尤受而制之,以为剑铠”之说。剑之出世极为古远,历史悠久,故后人称之“短兵之袓”,确可当之无愧。

远古时期的武器的设计和制造尚处于初始阶段,《淮南子·汜论》所述:“古之兵,弓剑而已矣,槽矛无击,侑戟无刺。” 为利于在山地丛林中奔跃和近战,那时人们普遍习惯使用短兵器。剑是短兵的一种,脱胎于矛形刺兵及短匕首,始原于殷商以前,形极为短小,仅有短平茎,而无管筒。古人用此剑插腰,轻便易使,直刺旁击都能运用自如,抵御匪寇与野兽都是必不可少。到了周代,尤其是春秋、战国时期,构造简单容易制造的剑已成为主要短兵器,成为社会各阶层必有之佩备。连冯谖与汉初的韩信,虽然贫至无食,也仍然随身携带。著名的有干将、莫邪、龙泉、太阿、纯钧、湛卢、鱼肠、巨阙等。春秋时的龙泉剑,仍有一只藏于故宫,至今仍很锋利,证明我国在剑的制造和使用上,有著很悠久的历史。]

至东周时期,西方大陆此时仍处在蛮荒时期,但是中土的冶铜工业已经非常发达。工匠大多以铜铸剑,造就出一大批剑质颇佳的精品,制剑技术亦逐渐进步。 依据《考工记》的记载,战国时期的工匠以累积了足够的经验,能充分的掌握冶炼青铜的技术,按照器具不同的用途,合金中的铜与铅、锡比例也有所不同。这样的冶炼技术领先西方国家近千年。

早期的青铜剑约在商朝即已大致成形,最初仅长十余公分,直脊双刃,剑身扁阔,柄以木片夹束,亦无剑格,而后发展出固定的形制,主要由剑身与剑茎两部分组成,每一部位都有名称。剑身前端称“锋”,剑体中线凸起称“脊”,脊两侧成坡状称“从”,从外的刃称“锷”,合脊与两从为“腊”。剑把称“茎”。茎主要有扁形与圆形的两种。茎和身之间有的有护手的“格”,又称为“卫”。茎的末端常有圆形的“首”或“镡”。茎上有的有圆形的“箍”。茎上常以绳缠绕,绳称为“缑”,剑柄尾端旋环称做铎。剑鞘也谓之“室”。短剑也称“匕”。考究的青铜剑的首与格等常以玉质作成,这种剑,一般则称为“玉具剑”。在未来的千年间,这种剑的造型逐步迈向成熟,并作为步兵的基本武器而活跃于战场上。

郑锷更于剑有所详解,他这样说到:人之形貌大小长短不一,选择不同的剑,不是为了美观,而是要使之各适其用而己。因此分为为三等剑制,以适合三等带剑之士,什么人用什么剑则自取其便。剑柄长五寸,剑身若是剑柄的五倍,那么就该有三尺,重九锵,也就是三斤十二两,长之极,重之至,故谓上制。只有高大有力的剑士可以佩带,所以称为上士之制。剑身是剑柄的四倍,那么剑之长则有二尺五寸,重七锵,也就是二斤十四两,长短轻重取其中,谓之中制。适合普通身材和力量大小的人使用,故称为中士之制。若剑身只有三倍剑柄长短,则只有二尺,重量只有五锵,则只重二斤一两三分,轻而且短,称为下制,矮小羸弱者适用。

上述剑制,大抵沿用于远古,历代仍有频繁变更,自秦至宋,其中的变化最多。郑锷云:“若以秦汉之剑与宋时之剑比较,则宋时长剑有二十一寸三分,汉时长剑仅十七寸九分。宋时短剑十五寸二分,汉时短剑仅十寸五分,故宋时之剑较汉时之剑长,且品质更优”。

剑之用途,不只是专供杀戮之用,也用做文士饰品,不过终究是以防身拒敌为主,如剑过长则运用不便,剑短则难以及远,过短的剑轻而没有打击力度,长剑重而挥动迟缓,二者均不适合实用。另外古籍有言:“汉高祖仗三尺剑而得天下”,由此可见汉代剑长不及两尺之说应当有误。若综合剑史所记,大抵古剑之长,由一尺三寸至四尺多不等,其重量则为二至三斤。

春秋时期,互为世仇的吴越两国却同以铸剑精良闻名于当世,其技术之精湛、工艺之华美,可称举世无匹,尤其是剑身的表面处理,不但具有神秘华丽的花纹,在两千五百年后的今天,仍然寒光四射、锋锐如新,这种处理技术至今仍然是个谜。

1994年秦始皇兵马俑二号俑坑正式开始挖掘,考古工作者发现一把青铜剑被一尊重达150千克的陶俑压弯了,其弯曲的程度超过45度,当人们移开陶俑之后,令人惊诧的奇迹出现了:那又窄又薄的青铜剑,竟在一瞬间反弹平直,自然恢复。当代冶金学家梦想的“形态记忆合金”,竟然出现在2000多年前的古代墓葬里!这柄古剑在地下埋藏了两千多年为什么没有生锈呢?为什么依然寒光四射、锋利无比呢?通过进一步的研究发现,“越王勾践剑”千年不锈的原因在于剑身上被镀上了一层含铬的金属。铬是一种极耐腐蚀的稀有金属,提取十分不易,但是此时的铸剑工艺水平成为一个迷。其中还发现了一批青铜剑,这批青铜剑内部组织致密,剑身光亮平滑,刃部磨纹细腻,纹理来去无交错,它们在黄土下沉睡了2000多年,出土时然光亮如新,锋利无比。科研人员测试后发现,剑的表面有一层10微米厚的铬盐化合物。这一发现立刻轰动了世界,因为这种铬盐氧化处理方法,只是近代才出现的先进工艺,德国在1937年,美国在1950年先后发明并申请了专利。

春秋晚期至战国可说是铜剑最发达的时期,除个别地区的剑反映了地域或民族风格外,形制上一般都开始定型。春秋晚期的铜剑,绝大部分都有剑首,并普遍出现了剑格,但具剑箍的还较少。长度一般都要在40-50厘米以上。有名的越王勾践剑、吴王夫差剑、吴王光剑等等,都是这时期的重要作品。这些宝剑制作精美,表现了卓越的制作工艺。东周青铜剑,以吴国、越国的最为上乘,《周礼·考工记》载:“吴越之金锡,此材之美者也”。湖北江陵古墓出土的越王勾践剑,通长55.7厘米,身满饰菱形纹,剑格两面以蓝色琉璃镶嵌花纹。

此时,钢铁制的兵器也登上了舞台,或许对于青铜兵器的锻冶技术已累积了足够的知识,又或许摺叠钢的技术本来就承袭自打造青铜兵器的经验,无论如何,这个时期的钢铁兵器,其水准的确领先了全世界一大截,著名的铸剑大师如:欧冶子、干将等人,链就一批千古名剑:干将、莫邪、湛卢、巨阙、纯钩、龙渊、太阿、工布、鱼肠等,即使实物不存,它们的赫赫威名仍令我们心驰神往;《吴越春秋》中记载薛烛评纯钩剑:“光乎如屈阳之华,沉沉如如芙蓉始生于湖,其文如列星之行,其光如水之溢塘,”此外,太阿剑“巍巍翼翼如流水之波”、工布剑“文若流水不绝”,以及:龟文、缦理、列星、溢水、冰释、高山、深渊、水波、珠衽、流泉等等形容,均是指剑身上的摺叠花纹而言,当我们看到古代刀剑上的花纹时,才能体会古人所言实非虚语。

战国后期的秦国已经是青铜剑、铁剑并用,同时剑的型制也有变化,长度曾加到一百公分左右,剑身狭长,表面经过仔细地研磨,并有一层铬盐氧化物,显现著乌黑的光泽,能防蚀防锈,陕西秦墓出土的诸多长剑几乎有如新制。

直到9世纪末,意大利青铜剑工艺仍然在这个水平上。

钢铁兵器正式装备部队后,因为硬度和韧度都明显地优于青铜,也由于骑兵的大量使用,配合其冲锋陷阵、马上接战的战术需要,对兵器的强度有更高的要求,所以在西汉末年时,钢铁兵器几已完全取代了青铜,进入了一个全新的时代,在这数百年的交替期间,同时也是青铜兵器的发展巅峰,无论长度、硬度、韧度,在历史舞台上展现其最后的灿烂风华。

骑兵成为军队的功击主力后,伴随而来的是战术的改变与装备的革新,由于骑兵冲锋的速度极快,单手施力的长剑固然仍能直刺敌人,予以重创,但冲力之大也足可把骑兵拉下马来,陷入挨打的困境,因此,马上的短兵显然要特重其切削的性能,加上强韧的铁器也已相当成熟,长剑于是渐渐为长刀所取代,并在汉代末期完全退出战场。这个时期的长剑常以玉石为装具,千年之后,长剑已朽,玉剑饰却已其精美的质地与纹饰为人珍爱,成为玉器中一个不可或缺的品目,我们可以说:剑虽然在战场上没落了,但在民间它始终保有王者的地位。

中国刀剑工艺最高水准,在史料上有详细记录的,应该是东汉时代出现的“百炼钢”。百炼,则是反覆加热、折叠锻打一百次,使得杂质尽出,最后锻造出最精纯的钢。可惜这样的技术太费工,动辄耗费数年,才得神兵三五把。到了唐末“安史之乱”,社会大乱,十室九空,百炼钢的技术就逐渐失传了。到了北宋,当时的大科学家沈括曾在《梦溪笔谈》一书中说到他造访磁州锻坊,观看炼铁,才认识所谓“真钢”。他还记述了当时的一把宝剑:有人将十支大钉钉入柱中,挥此宝剑一削,钉子全部截断,剑锋却纤毫无损;用力弯曲,剑身如勾,放开来铿然有声,又如箭弦一般平直。

到了明朝,更是每下愈况。戚继光在《练兵实纪·杂集》中指出,当时的工匠不肯好好磨刀,结果“砍入不深、刀芒一秃,即为顽铁矣。”

清朝的乾隆皇帝是非常重视文治武功的一位。他尤其喜爱刀剑,从乾隆十三年到二十二年,不惜人力物力,制作了一批款式精美的刀剑。由于“今上”的重视,当时冶炼刀剑的技术又大幅提升。有花纹钢就是百炼钢?根据中国自唐朝后就少有刀剑着作、墓葬出土来推测:百炼钢的技术,唐以后可能就失传了。清朝扣鸣刀上花纹钢的技术,很可能是从日本、东南亚、中东、印度学习的。世界上最好的花纹钢不在中国,我们古代刀剑的铸造技术,没有流传下来。

古代铸剑技术
制作铜剑的基本方法是铸造,铸造一件铜剑大体上有五道工序。

(一)制范
即制作供浇铸用的型范。剑范多用泥塑造,然后放入窑中经火烘干,再加修整,质地似陶,故称泥范或陶范。制范以铜剑的器形设计为依据,而铜剑器形是否能够达到设计要求,规整而谐调、匀称而美观,则决定于制范是否精细。制范还要为以后的装饰打下基础,如剑体上铸出的花纹和名文,都必须预先在剑范的内壁上刻镂出阴阳相反的纹路。实际上,铜剑装饰的第一步是范型上进行的。

(二)调剂
铸剑的材料是青铜,青铜是铜和锡或铜和锡、铅的合金。剂即剂量,指青铜合金中各成分的比例,古时写作“齐”。熔炼青铜之前,须根据合理的配比规律,对铜、锡或铜、锡、铅等原料进行调配,称作调剂。这是决定铜剑性能的关键环节。在一定范围内,青铜中含锡量提高,能够相应提高合金的硬度和强度;但含锡量超过合量的界限,就会使青铜合金变得非常脆弱,易于断折。在青铜合金中加入少量的铅,可调节金属的铸造和加工性能,但铅含量过高,也会降低合金的硬度和强度。因此,只有按照合理的比例对各成分进行调配,才能得到适于充作剑材的既坚且韧的青铜。
对于铜剑合金的成分配比,春秋战国之际已经认识到了其中的规律。《考工记·攻金之工》所记“金有六齐”,标明了六类铜器的成分比例,其中第四类为:大刃即剑;叁分其金而锡居一,指青铜合金作四等分,铜(金)占三分(百分之七十五),锡占一分(百分之二十五)。
近年来,冶金史研究者陆续分析检测了一些春秋晚期和战时期的中原铜剑实,发现其合金成分中,铜的含量与“大刃之齐”很接近,大致在百分之七十五上下;但锡的含量相差较多,实际含量只有百分之十六左右,较高的也只有百分之二十多一些。这种差别可能因为,《考工记》“六齐”只标明了青铜合金中最主要的两种万分——铜和锡,而铜实物中常含有少量铅及其他一些元素(铁、锌等),因之,六齐的铜锡配比法大概是一般性地代表了青铜合金中铜和其他非铜元素的比例,如此,则青铜剑实际成分中其他非铜元素的总量也就大致接近百分之二十五了。
撇开文献和实物的上述差别不管,有两点是明确的。一是《考工记》关于“大刃之齐”的记载说明在春秋战国之际,中原匠师对于铜剑合金万分的配比规律已经有所认识,有所总结,并以之指导铸剑;二是铜百分之七十五上下和锡百分之十六左右的实际合金比例是合理的,一些研究者对如此配比的铜剑作了机械性能和硬度试验,证明其具有很好的强度和硬度。
古人铸剑既无先进的熔炼设备、纯洁的原材料,又无精确的测试手段,匠师们在这种情况睛经过长期实践,摸索总结出了青铜合金的配比规律,并具有很强的规律,铸出的铜剑的合金比便也会不尽相同,而呈现在配比常数上下浮动的现象。

(三)熔炼
原料调配停当后,将之装入坩锅炼。熔炼的目的是将铜、锡、铅等原料熔液体,同时也进一步去除原料中含有的杂质,如附着于原料上的木炭,以及原料中含有的氧化物、硫化物和铁等其他金属元素,使合金精纯。
熔炼的关键是观察火候,判断是否熔炼成熟。《考工记》对此有较详记述:
凡铸金之状,金与锡,黑浊之气竭,黄白次之;
黑浊气是原料上附着的木炭、树枝等碳氢化合物燃烧产生的。黄白气主要是熔点低的锡先熔化而产生的,同时,原料中含有的氧化物,、硫化物和其他元素挥发出来也形成不同颜色的烟气;
黄白之气竭,青白次之;
温度升高,铜熔化的青焰色有几分混入,故现青白气;
青白之气竭,青气次之;
温度再高,铜全熔化,铜量大于锡量度,一进只有青气了。而且,焰色纯净,表明原料中的杂质太多气化跑掉了,剩下残渣可予以去除;
然后可铸也。
销炼成熟,可以浇铸了。
上述次序,也是古代匠师长期实践的经验总结,后来人们用“炉火纯青”喻功夫纯熟,就源于这里。
为了提高青铜合金的质量,工匠们还对铜锡进行多次熔炼,以进一步去除杂质。《考工记·栗氏》所记“改煎金锡”,就是指更番,重复煎炼。

(四)浇铸
将熔炼成熟的青铜液体浇灌入剑范,俟其冷却、凝固,铜剑就成形了。

(五)铸后加工
范铸出来的铜剑仅是一个坯件,表面精糙,故卸去铸范后,还须进行如下的修治加工:
——刮削琢磨,使其表面平整光滑;
——装饰,如在铸成的花纹沟槽中镶嵌琉璃、绿松石,或嵌错红铜丝、金丝、银丝,甚至进一步在器表刻镂花纹。嵌错是当时很常见的装饰工艺,它是在铜器表面铸出或刻镂出花纹,再嵌以金、银、铜丝(或片),用错石将表面磨光,即显出色彩鲜明、线条清晰的生动形象;
——装置附件,配齐剑具;
——砥砺开刃。
这样,铜剑的制作就最终完成了。但在使用过程中,剑器还要时常修治砥砺,故当时可能有一类工匠专门从事这项工作。汉代称这类工匠为“削厉(砺)工”,其技艺又称“洒削”之技。削砺就是刮削砥砺的意思;洒削,指磨刀以水洒之,泛指修治刀剑。
西汉景帝时,大臣袁盎被刺,尸体上弃有凶器,是一柄新修治过的剑,官府就在长安的削砺工中访查,一工匠说:这把剑是梁王的某位郎官来修治的。由此便查出了主使人梁孝王。
综上所述,我们可以用战国晚期大学者荀子的一段话来概括铸造铜剑的整个过程:
刑(型)范正,金锡美,工冶巧,火齐(剂)得,剖刑而莫邪已。然而不剥脱,不砥厉,则不可以断绳;剥脱之,砥厉之,则劙盘盂,刎牛马忽然耳。
黄白杂则坚且牣
战国相剑术士曾说:
白所以为坚也,黄所以为牣(韧)也,黄白杂则坚且牣,良剑也。
这种精良之剑也就是我们今天所说的复合剑。战国时期,铜剑应用臻于极盛。在此背景下,铸剑术不断发展进步,出现了一些科学先进的工艺,取得了杰出的成就,其中尤以铸造复合剑的技术最为突出。
所谓复合剑,是指剑脊和剑刃用不同成分配比的青铜合金分别浇铸的青铜剑。其剑脊采用含锡量较低的青铜合金,韧性强,不易断折;剑刃采用含锡量较高的青铜合金,硬度高,特别锋利。因而刚柔相济,是古代铜剑的精品。其铸造方法也与普通铜剑有别。普通剑之剑身系一次浇铸完毕,复合剑则是二次浇铸:先以专门的剑脊范浇铸剑脊,在剑脊两侧预留出嵌合的沟槽;再把铸成的剑脊置于另一范中浇铸剑刃,剑刃和剑脊相嵌合构成整剑。
从冶金史研究者检测的一些复合剑实物得知,其剑脊的含铜量要高于一般铜剑,含锡量则低于一般铜剑;刃部的情况相反,含铜量低于一般铜剑,含锡量高于一般铜剑。如果单以脊部或刃部的材料制作整剑,势必过于柔软或过于刚脆,但以之分别制作剑脊和剑刃,就获得了超过一般铜剑的更为优秀的性能。这是创造性地运用青铜合金成分配比规律的高超工艺,体现了古代匠师对铜剑合金成分比例的控制达到了极高境界。
复合剑的脊部含铜多,故呈黄色;刃部含锡多,故泛白色。剑脊和剑刃判然异色,正如相剑术士所言,所以有人称之为“两色剑”。又由于这种剑表面看起来,剑脊像是镶嵌上去的,故也有人称之为“铜镶剑”或“插心剑”,这些都不是科学的名称。
总之一句,古代的铸剑技术是大冶铸金、巧夺神工。

关于相剑
所谓相剑,即通过观察器身外表(包括器形、文理、颜色、光泽、铭文、装饰等),来鉴别剑器的优劣和名剑的真伪。战国社会上专门有一类术士以此为务,被称为“相剑者”。《吕氏春秋·疑似》称:“使人大迷惑者,患剑似吴干者。”可见,即使是相剑术士,对于一般铜剑之貌似名剑也很头痛,要予以鉴别,就必须精通铸剑之术,能够识别优劣。故相剑术又以铸剑术为基础。《吕氏春秋·别类》记:“相剑者曰:白所以为坚也,黄所以为牣(韧)也,黄白杂则坚且牣,良剑也。”这句话大概出自相剑术士的相剑经,它就是以铸剑术为依据,结合铜剑的形貌特征和流传使用情况等,即今之所谓掌故,这样才能够最终鉴别名剑的真伪。《吴越春秋》记有薛烛为越王允常相剑的故事,他事先并不知情,仅凭观察,判明了各剑的名称、优劣,并历数其特征、来历和流传始末。这虽是后人编造的传说,但大致反映了相剑的情形。
《韩非子·说林上》也记有一则与相剑有关的故事:
曾从子是一位善相剑之人,客游卫国。卫君怨吴王,曾从子就说:吴王好剑,我是相剑者,请大王让我去为吴王相剑,乘机将他刺死。卫君却说:“你这样做并非缘于义,而是为了利。吴国富强,卫国贫弱,你如果真去了,恐怕反会为吴王用之于我。于是就将曾从子逐走了。
这个故事来看,春秋晚期似已有相剑术。尽管《说林》中的故事都是为游说而编集的事例,有些来源于传说,有些是韩非自己杜撰的,不一定真有其事;但说相剑术大约初起于春秋晚期,却完全有可能,因为古代铜剑正是在这个时期趋于成熟兴盛,并在战争和社会生活中得到了广泛应用。
相剑之所以能够流行而形成为了一门方术,与贵族中盛行的带剑、好剑之风有着密切关系。由于社会上有这么一个显赫阶层,不仅盛行佩剑,而且喜好精良华美的宝剑,于是就出现
了一些以相剑为务的术士,他们出入豪门,专为权贵鉴别刀剑。曾从子、薛烛之流,可谓典型。

我的回答还有一些,字数超过10000字系统提示不让发送了,你去看http://bbs.ywms.net/viewthread.php?tid=43182

❸ 金锡合金的金锡合金的性能

金锡共晶焊料处于共晶点位置,熔点为280℃,焊接温度只需300 ℃~310 ℃ ,仅比熔点高出20 ℃~30 ℃ 。在焊接过程中,基于合金的共晶成分,很小的过热度就能使合金熔化并润湿器件;另外,金锡共晶合金的凝固过程进行得也很快。因此,金锡共晶合金的使用能够大大缩短整个焊接过程周期。
金锡共晶合金的焊接温度范围适用于对稳定性要求很高的元器件组装。同时,这些元器件也能够承受随后在相对低一些的温度利用无铅焊料的组装。这些焊料的组装温度大约在260 ℃ ,当这些焊料完成熔化、焊接时,金锡共晶合金焊接头不会失效。
虽然金锡共晶合金的熔点温度较低,但其仍属于硬焊料。焊接接头的强度是评判焊接质量的首要指标,该强度越高,说明可靠性越高,反之则越差。
金锡共晶焊料在室温下的屈服强度很高,即使在250 ℃~260 ℃的温度下,它的强度也能够胜任器件气密性要求。
金锡共晶合金焊料的热导系数很高,比常用的某些Sn基合金、Pb基合金及Au基合金低温焊料具有更为优良的热导性。
金锡共晶合金焊料处于共晶点成分,所以熔化后流动性能很好,粘滞力小。焊接熔化后很容易铺展,且能填充一些较小的空隙。特别是焊接光纤头时,采用金锡共晶合金制备的焊环在焊接温度下,快速熔化并充满待焊间隙,完成焊接。
金锡共晶合金的抗蠕变性能和抗疲劳性能也很优良。一些电子产品的应用环境可能十分恶劣,如军用电子产品,这些产品往往要经受温度的循环变化和应力的循环变化,为了保证器件工作的正常运行,采用金锡焊料,可以有效的防止蠕变和疲劳引起的焊点。
金锡焊料中含有大量的金,所以焊料金属的抗氧化性能优良,在空气中焊接时,材料表面的氧化程度较低,可以得到可靠的焊接接头,同时还具有好的抗腐蚀性能和导电性能。

❹ 古代铜镜的制作工艺

铜镜铸造制作工艺
所谓铜镜铸造制作工艺,是指将纯红铜和锡,或铅或锌,通过严格配比,进行冶炼溶化,再灌入模范,冷却后取出毛坯,最后进行机械加工,表面涂锡汞,成为可照容的日用品的工艺过程。
生产铜镜要进行许多道程序,而每一道工序都有严格标准。如某一道工序发生缺陷,都会影响铜镜的质量,甚至出次品,带来损失。在铜镜产生的四千多年历史过程中,战国、两汉、隋唐铜镜制作最精美,是当时社会经济繁荣的产物,为收藏者孜孜追求。而宋以后精品少缺,其历史原因应与一些铸造制作的关键工艺的失传有关。虽然明人宋应星《天工开物》一书有介绍,但不详细,难于掌握,并且是宋以后之事了。近年来,随着收藏热的升温,对古铜镜研究的深入,逐步对古人铜镜铸造制作工艺有了全面科学分析与了解。作为一名收藏铜镜爱好者必须全面了解铜镜的铸造制作工艺,掌握铜镜生产全过程的知识,用理论指导实践。在恒心的支撑下,才能慢慢的进入收藏的佳境,从而实现对铜镜实物,无论是理论上与实践上,对鉴定、断代、修复、鉴别伪品,都能够有一个正确的判断。
(一)采矿和冶炼:
青铜是红铜和锡、铅等金属的合金。地面可采集的自然铜很少,铜镜大量的铸造必须依靠铜矿的大规模开采和冶炼。中国铜矿资源的开发是商周铸造业发展的物质基础。中国青铜器遗存数量很多,说明古代铜矿的开采和冶炼具有相当的规模。由于采矿遗迹深埋地下,不容易被发现,到目前为止,考古工作者发现大型的和比较大的矿冶遗址只有几处:如湖北省大冶铜绿山矿冶遗址;辽宁省林西县大井古铜矿遗址;湖北省麻阳古矿井遗址;安徽铜陵铜矿井遗址等。
(二)各个时期的铜镜合金成分:
《考工记》是先秦古籍中的重要科学技术著作,它是春秋末齐国人记录手工业技术的官书。是我国,也是全世界关于铜镜及其他器物合金配比的最早记载。青铜是金属中最早的合金。人类由石器时代进入青铜时代,距今约5000年左右。先民们已开始掌握了制造合金的技术方法。采用两种或两种以上的金属,经过高温使它熔合在一起,制造成为另一种金属,从而具备了新的物理和化学性能,这就是合金。合金在铸造方面是属于金属再创造,青铜是合金的首创。
青铜作为一种合金,与纯铜相比,它的优点是硬度高、光泽好、能发出青光,可照容,以及抗腐蚀性能好。中国古代的锡青铜中常含有少量的铅,使得铜液在灌铸时流畅性能好,不易阻塞,但铅分子唯溶解于铜内,只能在铜液中均匀地分布作滴状浮悬。红铜的溶点是1084.5℃,若加上15%的铅,熔点降到960℃,若加上25%的锡,熔点则为810℃。然而,加铅或加锡,其意义不仅在于降低熔点,更重要的是使合金的物化性能得到极大的改善。在距今3000年的西周时代,我国先民已熟练地掌握了复杂的合金制造技术,并创造出令现代人叹为观止的、精美绝伦的青铜艺术品。如雄浑重器铜方鼎、玲珑剔透的云纹镜、锋利无比的吴王夫差矛等。
对此,成书于春秋战国时期的《周礼·考工记》上有大量的记载。周朝设有冬官司空掌管百工事宜,负责“营城郭,建都邑,造车服器械”。具体就冶金铸造而言,百工中又产生了十分细密的产业分工,即“攻金之工,筑氏执下齐,冶氏执上齐,凫氏为声,
氏为量,段氏为镈器,桃氏为刃。”明确由专业匠人分别专造乐器、量器、农具和刀器。对此现象,汉代郑司农解释道:“其曰某氏者,官有世功,若族有世业,以氏名官者也。”由此可知,在周代,冶金铸造业已成为重要的社会经济产业,并历史性地形成了专造某一类器物的家族,并因世袭而成为官名,这是其一。

其二,由于实践经验的日积月累,先民们能从不同的矿石中分别提炼出金(即红铜)、铅、锡、锌等金属,通晓不同的金属各自的理化性能,并在此基础上,按照自己的意愿,根据不同器物的特殊用途要求,创造出分门别类的合金。“六齐之论”即是合金制造的理论总结。《周礼·考工记》记载:“金有齐:六分其金而锡居一,谓之钟鼎之齐。五分其金而锡居一,谓之斧斤之齐。四分其金而锡居一,谓之戈戟之齐。三分其金而锡居一,谓之大刃之齐。五分其金而锡居二,谓之削杀矢之齐。金锡半,谓之鉴燧之齐。”这清楚地告诉我们,当时的工匠不仅清楚青铜中含锡量越高,质地越硬的原理,还把握住了硬度和韧度、光亮度在工具不同部位各自的特殊要求,按需制作。如采用复合技术制造剑时,用含锡较低的青铜做剑脊,用含锡高的青铜做剑刃,如此造出的剑,剑锋锐利,剑身坚韧,杀伤力大且经久耐用。具体就铜镜而言,光亮度是其重要特征,铜锡各半,能使光洁度恰到好处。故先贤总结“金锡半”为制造鉴燧最合适的配比剂量。但各个时代铸造的铜镜,因各种因素的影响,它的金属配比有所不同,加工方式亦不同,所以铜镜断代,主要应借助于先进的现代化科学仪器进行测试。对于无法确切断代的铜镜,如果我们掌握各时期金属配比的知识,再结合铜镜其它方面的特点,也是可以做出准确的判断的。

齐家文化铜镜的铜锡比例是1:0.096。商周镜含锡量稍高,但质地远不如同时期的青铜礼器,对镜面缺乏必要的防锈处理。战国铜镜中铜、锡、铅的比例已较稳定,铜大多在68%上下浮动,多的达74.8%,少的也在56.6%以上,但锡的比例一般在20%左右。另外,铅的比例在0.45%—3%。战国镜中有一种表面黑里透亮似涂有一层厚厚的黑漆,被称之为“黑漆古”的,这类镜保存完好,尤其是它的防锈技术令现代人叹为观止,这与当时制镜的金属配比是直接相关的。
汉镜的合金配比较为稳定,铜占60—70%左右,锡占20—24%,铅占4—6%左右的配比最为普遍。汉镜保存稍好的镜面仍可反光,有的精品还能反射出青褐色的光。魏晋南北朝铜镜的合金配比不稳定,较易锈蚀,色以黑褐居多。
唐镜,尤其是盛唐时期的镜子,呈银白色,其金属成分中,大体铜平均69%,锡25%,铅5%,配比较为稳定。在唐代,已采用了向镜中加入微量或一定量的银的新工艺,使得典型的盛唐时期铜镜泛银白色光,很少有铜绿锈色,似乎不是青铜铸成,给人以厚重、富态之感,加之纹饰绚丽多彩、内容丰富,实为难得之艺术珍品。明《天工开物》记述:“唐开元宫中镜尽以白银与铜等分铸成,每口值银数两者以此故。朱砂斑点乃金银精华发现……,唐镜、宣炉皆朝廷盛世物云。”唐镜珍贵,因银而贵。
宋、西夏、辽、金、元铜镜,合金成分发生了变化,含锡量仅有10%左右,含铅量却增至8%以上,最多达23.7%,大大高于汉唐镜平均5%的数量,锌含量也增多,最高达8%,所以,这时期的铜镜呈黄铜色,一般都布满铜锈。虽形制较薄,但因含铅多,反比汉镜为重。
明代是我国古代铜业比较发展的一个阶段,采铜业兴盛,当时冶铜及其合金技术的主要成就有三:一是火法炼铜技术有了进一步提高;二是直接使用金属锌配制了黄铜;三是制造了宣德炉,它在合金配制方面达到了一个新的高度。铜锌合金一般都是黄色的,故名黄铜。铜锌合金颜色与含锌量关系是:含锌10%左右时赤带黄,15%左右时黄带赤,25%左右呈黄色,30%左右为深黄色。明、清铜镜大多呈黄色,其合金配比是铜70—75%,锌25—30%。因黄铜流动性较好,有利于改善合金的铸造性能。

❺ 我国古代铜镜是怎样做的

铜镜铸造制作工艺
所谓铜镜铸造制作工艺,是指将纯红铜和锡,或铅或锌,通过严格配比,进行冶炼溶化,再灌入模范,冷却后取出毛坯,最后进行机械加工,表面涂锡汞,成为可照容的日用品的工艺过程。
生产铜镜要进行许多道程序,而每一道工序都有严格标准。如某一道工序发生缺陷,都会影响铜镜的质量,甚至出次品,带来损失。在铜镜产生的四千多年历史过程中,战国、两汉、隋唐铜镜制作最精美,是当时社会经济繁荣的产物,为收藏者孜孜追求。而宋以后精品少缺,其历史原因应与一些铸造制作的关键工艺的失传有关。虽然明人宋应星《天工开物》一书有介绍,但不详细,难于掌握,并且是宋以后之事了。近年来,随着收藏热的升温,对古铜镜研究的深入,逐步对古人铜镜铸造制作工艺有了全面科学分析与了解。作为一名收藏铜镜爱好者必须全面了解铜镜的铸造制作工艺,掌握铜镜生产全过程的知识,用理论指导实践。在恒心的支撑下,才能慢慢的进入收藏的佳境,从而实现对铜镜实物,无论是理论上与实践上,对鉴定、断代、修复、鉴别伪品,都能够有一个正确的判断。
(一)采矿和冶炼:
青铜是红铜和锡、铅等金属的合金。地面可采集的自然铜很少,铜镜大量的铸造必须依靠铜矿的大规模开采和冶炼。中国铜矿资源的开发是商周铸造业发展的物质基础。中国青铜器遗存数量很多,说明古代铜矿的开采和冶炼具有相当的规模。由于采矿遗迹深埋地下,不容易被发现,到目前为止,考古工作者发现大型的和比较大的矿冶遗址只有几处:如湖北省大冶铜绿山矿冶遗址;辽宁省林西县大井古铜矿遗址;湖北省麻阳古矿井遗址;安徽铜陵铜矿井遗址等。
(二)各个时期的铜镜合金成分:
《考工记》是先秦古籍中的重要科学技术著作,它是春秋末齐国人记录手工业技术的官书。是我国,也是全世界关于铜镜及其他器物合金配比的最早记载。青铜是金属中最早的合金。人类由石器时代进入青铜时代,距今约5000年左右。先民们已开始掌握了制造合金的技术方法。采用两种或两种以上的金属,经过高温使它熔合在一起,制造成为另一种金属,从而具备了新的物理和化学性能,这就是合金。合金在铸造方面是属于金属再创造,青铜是合金的首创。
青铜作为一种合金,与纯铜相比,它的优点是硬度高、光泽好、能发出青光,可照容,以及抗腐蚀性能好。中国古代的锡青铜中常含有少量的铅,使得铜液在灌铸时流畅性能好,不易阻塞,但铅分子唯溶解于铜内,只能在铜液中均匀地分布作滴状浮悬。红铜的溶点是1084.5℃,若加上15%的铅,熔点降到960℃,若加上25%的锡,熔点则为810℃。然而,加铅或加锡,其意义不仅在于降低熔点,更重要的是使合金的物化性能得到极大的改善。在距今3000年的西周时代,我国先民已熟练地掌握了复杂的合金制造技术,并创造出令现代人叹为观止的、精美绝伦的青铜艺术品。如雄浑重器铜方鼎、玲珑剔透的云纹镜、锋利无比的吴王夫差矛等。
对此,成书于春秋战国时期的《周礼·考工记》上有大量的记载。周朝设有冬官司空掌管百工事宜,负责“营城郭,建都邑,造车服器械”。具体就冶金铸造而言,百工中又产生了十分细密的产业分工,即“攻金之工,筑氏执下齐,冶氏执上齐,凫氏为声,
氏为量,段氏为镈器,桃氏为刃。”明确由专业匠人分别专造乐器、量器、农具和刀器。对此现象,汉代郑司农解释道:“其曰某氏者,官有世功,若族有世业,以氏名官者也。”由此可知,在周代,冶金铸造业已成为重要的社会经济产业,并历史性地形成了专造某一类器物的家族,并因世袭而成为官名,这是其一。

其二,由于实践经验的日积月累,先民们能从不同的矿石中分别提炼出金(即红铜)、铅、锡、锌等金属,通晓不同的金属各自的理化性能,并在此基础上,按照自己的意愿,根据不同器物的特殊用途要求,创造出分门别类的合金。“六齐之论”即是合金制造的理论总结。《周礼·考工记》记载:“金有齐:六分其金而锡居一,谓之钟鼎之齐。五分其金而锡居一,谓之斧斤之齐。四分其金而锡居一,谓之戈戟之齐。三分其金而锡居一,谓之大刃之齐。五分其金而锡居二,谓之削杀矢之齐。金锡半,谓之鉴燧之齐。”这清楚地告诉我们,当时的工匠不仅清楚青铜中含锡量越高,质地越硬的原理,还把握住了硬度和韧度、光亮度在工具不同部位各自的特殊要求,按需制作。如采用复合技术制造剑时,用含锡较低的青铜做剑脊,用含锡高的青铜做剑刃,如此造出的剑,剑锋锐利,剑身坚韧,杀伤力大且经久耐用。具体就铜镜而言,光亮度是其重要特征,铜锡各半,能使光洁度恰到好处。故先贤总结“金锡半”为制造鉴燧最合适的配比剂量。但各个时代铸造的铜镜,因各种因素的影响,它的金属配比有所不同,加工方式亦不同,所以铜镜断代,主要应借助于先进的现代化科学仪器进行测试。对于无法确切断代的铜镜,如果我们掌握各时期金属配比的知识,再结合铜镜其它方面的特点,也是可以做出准确的判断的。

齐家文化铜镜的铜锡比例是1:0.096。商周镜含锡量稍高,但质地远不如同时期的青铜礼器,对镜面缺乏必要的防锈处理。战国铜镜中铜、锡、铅的比例已较稳定,铜大多在68%上下浮动,多的达74.8%,少的也在56.6%以上,但锡的比例一般在20%左右。另外,铅的比例在0.45%—3%。战国镜中有一种表面黑里透亮似涂有一层厚厚的黑漆,被称之为“黑漆古”的,这类镜保存完好,尤其是它的防锈技术令现代人叹为观止,这与当时制镜的金属配比是直接相关的。
汉镜的合金配比较为稳定,铜占60—70%左右,锡占20—24%,铅占4—6%左右的配比最为普遍。汉镜保存稍好的镜面仍可反光,有的精品还能反射出青褐色的光。魏晋南北朝铜镜的合金配比不稳定,较易锈蚀,色以黑褐居多。
唐镜,尤其是盛唐时期的镜子,呈银白色,其金属成分中,大体铜平均69%,锡25%,铅5%,配比较为稳定。在唐代,已采用了向镜中加入微量或一定量的银的新工艺,使得典型的盛唐时期铜镜泛银白色光,很少有铜绿锈色,似乎不是青铜铸成,给人以厚重、富态之感,加之纹饰绚丽多彩、内容丰富,实为难得之艺术珍品。明《天工开物》记述:“唐开元宫中镜尽以白银与铜等分铸成,每口值银数两者以此故。朱砂斑点乃金银精华发现……,唐镜、宣炉皆朝廷盛世物云。”唐镜珍贵,因银而贵。
宋、西夏、辽、金、元铜镜,合金成分发生了变化,含锡量仅有10%左右,含铅量却增至8%以上,最多达23.7%,大大高于汉唐镜平均5%的数量,锌含量也增多,最高达8%,所以,这时期的铜镜呈黄铜色,一般都布满铜锈。虽形制较薄,但因含铅多,反比汉镜为重。
明代是我国古代铜业比较发展的一个阶段,采铜业兴盛,当时冶铜及其合金技术的主要成就有三:一是火法炼铜技术有了进一步提高;二是直接使用金属锌配制了黄铜;三是制造了宣德炉,它在合金配制方面达到了一个新的高度。铜锌合金一般都是黄色的,故名黄铜。铜锌合金颜色与含锌量关系是:含锌10%左右时赤带黄,15%左右时黄带赤,25%左右呈黄色,30%左右为深黄色。明、清铜镜大多呈黄色,其合金配比是铜70—75%,锌25—30%。因黄铜流动性较好,有利于改善合金的铸造性能。(三)造型陶范、石范和泥范的制作:
学术界已知有镜范出土,大约是清末以后的事,从报道和著录情况看,这些镜范始见于春秋晚期,多属战国至西汉时期,计约30多片。
1、镜范的制作:制作陶范的基本成分是粘土和细砂。但陶模和陶范在铸造青铜镜时所起的作用是不相同的,前者决定器物的造型,而后者却需要承受上千度高温的铜液的冲击,并在其中冷却。因此陶范除了耐高温以外,还要有良好的机械强度,经得起液灌浇冲刷而不致损坏,同时还要有一定的透气性。因为铜液灌入后,会在范中产生程度不同的气体,这些气体大部分通过浇口和冒气口排出范体外,少量的需要通过范的毛细孔渗透出去,以保证所铸器物在外观上看不出气孔之类的铸造缺陷。因此制作陶范的泥土必须是很细腻的,在既能够清晰反映出铜镜上的铭文和花纹的同时,又要有很好的吸收性。
陶范要达到耐热性能优良,机械强度也相当好,用来制范的泥土必须精心淘洗。淘洗的目的一方面是把泥料按粒度分级,另一方面将泥料中所含碳酸钙、硫酸盐等有机物溶于水中,以减少这种盐类的危害,否则会造成降低耐火度、烧结温度和增加发气性。
制范时先用粗“真土”制成范的雏形,然后再依次加上较细的“中真土”、“造型真土”,及至到了范面,再加上极细的“肌真土”。制作一枚直径约25厘米的镜子,范厚约需12厘米,其中“粗真土”层厚约8厘米,“肌真土”是最薄的,大约只有0.1厘米。这种分层用料法的优点是既可保证生产对铸型的各项性能要求,亦可节省较细的优质“真土”。《天工开物》指出:“凡铸镜,模用灰沙,铜用锡和,不用倭铅。”倭铅,即锌,对铜镜质量有影响,故不能用。灰沙是用稻谷壳灰之类透气性和保温性较好的材料,和颗粒很细的细砂伴和而成。这样的材料才适合做镜模。
石范今见于著录和报道的有通化汉代博局四神石质镜范。范体呈瓢形,范径

约20.5厘米,有浇口一个,下宽5.3厘
米,范面图纹清晰。另一片镜径约17厘
米,范面内容为柿蒂座。座外方格内有
十二地支铭,主题纹饰为四神及规矩符
号。主纹区外有一周铭带:“尚方作镜 (见图1—18)
真大好,上有仙人不知老,渴饮玉泉饥
食枣,浮游天下敖四海,寿如金石为国保。”计35字。上海市博物馆还藏滑石质“镜范”1片(见图1—18)。在石范中,有的大约是可以用来浇铸的,如“通化石范”等。有的则可能是用来制范的阴模,如“上海石范”,它的优点是能耐高温及能多次反复使用,线条式纹饰尤其特出,尽显风采,但出土实物少,需要深入研究。
石范铸镜工艺当与泥范有些相似,但有一些区别,主要差别是其范为石料直接雕成,属半永久型。
泥范铸镜的优点是:造型较易,并可制作出许多细如发丝、纤毫无失、形态各异的镜背图纹来,特别是制作大镜、定做器尤为方便,缺点是通常一范只能用一次,不能批量生产。
以上是镜范出土和著录的大概情况,有重大价值的陶范和石范,多属战国至西汉时期,主要出于今河北、山东、山西、陕西、吉林等北方省区,南方迄今未见,大约与其地潮湿,陶范又是易碎之物有关。
(四)陶范的翻制:
大凡一般青铜器造型,皆须先制模,后制范。此“模”可用木块、陶泥雕成,也可用范土制成。若器物形制较为简单,所需产品较少,此“模”便可直接用来制范,若器物形制较为复杂,花纹较为繁缛,需对其多次修整;或产品需要量较大,祖模需长期保存备用,则须由“祖模”(一次阳模)制出“一次阴模”,再用“一次阴模” 制出“二次阴模”,再用“二次阴模”来制范。对花纹图案的修整,通常宜在阳模上进行,对于高浮雕花纹,则可通过堆砌、按压、雕刻等方式,在泥质阳模上制出。官方作坊所铸之镜,都是依朝廷提供的某种标准镜模来制作的。铜镜的成熟技术在我国沿用了二千余年,历代铜镜的花纹、形制不同,对产品的需要量亦不一样,故其对陶范的翻制也就千差万别。有关研究认为,我国古代铜镜陶范的翻制常用的是整范整模复制,这应是我国古代镜范制作使用最普遍的传统方法。
镜背范的制作:做法是先用木料、陶片或金属等制成了整个镜背图纹的模子,后再在一个造型框内用夯填法复制,只需一次操作便可得到一块完整的镜背范。这实际上就是一种整范整模复制。“夯填法”在古代金属铸造型过程中,具有十分重要的意义,许多铜铁铸范都是使用此法制成的,否则,便很难获得清晰的棱角和花纹,就是现代,某些场所还在应用。另外,还有整范分模复制,分范分模复制等方法。
面范的制作:制作面范与背范的造型材料应大体一致,造型方法大同小异。但面范有它的要求,即铜液接触的表层和支撑表层的厚厚的基体层的要求不同。表层的陶土致密,渗有匀净的细砂,有的厚度约在0.5厘米左右。基体层除了同样掺和细砂以外,还包含有丰富的孔洞,主要是在土中拌和切碎的植物茎叶和麦秸等草料,使阴干时不致开裂变形,浇铸时易出气体。
(五)铜镜浇铸的基本(工艺)操作:
1、顶式浇铸法:
我国古代金属铸造的传统工艺一般主要是泥型,石型也占有一定的比例。范片经焙烧,凉透后,便可合范浇铸。浇铸前,铸范需要预热,以防止产生废品。浇铸温度不宜过高,这不但可减少金属吸气等弊端,而且可避免范面烧结,保证顺利脱范和镜面质量。一般而言,内浇口是设计好的,是不会浇不到的。在此有几点值得注意的是:
(1)因锡青铜的树枝状晶甚为发达,此枝晶间的小液池最后冷凝时并无金属液填补,铸件在固态收缩时常被拉裂,故浇铸过程中要切忌金属内部再产生自张力,否则容易炸裂。
(2)因锡青铜的冷凝收缩主要表现为分散性收缩,疏松倾向很大,故铜镜设计时,应尽量考虑这一因素,避免疏松大量出现于镜面。
(3)范和芯皆应烧透,避免重新吸气,尤其是钮芯,否则会极大地影响背纹的清晰度。组织疏松和芯子发气在古铜镜实物收藏中,常可看到。
从现有镜范的外形看,我国古铜镜浇铸主要是采用顶式浇铸法的(图1—19)。一套范(即一片面范,一片背范)组成一个浇铸系统,每套范可单独浇铸,也可叠在一起。顶式浇铸的优点是:浇铸过程较为简单,从而减少了制作工作量和金属损失,缺点是易引起金属飞溅。
2、透雕镜特殊浇铸法:
特殊浇铸法主要用于铸造双层透雕镜。其镜面和镜背系由两种成份不同的合金复合嵌铸而成,通常是镜背部分嵌到了镜面部分中,即“镜面”包“镜背”。双层透雕镜始见于春秋晚期、战国中后期和西汉初期仍有使用,直至到唐、宋、元代。其正背两部分金属一般嵌合较好,很少看到分离开了的,一般说来,这类镜子应当是先浇镜背,之后才浇镜面,金属冷凝后,与镜面部分连在一起的镜缘同样会产生一个紧箍力,从而加强了两部分金属嵌合。
3、夹镜特殊浇铸法:
我国古代文献中,关于夹镜有详尽的记载。夹镜具有如下几个特点:1、镜面与镜背分为两层,而且中空。2、“正面部分”较薄,与普通镜子同样,“背面”亦可有图纹凸起。3、没有焊迹。4、其声冷然纤远。关于夹镜的材料,同样是高锡青铜,因为只有清晰高锡青铜花纹,才能达到此种效果。夹镜成型工艺比较复杂,不是铸的,也不是焊的,是使用一种与前述双层透雕纹镜相近,而又不完全相同的特殊方法加工而成的。其工艺要点是:1、先分别铸成了“镜面部分”和“镜背部分”,并且“镜面部分”要向后凸出一个圆环状的背缘来,使之最后能够夹住“镜背”;2、将铸好的“镜背”、“镜面”两部分金属分别进行一次淬火处理;3、把“镜面部分”加热到β相区,即稍高于586℃的范围,保温后趁热以强力使之与“镜背部分”套合、候冷,两部分金属便紧密粘合在一起了;4、用锡汞齐把接合部位抹平并打光,把接缝遮盖住。“镜面”与“镜背”两部分的尺寸必须十分准确,不能失之纤毫,接合面须光洁干净,不得殊留任何氧化物、易挥发物。“夹层空腔”的大小要选择得当,套合火候要适宜,否则便难以达到长久不分离的效果。夹镜难得,看来主要是难制之故。
4、铜镜热处理技术:
高锡青铜是既硬且脆的,为改善铜镜的加工和使用性能,战国、汉唐时人们经常对它进行一些淬火和回火处理,这操作大约是铸造成形后,并稍经简单清理后,始才着手进行。从现代技术原理上看,铸态高锡青铜淬火前,其性硬且脆。淬火后其塑性好,使材料强度、塑性都有了明显提高,硬度却下降了,回火温较低时,硬度又复回升,回火温度提高后,硬度又复下降。这主要是指强度而言的。我国古代铜镜淬火术,约发明于春秋战国时期,从战国到汉唐间使用得较普遍。从文献记载和现代技术原理看,古镜淬火、回火的技术效果大约有3个方面:1、强度和塑性提高了,从而改善了它的切削加工性能,回火温度稍高时亦同此理;2、因强度、塑性的提高,便减少了铜镜损坏的机会,延长了使用年限;3、回火后,颜色皆近于青灰,而“青近白”故宜于镜。今见一般战国、汉唐镜断口皆洁白如银,当与此有关。可见铜镜淬火后既保存了锡态,锡青铜原有的一些优点,又改善了加工性能,延长了使用年限,是一项相当合理、科学的工艺。
青铜淬火是我国古代金属技术的一项杰出成就,它使用得如此之早,如此之广,在古代世界其它地方是很少看到的。

❻ 金锡合金融化后会与无氧铜焊接在一起吗

金锡共晶焊料处于共晶点位置,熔点为280℃,焊接温度只需300 ℃~310 ℃ ,仅比熔点高出20 ℃~30 ℃ 。在焊接过程中,基于合金的共晶成分,很小的过热度就能使合金熔化并润湿器件;另外,金锡共晶合金的凝固过程进行得也很快。因此,金锡共晶合金的使用能够大大缩短整个焊接过程周期。
金锡合金的流动性和浸润性很好,和无氧铜可以很好的浸润,没有问题的。清洗干净的
金锡合金焊料与无氧铜,可以在真空中或还原保护性气体中进行钎焊。

❼ 金锡半谓之鉴燧之齐

这句话的理解历来有不同的见解,关键就在於对什麼是「金」,什麼是「锡」的定义上。有的学者认为「金」指的是纯铜,有的理解「金」指的是青铜合金;至於锡,大多数学者认为是纯锡,不过也有学者认为「锡」是铅与锡的总称。
鉴燧之齐的铜锡比例,竟然高达1比1,这其实是很不合理的。锡含量过高时,合金会变脆,容易碎裂。在此有的学者认为金指的是纯铜,「金锡半」,因为行文语气的关系,其实应该是「金一锡半」,所以鉴燧之齐的铜锡比就是2:1。

❽ 硅青铜成份和配比

据从地下出土的青铜文物的化学成分看,《考工记》里除“鉴燧之齐” 、“大刃之齐” 及“削杀矢之齐”以外3“齐” 的合金比例,都较比青铜文物的实际含锡量稍偏大。如湖北随县曾侯乙墓出土战国早期的大型编钟,经采用现代科学方法检测了五枚钟的结果,其合金里的锡含量为12.49%至14.6%,平均含锡量为13.75%。华觉明先生认为:我们应当如实地理解“六齐”本意,所谓“六分其金而锡居一”, 应指铜六锡一,即含锡量应为14.3%左右的锡青铜。┉。试以湖北随县曾侯乙墓所出编钟为例,则五件钟的含锡量是从12.49%到14.6%,平均含量13.75%,含铅量从1.29至3.19%,平均含铅量1.79%,和“钟鼎之齐”(含锡量14.3%)相当接近【3】。华觉明先生认为,“六分其金而锡居一”应当理解成七分,只有在这个比例下的含锡量,才最接近战国编钟的实际含锡量。

著者认为,“六分其金” 应是指一个完整的合金重量,“而锡居一” 的合金含锡量,应理解为5分金1分锡。如按这个比例计算,其合金的含锡量,应为16.67%。因六分其金里本已“居” 有一分锡在内,所以,不应在六分以外再增加一分。

应该看到,含锡量16.67%的合金配制,是熔炼合金之前配制新金属原料的比例,并非铸成钟以后的化学成分。如果含锡量16.67%的合金在熔炼时烧损了2%的锡,其化学成分也会与曾侯乙编钟的实际含锡量相符。

铸造这么大型的编钟,如果每一枚钟都熔炼新金属料,除费工费时外,铸造时也不容易保证钟的质量;应当在进行浇铸之前,先配制合金,即按“钟鼎之齐” 的配方先熔化成合金备用,待需浇铸钟体时,再用已配制好了的合金进行熔炼时,铸造工艺才能较顺利地进行。

制泥范的造型工与熔化合金的炉工,应为两个各负其责的两个不同的工种,对于象曾侯乙这么大型的编钟更应如此;合金经两次熔炼以后,按每次熔练过程中锡被烧损1%计,待浇铸成钟时,也就基本达到了现在检测的数值了。这里需要提出的一个问题是,浇铸每枚钟时的熔铜量,一般只会多于钟的重量,剩余料与从钟铸件上取下来的水口冒口以及废品,又会回炉再用于熔炼浇注;其合金在经多次熔炼的过程中,锡的含量会随熔炼的次数不断地减少,因此,青铜文物的实际含锡量,应少于历史文献里的理论含锡量2%至4%都应属于正常。科学检测五枚钟的含锡量之所以从12.49%至14.6%的,就是因为回炉料的回炉次数不尽相同所至。回炉料回炉熔炼的次数越多,其合金里的含锡量就会越少。这一规律是符合客观事实的,我们在长期的铜镜生产实践中亦是如此。

若按照这个观点,其它三“齐”的合金成分也分别与出土战国以前的青铜文物基本相符, 但“鉴燧之齐” 、“大刃之齐” 及“削杀矢之齐”的铜锡比例,如简单地从字面理解,就会觉得与实际应用相差甚远。关于“大刃之齐” 及“削杀矢之齐”,将另文讨论,这里只谈“鉴燧之齐”。

围绕“鉴燧之齐”,许多学者曾各自提出了自己的观点,对其中的“金锡半”进行了各种解释。战国时代人们将铜称之为“金”,将现代的金称之为黄金,这里的“金”,即现代的红铜。“金锡半”如从字面讲,可以有如下两种理解;其一,“金锡半”,为铜、锡各半,即铜、锡各50%;其二,“金锡半”中金为一个重量单位,锡半,即锡为金(红铜)的一半。若按照以上这两种概念计算,则铜镜及阳燧合金里的含锡量,应分别为50%及33.3%。目前,大多数学者认为,解释成33.3%的含锡量较为合理。

近二十年来,国内对古铜镜作过化学成分分析的学者有中国科学院自然科学史研究所何堂坤先生、上海博物馆谭德睿先生、吴来明先生、中国科技大学的王昌燧教授、成都科技大学(现改名四川联合大学)的田长浒教授、北京科技大学冶金史研究所的孙淑云教授、韩汝玢教授以及周忠福博士等等;他们分析的手段采用了化学定量分析、电子探针、扫描电子显微镜能谱分析、原子吸收光普等方法,来分析古铜镜的化学成分。

从众多的学者对古铜镜进行的化学成分分析报告表明,中国古代铜镜包括战国镜在内的绝大部分铜镜的含锡量,是以24%为中心上下浮动,其中战国镜偏低一些,一般含锡量在22%以下者为多;战国以后的铜镜合金含锡量就基本稳定在24%左右了,含锡量超过27%的古铜镜发现较少。

著者在长期生产实践中得知,每当熔炼合金配制金属料时,如果不小心将合金里的含锡量达到了25%时,铸出的镜坯非常脆,往往在脱范时,稍不留意就破碎了,如果铸坯从范腔中小心地脱出来,在铸后的打磨加工中,也很容易发生崩块现象,甚至破裂,镜缘的周边外缘也常会出现崩块。如图1所示,由于这枚铜镜含锡量稍大于24%,当铸后开范脱镜坯时,镜坯旱已断裂在范腔之中;如果熔炼时含锡量配制到了25%,在铸后的磨削加工中,虽然经过了几道加工工序,但稍不注意,还是造成了铸件的破损。

同一种含锡量的青铜合金,如果用于浇铸不同几何形状的镜体,其铸制出的铜镜的脆度也是不一样的;如含锡量为24%的青铜合金,分别浇注到唐代的海兽葡萄镜范及战国的四山镜范里,其结果是,唐海兽葡萄镜可稍加小心地正常加工,而战国的四山镜在铸后的加工中,就需格外小心,稍不留意,镜体就会破碎。究其原因,两镜的合金成分虽然相同,但唐代的海兽葡萄镜是高浮雕、高镜缘,从金属力学角度看,这种几何形状的镜体较之平板式的战国镜镜体耐冲击;而战国镜的镜体几何形状绝大部分为平板式镜体,在相同合金条件下,其耐冲击力远不如后代各朝的铜镜。因此,战国镜的青铜合金的含锡量,应普遍比后代铜镜稍微偏低,以不超过22%为宜才合逻辑。

在战国时代里,其铜镜合金的含锡量,应低于战国以后其它各时代铜镜的含锡量,如果战国铜镜合金中的含锡量超过了23%,其铸坯的铸后加工就会难上加难。从许多学者对古铜镜所作的化学成分分析报告中可以看到,在一系例各时代的铜镜合金成分中,战国镜的含锡量普遍偏低,一般为18%至21%左右。

战国时代的人,不可能看到后代青铜镜几何形状的变化,同样看不到因镜体几何形状的变化,而使得铜镜合金配比值的变化,因此,战国时代的记录,只能按照他们当时的流行工艺来记载。

《考工记》是战国时代的著作,其作者生活在战国时代,其记载应当是真实的、准确的。既然“鉴燧之齐”及“大刃之齐” 以外的其它各“齐”都记载得与出土战国时代的青铜文物基本相符,那么,“鉴燧之齐” 为什么会有如此之大的差异呢?

中国古代的文献记载里有许多文献没有标点,《考工记》也不例外;如果将“鉴燧之齐”里的“金锡半”,释读成“金、锡半”,就可理解为“金”、“锡半”各半;“金”是红铜,在这里可作为一个重量单位的一半;“锡半”是红铜与锡各半的合金,亦作为一个重量单位的另一半;即铜为50%,铜锡各半的合金亦为50%;那么,配料熔炼以后的铜锡合金的锡含量,理论上就成为25%;这个理论上的数值,与出土的战国镜合金的实际含锡量十分接近了。

为了考证古代的熔炼工艺,同时也为了证实湖北盘龙城出土的小型陶缸到底能否熔炼青铜,著者与盘龙城工作站站长李桃元先生进行研究,李先生提供了盘龙城出土小型陶缸的几何形状,我们按其形状也按其体积大小,用当地的泥土经过揉搓,制成了泥缸式炼炉;并采用了古代的熔炼方法进行了试验。如图2所示,用泥料作成的熔炉,高20cm,直径20cm,经阴干、焙烧成半陶质;分别于1999年10月与12月进行了两次试验。第一次试验时,用我们平时铸镜的回炉料2kg,其合金的化学成分约为Cn73%、Sn24%、Pb3%;炉底内放木炭,合金放在中间,上面盖木炭,风管放在熔炉正中间,风管的进风口用一个30w的电动小风机鼓风。当开风不足20分钟时,炉内的金属料已熔炼到了“炉火纯青”的程度,达到可正常铸镜的温度。因当时只是为试此炉是否能熔青铜,没有预计到该试验能这么顺利,所以没有提前准备镜范,因此,没有铸镜。这次的实验足可以说明,盘龙城出土的陶缸,不论其在商代是什么功用,但用其作为熔炉来熔炼青铜,是不成问题的。

第二次试验时,称回炉料与红铜各1kg,如图3所示,与第一次的熔炼工艺完全一致。但是,由于炉料里增加了一半红铜,其熔炼的难度就显露出来了。第一次试验时一次性将木炭放满后,直至将合金熔化至可浇注的温度,中间没有再添加木炭;而第二次曾添加了数次木炭,但合金的温度却始终达不到浇注温度。如图4所示,因这次试验原计划浇铸成镜,最后勉强将合金浇注了一套镜范。图5中左边为范腔,右边为铸出的日光镜,可以看出,浇铸的铜镜毛坯虽然成形,但接触过铜液的范面,连灰黑色的氧化层都没有形成。这说明,铜液温度不够,此镜系废品无疑。这次的铸镜失败的原因,是熔炼青铜合金的各种金属比例不适应战国以前的熔炉性质所至。

通过以上试验可知,在铸镜的实际生产中,常规的开炉铸镜,是不可能完全使用新合金进行熔炼的。陶质的镜范有较高的吸水率,在空气中长期存放很容易吸潮,如果浇铸不及时,就会造成整批的陶范报废;这就要求开炉浇注及时。如果开炉熔炼合金时全部使用新金属原料,将会造成大量的废品。虽然炉料里有低熔点的锡,但红铜在熔炼之前并没有成为合金,其熔点为1084.5℃,熔化速度较慢,当熔炼成为合金时,熔炉里的燃料也烧完了,其合金的熔炼温度始终达不到浇注温度的要求。最好的解决方法,就是在开炉铸镜之前,先按铜、锡各半的比例熔炼合金原料待用。在这种锡比例增加到如此高的前提下,熔炼速度会大大提高;熔炼出的合金并不是直接铸镜,而是作为配制的合金料待用。正常铸镜时,应该有三种料合起来进行熔炼;回炉料即水口、冒口、披缝、废品、跑火料及每次浇注的剩余料等,这些回炉料应占全部配料的一半,“金”与“锡半”两种料合起来占全部配料的另一半;即新配制的红铜料其实只占全部配料的四分之一,“锡半”,即铜锡各半的合金料亦占全部配料的四分之一;由于有了回炉料及低熔点的“锡半”合金,熔炼的速度才会大大地缩短,熔炼工艺才会顺利地进行,而回炉料的消耗量与铸镜的进度,也才能始终保持着一个相对稳定的平衡。如果哪-个铸镜作坊在每次的开炉铸镜时,只使用新金属原料而不加入回炉料,那么,回炉料对于这个铸镜作坊就等于废料;先不论其熔炼的技术难度,只算废金属料-项,就会远远超过所有铸出铜镜的重量;在实际铸镜生产中,这是不可能的。

战国时代的采矿、冶炼工艺技术及设备条件都远不及现代,其时代的铜料都掌握在方国或权贵手中,其珍贵是不言而喻的,不可能不大量地利用回炉料来进行铸造;回炉料并不是废料而是比新料更易于熔炼的合金料。我们在长期的铸镜生产中,每次熔炼合金时,虽然都配制了一半回炉料,但回炉料的数量还会不继地增多;到了-定时间,只有采取全部使用回炉料的办法,来暂时减少回炉料的数量。因此,在战国时代的铸镜过程中,每次开炉熔铜都会加入至少一半重量的回炉料。从“六齐”里每一“齐”都未曾提及回炉料看,“鉴燧之齐”的比例应是指回炉料以外新添金属料的配比值。

铜镜合金为Cu-Sb-Pb三元合金,其中,铜为合金的基本原料,合金里加锡的目的是使铜镜能够白亮,从而使得合金能有较高的光线反射率;而铅在铜镜合金里,必须随气候的变化而增减;不能将其按一个固定的数值来定值;铅在铜镜合金里,是对Cu-Sn二元合金起着平衡不同的气候对合金的收缩造成不同的收缩率的作用。可以认为,铅在铜镜合金里不是主要原料,而是一种比例很小的平衡剂。对于某一个特定的几何形状镜体或燧体而言,铅在其合金里的加入量,须隋季节的变化而变化;在一年当中,可以说每个月的铅含量都不一样【4】。因此,在“鉴燧之齐” 的合金比例里没有铅的比值就不足为怪了。

在现代有色金属铸造工艺中,为了避免某-种金属在熔炼过程中出现大量烧损,往往会采用先配制“中间合金”的方法,来达到目的。如欲熔炼含铝10%的铝青铜合金来铸造工件,如果采取90%的铜及10%的铝一次性进行熔炼的话,由于铝在1000℃左右时会开始大量气化,当铜被熔化完时,其液温至少超过了1100℃,当铝料被下入铜液时,早已超过了铝的气化点,且是在爆发式的情况下,铝的气化速度是很快的;甚至人们可以清楚地看到,熔炉周围的上方会如初夏的杨絮到处飘扬,这种在空中飘舞的一缕缕白絮,即是铝在熔炼时超过了气化温度而产生出来的铝蒸气。其熔炼的结果,可能合金里连5%的铝含量也达不到了。通常的作法是,先将铜和铝各以50%的重量熔化成合金;因金属铝的熔点低于铜300℃,所以,有50%的铝与铜熔炼时会大大降低铜的熔点,熔炼时,低熔点的铝也不会产生明显的烧损。当熔炼成合金以后,铝与铜生成了固溶体,再次熔炼时,就更不容易被烧损了。当开炉铸造含铝量10%的工业零件时,可先熔化80%的红铜,再加入20%的铝铜合金,这个合金被现代的人们称之为“中间合金”,这样熔炼的结果,就较容易地得到了10%的铝青铜。这样的工艺安排,使得合金的配制易于操作,且不容易出现-些意想不到的熔炼问题。

“六齐”里的任何一“齐” ,都应指的是回炉料以外新增加的金属料配方;如果完全采用新金属料按照“六齐” 里的任何一“齐” 来熔炼合金,对于战国时代的熔炼工艺而言,都是不大可能铸成器物的,必须在浇注器物之前,先按各种比例将金属料熔炼成为合金待用,只有这样安排工艺,才能顺利地进行熔炼、浇铸。

战国时代,人们将全部配制好了待浇注器物的合金称之为“齐”,那么,提前先配制好了待用的合金又称之为什么呢。在“六齐”中虽然没有这方面的文字记载,就如同“六齐”里没有对金属铅的记载一样,应该将其看成是一个客观存在的事实。著者以为“鉴燧之齐”中的“锡半”,即现代铸造工业中的“中间合金”。“锡半”应为铸镜前先配制好待用的合金。如采用这种方法进行熔炼时,回炉料多些或少些,新增料多些或少些都无关紧要,除回炉料外,只需将红铜料与“锡半” 料等量加入即可,基本不需要进行精密地计算,这对于熔炼工而言,省去了许多麻烦,而熔炼的结果,其合金里含锡量也正是战国镜的普遍含锡量。因此,“锡半”在“鉴燧之齐”里,即是量词、同时又是名词的双关语。

铸镜时的水口或冒口、废品及浇注时的剩余料加起来,其重量总会大于铸出镜体的重量,这就意谓着,在铜镜合金里,总是有相当一部分金属料是经过了无数次回炉熔炼的;在经多次熔炼过的合金里,其含锡量只会底于配料时的数值;因在每次的熔炼过程中,锡都会有所烧损,理论上25%的含锡量在实际的熔炼过程中会被越炼越低。

在战国时代里,人们已经历了两千余年的青铜熔炼工艺;对于锡在熔炼过程中的烧损,人们不可能没有认识。《考工记·栗氏》曰:“凡铸金之状,金与锡黑浊之气竭,黄白次之,黄白之气竭,青白次之,青白之气竭,青气次之,然后可铸也。”从这-段记载来看,其工艺是为了控制熔炼的温度,即掌握火候;当熔炼到“青气次之”之时,也就是熔炼到了所谓“炉火纯青”的火候了;如果此时不进行浇注而是继续熔炼,其合金里的锡与铅都会比铜的烧损严重。因此可以认为:战国时代的人们,是在充分地认识了青铜合金的熔炼工艺的性质以后著作出的《考工记》。

从我们多年的生产实践来看,古代每个铸镜作坊在开炉熔炼合金时,一般都须在炉中装入一半重量的回炉料及一半新料;比如若熔炼一炉10Kg的锡青铜,可用水口料、冒口料、废品披逢料等回炉料5Kg,新金属料5kg,按铜73%、锡25%、铅2%,应加入Cu3.65Kg、Sn1.25Kg、Pb0.1;在这一炉金属料之中,新金属料的总量为5Kg,其含锡量为25%;因回炉料里的含锡量少于正常配比,因此,其熔炼后的合金含锡量就会少于正常值;假设回炉料里的含锡量已降至18%,那么,加新配制的金属料熔炼出的合金,其含锡量也只有21.5%。在这种情况下,熔炼出的合金里含锡量的多少,就完全取决于回炉料所回过炉的次数了。因此可以认为,18%至22%之间,应是“金、锡半”配料方法的必然结果。由此看来,“鉴燧之齐金锡半”,需从范铸工艺及高锡青铜的熔炼等多方面去研究,不能仅限于《鉴燧之齐》里字面上对百分数的计算。

❾ 一块合金含金锡,锡和金比5:3,已知锡比金多100克,锡多少克含金量多少克

100÷(5-3)=50(克)锡:50*5=250(克)金:3*50=150(克)

❿ 古人用的铜镜是怎样制作的

铜镜就是古代用铜做的镜子。在古代,铜镜与人们的日常生活有着密切关系,是人们不可缺少的生活用具。铜镜又是精美的工艺品。它制作精良,形态美观,图纹华丽,铭文丰富,是我国古代文化遗产中的瑰宝。 上古的镜,就是大盆的意思,它的名字叫监。《说文》中说:“监可取水于明月,因见其可以照行,故用以为镜。”在三代之初,监都是用瓦制成的,所以古代的监字是没有金字旁的。到商代初年的时候,开始铸造铜鉴,后来鉴字也有了金字偏旁。商周时期,虽然有铜鉴,但是瓦鉴依然通行。

阅读全文

与如何从金锡合金分离出金相关的资料

热点内容
136钢材是多少度 浏览:94
pp模具收缩率是多少钱 浏览:153
不锈钢切菜神器多少钱 浏览:995
土工膜和钢管怎么粘合 浏览:693
水泥模具尺寸一般多少 浏览:528
焊接强度能保持多少 浏览:691
一桶油漆可以喷多少平方钢管 浏览:309
焊接钢管dn25每米重量多少 浏览:429
钢铁大师大招r怎么放 浏览:554
直径25钢管的外径是多少 浏览:531
铸造模具芯头覆膜破是什么 浏览:45
钨钼合金棒用什么锯片切割 浏览:186
硅元素在合金中以什么形式存在 浏览:835
无人防车库单方钢筋是多少钱 浏览:620
不锈钢牌多少钱平方 浏览:813
不锈钢和铁哪个容易受热 浏览:156
铝合金具体分类有什么 浏览:891
南阳焊接钢管多少钱一吨 浏览:857
铝镁合金门如何装饰 浏览:38
钉子种菌模具哪里有卖 浏览:686