导航:首页 > 焊接工艺 > 焊接中的顶锻过程是什么

焊接中的顶锻过程是什么

发布时间:2022-11-19 22:25:19

⑴ UNT-160对焊机的工作原理是什么求大神帮助

连续闪光对焊焊接循环由闪光、顶锻、保持、休止等程序组成。闪光、顶锻二个连续阶段组成连续闪光对焊接头形成过程。而保持、休止等程序则是对焊操作中所必须的。预热闪光对焊则对其焊接循环中(闪光之前)设有预热阶段。
闪光的形成实质:接通电源并使两焊件端面轻微接触。对口间将形成许多具有很小电阻的小触点,在很大电流密度的加热下,瞬间熔化而形成连接对口两端面的液体过梁。同时在液体表面张力径向电磁压缩效应力、电磁斥力,电磁引力作用下,再加上强烈的加热。过梁内部同它的表面之间形成巨大的压力差。例如:在低碳钢闪光对焊中资料表明,过梁中的电流密度在爆破瞬间可高达300A/mm2,爆破瞬间金属蒸气压力可达数百大气压。而它的温度高达6000℃-8000℃,液态金属微粒以超过60M/S的温度从对口间隙抛射出来形成火花急流--闪光。
闪光对焊时,为了获得优质接头,闪光阶段结束时必须满足以下三个要求:
(1).对口处金属尽量不被氧化。这就要求闪光进行得稳定而又激烈,尤其要控制好闪光过程中焊件不应该短路,否则,将使端面局部过热。
(2).在对口及其附近区域获得适宜温度分布。其标志对口端面加热均匀,沿焊件长度获得合适的温度分布,端面上有一层厚的液态金属层。
(3).顶锻是闪光对焊后期阶段,是对焊件施加顶锻力,使烧化端面紧紧接触。并使其实现优质结合所必须的操作。闪光对焊时,为了获得优质接头,顶锻结束时必须满足下面要求:即对口及其邻近区域获得足够而又适当的塑性变形,而安全可靠的途径是使那些在闪光阶段氧化了的金属,利用顶锻随液体金属尽量排撞挤到毛刺中去。
顶锻阶段又由有电顶锻和无电顶锻两部分组成。有电顶锻是使端面液态金属不致于过早冷却,致使对口加热区保持一定深度。
预热阶段:在焊机上,通过预热而将焊件端面温度提高到一合适值(对于链条一般为800℃--900℃)再进行闪光和顶锻过程。预热过程有两种:电阻预热和闪光预热。预热也存在不足之处,即产生效率低,过程控制复杂,预热区宽和接头质量稳定性差。所以近来许多链条生产厂家也采用强规范焊接工艺,省掉了预热阶段。
求采纳

⑵ 闪光对焊机闪光工艺有几种

焊接可谓是发展历史悠久,生活在古代的人们就已经懂得如何使用加热锻焊而制造出刀剑,现在靠闪光对焊机加热来对接工件,下面我们来谈谈关于苏州安嘉闪光对焊机的工艺特点吧。根据工艺可分为连续闪光对焊和预热闪光对焊。
连续闪光焊:工艺过程包括连续连续和顶锻过程,首先闭合电路,使工件端面轻微接触,此时端面的间隙中会喷射出类似火花的金属微粒-即闪光。
预热闪光焊:工艺过程包括预热、闪光、二次闪光及顶锻过程,一次闪光是将工件端面闪平,而连续闪光预热是将钢筋两端面轻微接触并分离,并发出断续闪光来实现预热效果。
闪光对焊过程:对焊参数可根据电流和时间的不同,可分为参数(即大电流和短时间)弱条件(电流较小和时间较长)这两种,采用强参数可减少接头过热并提高焊接效率,但是容易产生淬硬。

⑶ 介绍一下搅拌摩擦焊的详细过程,求大神解答

1、摩擦焊是利用工件端面相互运动、相互摩擦所产生的热,使端部达到热塑性状态,然后迅速顶锻,完成焊接的一种方法。

问题:搅拌摩擦焊接过程中,焊缝中的金属是怎样得到补充的?焊接前的接头间隙是不是很小?

2、在焊接过程中,搅拌针在旋转的同时伸入工件的接缝中,旋转搅拌头(主要是轴肩)与工件之间的摩擦热,使焊头前面的材料发生强烈塑性变形,然后随着焊头的移动,高度塑性变形的材料逐渐沉积在搅拌头的背后,从而形成搅拌摩擦焊焊缝。

问题:在焊接过程中用不用对焊板施加向焊缝方向的压力???

3、焊接过程中也不需要其它焊接消耗材料,如焊条、焊丝、焊剂及保护气体等。唯一消耗的是焊接搅拌头

以上三点可以回复你的疑问

⑷ 钢轨顶锻量是什么

顶锻是钢轨焊接过程中非常重要的一个环节。该环节是指加大送进力,使得钢轨快速送进,从而达到排出杂物,消除缺陷,形成良好的焊接接头的过程。顶锻量就是指两待焊钢轨顶锻过程中产生的变形量。该数据是焊接工艺调整中的一个重要参数,虽然该参数根据前期工艺参数的不同具有较为宽松的变化空间,但是顶锻量过小、过大都将无法形成优质焊接接头。

⑸ 什么是顶锻压力

对接电阻焊(以下简称对焊)是利用电阻热将两工件沿整个端面同时焊接起来的一类电阻焊方法。

对焊的生产率高、易于实现自动化,因而获得广泛应用。其应用范围可归纳如下:

(1)工件的接长 例如带钢、型材、线材、钢筋、钢轨、锅炉钢管、石油和天然气输送等管道的对焊。

(2)环形工件的对焊 例如汽车轮辋和自行车、摩托车轮圈的对焊、各种链环的对焊等。

(3)部件的组焊 将简单轧制、锻造、冲压或机加工件对焊成复杂的零件,以降低成本。例如汽车方向轴外壳和后桥壳体的对焊,各种连杆、拉杆的对焊,以及特殊零件的对焊等。

(4)异种金属的对焊 可以节约贵重金属,提高产品性能。例如刀具的工作部分(高速钢)与尾部(中碳钢)的对焊,内燃机排气阀的头部(耐热钢)与尾部(结构钢)的对焊,铝铜导电接头的对焊等。

对焊分为电阻对焊和闪光对焊两种。

电阻对焊

电阻对焊是将两工件端面始终压紧,利用电阻热加热至塑性状态,然后迅速施加顶锻压力(或不加顶锻压力只保持焊接时压力)完成焊接的方法。

一、电阻对焊的电阻和加热

对焊时的电阻分布如图14-2所示。总电阻可用下式表示:

R=2Rω+RC+2Reω

式中 Rω--一个工件导电部分的内部电阻(Ω);

Rc--两工件间的接触电阻(Ω);

Rω--工件与电极间的接触电阻(Ω);

工件与电极之间的接触电阻由于阻值小,且离接合面较远,通常忽略不计。

工件的内部电阻与被焊金属的电阻率ρ和工件伸出电极的长度l0成正比,与工件的断面积s成反比。

和点焊时一样,电阻对焊时的接触电阻取决于接触面的表面状态、温度及压力。当接触电阻有明显的氧化物或其他赃物时,接触电阻就大。温度或压力的增高,都会因实际接触面积的增大而使接触电阻减小。焊接刚开始时,接触点上的电流密度很大;端面温度迅速升高后,接触电阻急剧减小。加热到一定温度(钢600度,铝合金350度)时,接触电阻完全消失。

和点焊一样,对焊时的热源也是由焊接区电阻产生的电阻热。电阻对焊时,接触电阻存在的时间极短,产生的热量小于总热量的10-15%。但因这部分热量是接触面附近很窄的区域内产生的。所以会使这一区域的温度迅速升高,内部电阻迅速增大,即使接触电阻完全消失,该区域的产热强度仍比其他地方高。

所采用的焊接条件越硬(即电流越大和通电时间越短),工件的压紧力越小,接触电阻对加热的影响越明显。

二、电阻对焊的焊接循环、工艺参数和工件准备

1、焊接循环

电阻对焊时,两工件始终压紧,当端面温升高到焊接温度Tω时,两工件端面的距离小到只有几个埃,端面间原子发生相互作用,在接合上产生共同晶粒,从而形成接头。电阻对焊时的焊接循环有两种:等压的和加大锻压力的。前者加压简单,便于实现。后者有利于提高焊接质量,主要用于合金钢,有色金属及其合金的电阻对焊,为了获得足够的塑性变形和进一步改善接头质量,还应设置电流顶锻程序。

2、工艺参数

电阻对焊的主要工艺参数有:伸出长度、焊接电流(或焊接电流密度)、焊接通电时间、焊接压力和顶锻压力。

(1)伸出长度l0 即工件伸出夹钳电极端面的长度。选择伸出长度时,要考虑两个因素:顶锻时工件的稳定性和向夹钳的散热。如果l0过长,则顶锻时工件会失稳旁弯。l0过短,则由于向钳口的散热增强,使工件冷却过于强烈,会增加塑性变形的困难。对于直径为d的工件,一般低碳钢:l0=(0.5-1)d,铝和黄铜:l0=(1-2)d,铜:l0=(1.5-2.5)d。

(2)焊接电流Iω和焊接时间tω 在电阻对焊时,焊接电流常以电流密度jω来表示。jω和tω是决定工件加热的两个主要参数。二者可以在一定范围内相应地调配。可以采用大电流密度、短时间(强条件),也可以采用小电流密度、长时间(弱条件)。但条件过强时,容易产生未焊透缺陷;过软时,会使接口端面严重氧化、接头区晶粒粗大、影响接头强度。

(3)焊接压力Fω与顶锻压力Fu,Fω对接头处的产热和塑性变形都有影响。减小Fω有利于产热,但不利于塑性变形。因此,易用较小的Fω进行加热,而以大得多的Fu进行顶锻。但是Fω也不能过低,否则会引起飞溅、增加端面氧化,并在接口附近造成疏松。

3、工件准备

电阻对焊时,两工件的端面形状和尺寸应该相同,以保证工件的加热和塑性变形一致。工件的端面,以及与夹钳接触的表面必须进行严格清理。端面的氧化物和赃物将会直接影响到接头的质量。与夹钳接触的工件表面的氧化物和赃物将会增大接触处电阻,使工件表面烧伤、钳口磨损加剧,并增大功率损耗。

清理工件可以用砂轮、钢丝刷等机械手段,也可以用酸洗。

电阻焊接头中易产生氧化物夹杂。对于焊接质量要求高的稀有金属、某些合金钢和有色金属时,常采用氩、氦等保护氛来解决。

电阻对焊虽有接头光滑、毛刺小、焊接过程简单等优点,但其接头的力学性能较低,对工件端面的准备工作要求高,因此仅用于小断面(小于250mm2)金属型材的对接。

闪光对焊

闪光对焊可分为连续闪光对焊和预热闪光对焊。连续闪光对焊由两个主要阶段组成:闪光阶段和顶锻阶段。预热闪光对焊只是在闪光阶段前增加了预热阶段。

一、闪光对焊的两个阶段

1、闪光阶段

闪光的主要作用是加热工件。在此阶段中,先接通电源,并使两工件端面轻微接触,形成许多接触点。电流通过时,接触点熔化,成为连接两端面的液体金属过梁。由于液体过梁中的电流密度极高,使过梁中的液体金属蒸发、过梁爆破。随着动夹钳的缓慢推进,过梁也不断产生与爆破。在蒸气压力和电磁力的作用下,液态金属微粒不断从接口间喷射出来。形成火花急流--闪光。

在闪光过程中,工件逐渐缩短,端头温度也逐渐升高。随着端头温度的升高,过梁爆破的速度将加快,动夹钳的推进速度也必须逐渐加大。在闪光过程结束前,必须使工件整个端面形成一层液体金属层,并在一定深度上使金属达到塑性变形温度。

由于过梁爆破时所产生的金属蒸气和金属微粒的强烈氧化,接口间隙中气体介质的含氧量减少,其氧化能力可降低,从而提高接头的质量。但闪光必须稳定而且强烈。所谓稳定是指在闪光过程中不发生断路和短路现象。断路会减弱焊接处的自保护作用,接头易被氧化。短路会使工件过烧,导致工件报废。所谓强烈是指在单位时间内有相当多的过梁爆破。闪光越强烈,焊接处的自保护作用越好,这在闪光后期尤为重要。

2、顶锻阶段

在闪光阶段结束时,立即对工件施加足够的顶端压力,接口间隙迅速减小过梁停止爆破,即进入顶锻阶段。顶锻的作用是密封工件端面的间隙和液体金属过梁爆破后留下的火口,同时挤出端面的液态金属及氧化夹杂物,使洁净的塑性金属紧密接触,并使接头区产生一定的塑性变形,以促进再结晶的进行、形成共同晶粒、获得牢固的接头。闪光对焊时在加热过程中虽有熔化金属,但实质上是塑性状态焊接。

预热闪光对焊是在闪光阶段之前先以断续的电流脉冲加热工件,然后在进入闪光和顶锻阶段。预热目的如下:

(1)减小需用功率 可以在小容量的焊机上焊接断面面积较大的工件,因为当焊机容量不足时,若不先将工件预热到一定温度,就不可能激发连续的闪光过程。此时,预热是不得已而采取的手段。

(2)降低焊后的冷却速度 这将有利于防止淬火钢接头在冷却时产生淬火组织和裂纹。

(3)缩短闪光时间 可以减少闪光余量,节约贵重金属。

预热不足之处是:

(1)延长了焊接周期,降低了生产率;

(2)使过程的自动化更加复杂;

(3)预热控制较困难。预热程度若不一致,就会降低接头质量的稳定性。

二、闪光对焊的电阻和加热

闪光对焊时的接触电阻Rc即为两工件端面间液体金属过梁的总电阻,其大小取决于同时存在的过梁数及其横断面积。后两项又与工件的横断面积、电流密度和两工件的接近速度有关。随着这三者的增大,同时存在的过梁数及其横截面积增大,Rc将减小。

闪光对焊的Rc比电阻对焊大得多,并且存在于整个闪光阶段,虽然其电阻值逐渐减小,但始终大于工件的内部电阻,直到顶锻开始瞬间Rc才完全消失。图14-5是闪光对焊时Rc、2Rω和R变化的一般规律。Rc逐渐减小是由于在闪光过程中,随着端面温度的升高,工件接近速度逐渐增大,过梁的数目和尺寸都随之增大的缘故。

由于Rc大并且存在整个闪光阶段,所以闪光对焊时接头的加热主要靠Rc。

三、闪光对焊的焊接循环、工艺参数和工件准备

1、焊接循环

闪光对焊的焊接循环14-7所示,图中复位时间是指动夹钳由松开工件至回到原位的时间。预热方法有两种:电阻预热和闪光预热,图中(b)采用的是电阻预热。

2、工艺参数

闪光对焊的主要参数有:伸出长度、闪光电流、闪光流量、闪光速度、顶锻流量、顶锻速度、顶锻压力、顶锻电流、夹钳夹持力等。图14-8是连续闪光对焊各流量和伸出长度的示意图。下面介绍各工艺参数对焊接质量的影响及选用原则:

(1)伸长长度l0 和电阻对焊一样,l0影响沿工件轴向的温度分布和接头的塑性变形。此外,随着l0的增大,使焊接回路的阻抗增大,需用功率也要增大。一般情况下,棒材和厚臂管材l0=(0.7-1.0)d,d为圆棒料的直径或方棒料的边长。

对于薄板(δ=1-4mm)为了顶锻时不失稳,一般取l0=(4-5)δ。

不同金属对焊时,为了使两工件上的温度分布一致,通常是导电性和导热性差的金属l0应较小。表1是不同金属闪光对焊时的l0参考值。

(2)闪光电流If和顶锻电流Iu If取决于工件的断面积和闪光所需要的电流密度jf。jf的大小又与被焊金属的物理性能、闪光速度、工件断面的面积和形状,以及端面的加热状态有关。在闪光过程中,随着vf的逐渐提高和接触电阻Rc的逐渐减小,jf将增大。顶锻时,Rc迅速消失,电流将急剧增大到顶锻电流Iu。

⑹ 钢筋的闪光焊可分为那三种工艺方法

闪光对焊可以分为连续闪光焊、预热闪光焊和闪光—预热—闪光焊等三种工艺,根据钢筋品种、直径和所用焊机功率等选用。
1、 连续闪光焊
连续闪光焊焊接工艺过程包括:连续闪光和顶锻过程。其操作方法为:
⑴先闭合一次电路,使两钢筋端面轻微接触,促使钢筋间隙中产生闪光,接着徐徐移动钢筋,使两钢筋端面仍保持轻微接触,形成连续闪光过程。闪光过程应当稳定强烈,以防焊口金属氧化。
⑵当闪光达到规定程度后(烧平端面,闪掉杂质,热至溶化),即可以适当压力迅速进行顶锻挤压。顶锻过程应快速有力,以保证焊口闭合良好和使接头处产生适当的锻粗变形。先带电顶锻,再无电顶锻到一定长度,焊接接头即告完成。
⑶适用条件
连续闪光焊所能焊接的最大钢筋直径见下表:
焊机容量(KVA) 钢筋级别 钢筋直径(mm)
150 Ⅰ级 25
Ⅱ级 28
100 Ⅰ级 20
Ⅱ级 18
75 Ⅰ级 16
Ⅱ级 14
2、预热闪光焊
预热闪光焊即在连续闪光焊前增加一次预热过程,以扩大焊接热影响区。工艺过程包括:预热、闪光和顶锻过程。其操作方法为:
⑴先闭合电源,然后使两钢筋端面交替分开,使其间隙发生断续闪光来实现预热,或使两钢筋端面一直紧密接触用脉冲电流产生电阻热(不闪光)来实现预热。预热过程要充分,频率要适当,以保证热影响区的塑性。
⑵闪光和顶锻过程与连续闪光焊相同。
⑶适用条件:钢筋直径较粗时。
3、闪光——预热——闪光焊
闪光——预热——闪光焊即在预热闪光焊前加一次闪光过程,使不平整的钢筋端面烧化平整,使预热均匀。工艺过程包括:一次闪光、预热、二次闪光和顶锻过程。操作方法为:
⑴连续闪光,使钢筋端部闪平。
⑵其余过程与预热闪光焊相同。
⑶适用条件:钢筋直径较粗时。

⑺ 闪光对焊的对焊工艺

简介
钢筋闪光对焊的焊接工艺可分为连续闪光焊、预热闪光内焊和闪光-预热闪光焊等,根容据钢筋品种、直径、焊机功率、施焊部位等因素选用。
连续闪光对焊
连续闪光对焊的工艺过程包括:连续闪光和顶锻过程。施焊时,先闭合一次电路,使两根钢筋端面轻微接触,此时端面的间隙中即喷射出火花般熔化的金属微粒---闪光,接着徐徐移动钢筋使两端面仍保持轻微接触,形成连续闪光。当闪光到预定的长度,使钢筋端头加热到将近熔点时,就以一定的压力迅速进行顶锻。先带电顶锻,再无电顶锻到一定长度,焊接接头即告完成。
预热闪光对焊
预热闪光对焊是在连续闪光焊前增加一次预热过程,以扩大焊接热影响区。其工艺过程包括:预热、闪光和顶锻过程。施焊时先闭合电源,然后使两根钢筋端面交替地接触和分开,这时钢筋端面的间隙中发出断续的闪光,而形成预热过程。当钢筋达到预热温度后进入闪光阶段,随后顶锻而成。
闪光-预热闪光焊
闪光-预热闪光焊是在预热闪光焊前加一次闪光过程,目的是使不平整的钢筋端面烧化平整,使预热均匀。其工艺过程包括:一次闪光、预热、二次闪光及顶锻过程。施焊时首先连续闪光,使钢筋端部闪平,然后同预热闪光焊。

⑻ 焊接方法

常用焊接方法及特点

--------------------------------------------------------------------------------

一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点?
钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。
根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。
(1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。
(2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。
钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。

二、电弧焊的分类有哪些,有什么优点?
利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。

三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点?
(1)焊接接头由焊缝金属和热影响区组成。
1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。
2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。
(2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。
1)熔合区 位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。
2)过热区 紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。
3)正火区 加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。
4)部分相变区 加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。

四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合?
电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。
电阻焊分为点焊、缝焊和对焊3种形式。
(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。
点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。
(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。
缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。
(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。
1)电阻对焊 焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。
电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。
2)闪光对焊 焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。继续移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并继续加压,使焊件焊合。
闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊接受力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,可以焊接0.01 mm的金属丝,也可以焊接直径500 mm的管子及截面为20 000 mm2的板材。

五、激光焊的基本原理是什么?有何特点及用途?
激光焊利用聚焦的激光束作为能源轰击工件所产生的热量进行焊接。
激光焊具有如下特点:
1)激光束能量密度大,加热过程极短,焊点小,热影响区窄,焊接变形小,焊件尺寸精度高;
2)可以焊接常规焊接方法难以焊接的材料,如焊接钨、钼、钽、锆等难熔金属;
3)可以在空气中焊接有色金属,而不需外加保护气体;
4)激光焊设备较复杂,成本高。
激光焊可以焊接低合金高强度钢、不锈钢及铜、镍、钛合金等;异种金属以及非金属材料(如陶瓷、有机玻璃等);目前主要用于电子仪表、航空、航天、原子核反应堆等领域。

六、电子束焊的基本原理是什么?有何特点及用途?
电子束焊利用在真空中利用聚焦的高速电子束轰击焊接表面,使之瞬间熔化并形成焊接接头。
电子束焊具有以下特点:
1)能量密度大,电子穿透力强;
2)焊接速度快,热影响取消,焊接变形小;
3)真空保护好,焊缝质量高,特别适用于活波金属的焊接。
电子束焊用于焊接低合金钢、有色金属、难熔金属、复合材料、异种材料等,薄板、厚板均可。特别适用于焊接厚件及

⑼ 摩擦焊的技术原理

焊前,待焊的一对工件中,一件夹持于旋转夹具,称为旋转工件,另一件夹持于移动夹具,称为移动工
件。焊接时,旋转工件在电机驱动下开始高速旋转,移动工件在轴向力作用下逐步向旋转工件靠拢,两侧工件接触并压紧后,摩擦界面上一些微凸体首先发生粘接与剪切,并产生摩擦热。随着实际接触面积增大,摩擦扭矩迅速升高,摩擦界面处温度也随之上升,摩擦界面逐渐被一层高温粘塑性金属所覆盖。此时,两侧工件的相对运动实际上已发生在这层粘塑性金属内部,产热机制已由初期的摩擦产热转变为粘塑性金属层内的塑性变形产热。在热激活作用下,这层粘塑性金属发生动态再结晶,使变形抗力降低,故摩擦扭矩升高到一定程度(前峰值扭矩)后逐渐降低。随着摩擦热量向两侧工件的传导,焊接面两侧温度亦逐渐升高,在轴向压力作用下,焊合区金属发生径向塑性流动,从而形成飞边,轴向缩短量逐渐增大。随摩擦时间延长,摩擦界面温度与摩擦扭矩基本恒定,温度分布区逐渐变宽,飞边逐渐增大,此阶段称之为准稳定摩擦阶段。在此阶段,摩擦压力与转速保持恒定。当摩擦焊接区的温度分布、变形达到一定程度后,开始刹车制动并使轴向力迅速升高到所设定的顶锻压力此时轴向缩短量急骤增大,并随着界面温度降低,摩擦压力增大,摩擦扭矩出现第二个峰值,即后峰值扭矩。在顶锻过程中及顶锻后保压过程中,焊合区金属通过相互扩散与再结晶,使两侧金属牢固焊接在一起,从而完成整个焊接过程。在整个焊接过程中,摩擦界面温度一般不会超过熔点,故摩擦焊是固态焊接。

⑽ 摩擦焊的技术原理

摩擦破坏了金属表面的氧化膜。摩擦生热降低了金属的强度,但提高了它的塑性。摩擦表面金属产生了塑性变形与流动,防止了金属的氧化,促进了焊接金属原子的互相扩散,形成了牢固的焊接接头。

摩擦焊相较传统熔焊最大的不同点在于整个焊接过程中,待焊金属获得能量升高达到的温度并没有达到其熔点,即金属是在热塑性状态下实现的类锻态固相连接。

相对传统熔焊,摩擦焊具有焊接接头质量高,能达到焊缝强度与基体材料等强度,焊接效率高、质量稳定、一致性好,可实现异种材料焊接等。

摩擦焊接优点

1、焊接接头的质量高而且稳定。基本上能达到100%的合格率,接头强度一般都超过母材。这是因为在摩擦焊的整个过程中,焊接表面在固相状态下,始终受轴向力的镦锻作用。

另外,由于利用焊接表面的相互摩擦作为热源,整个表面同时被加热,焊接时间极短,热影响区小,因此,只要合理地选择焊接规范,焊机设计得当,焊接规范的重现性好,就完全可以避免裂纹、气孔、夹渣及未溶透等熔化焊时所常见的缺陷,而得到均匀一致的接头质量。

2、具有比较广泛的可焊性。它不仅可用来焊接相同的金属材料,而且特别适用于性能相差较大的异种金属的焊接。某些异种金属用普通的熔化焊或闪光对接焊时,会由于接头内生成金属间脆性化合物而无法进行焊接或难以得到优质的接头。

采用摩擦焊接时,可以在较广的范围内选择和控制焊接温度,并且焊接时间很短,因此能比较容易地防止或大大减少金属间脆性化合物的生成,从而获得良好的焊接接头。

3、焊件的尺寸精度和几何精度高。摩擦焊机实际上相当于一台带有加压机构的车床,按照现代机床的设计及制造技术来讲,使它具有足够的精度及刚性并不困难。此外,再采用适当的控制方法,可使焊件在焊接后的长度误差小于±0.2毫米,偏心度可在0.2毫米之内。

4、降低了制造成本。摩擦焊时,焊件的焊接余量小,焊口的装配要求不高,焊接功率小,省电能。

5、劳动条件好。没有火花、弧光、有害气体,也无振动、无噪音等。

6、摩擦焊容易实现全自动化。

以上内容参考 网络-摩擦焊接;网络-摩擦焊

阅读全文

与焊接中的顶锻过程是什么相关的资料

热点内容
焊接的烟尘如何进入人体 浏览:919
通州哪里有钢材市场 浏览:8
骨折加钢板多久能好 浏览:739
不锈钢的锅怎么去漆 浏览:391
铝锅模具用什么材料好 浏览:297
钢铁之躯部队怎么升级 浏览:559
木门和钛合金门哪个更密封 浏览:438
钢板q235强度极限是多少 浏览:322
铝合金栏杆和实木哪个好 浏览:80
钢板有什么金属元素 浏览:51
钛合金纱窗多少钱一平方 浏览:739
如何制作女人的模具 浏览:708
长宁塑料模具哪里质量比较好 浏览:263
钢材中标国标分别是什么意思 浏览:951
钢材什么情况需做低倍检验 浏览:8
如何用拳头打弯钢管 浏览:429
钢筋断后伸长率如何测量视频 浏览:543
广联达中替代钢筋如何处理 浏览:458
22毫米的钢板是什么材料 浏览:507
如何安装不锈钢管水管 浏览:594