㈠ 剪力墙两面的垂直分布筋不同时怎么输入
剪力墙钢筋的输入方式如下:水平钢筋格式1:【(排数)】【[布置范围]】; 1、常规格式:(2)B12@100; 2、左右侧不同配筋形式:(1)B14@100+(1)B12@100; 3、每排钢筋中有多种钢筋信息但配筋间距相同:(1)B12/(1)B14@100+(1)B12/B10@100;计算时按插空放置的方式排列,第二种钢筋信息距边的距离为起步距离加上1/2间距; 4、每排钢筋中有多种钢筋信息且各种配筋间距不同:(1)B12@200/(1)B14@100+(1)B12@100/B10@200;计算时第一种钢筋信息距边一个起步距离,第二种钢筋信息距边的距离为起步距离加上本钢筋信息1/2间距; 5、每排各种配筋信息的布置范围由设计指定:(1)B12@100[1500]/(1)B14@100[1300]+(1)B12@100[1500]/(1)B14@100[1300]; 说明 1、排数没有输入时默认为2;不同排数的钢筋信息用“+”连接;当用“+”连接时则表示水平钢筋从左侧到右侧的顺序布置。 2、同排存在不同的钢筋信息用“/”隔开;此时当间距后面带“[]”,且括号内必须输入数值,则表示钢筋信息从下之上依次布置,括号内的数值表示该水平筋布置的范围高度; 3、加号之间输入了不同的排数时,取第一个钢筋信息的排数信息; 垂直钢筋 格式1:【*】【(排数)】 1、常规格式:(2)B12@100; 或*(1)B12@200+(1)B14@200;输入“*”时表示该排垂直筋在本层锚固计算,未输入“*”时表示该排纵筋连续伸入上层。 2、左右侧不同配筋形式:(1)B14@100+(1)B12@100; 3、每排钢筋中有多种钢筋信息但配筋间距相同:(1)B12/(1)B14@100+(1)B12/B10@100;计算时按插空放置的方式排列,第二种钢筋信息距边的距离为起步距离加上1/2间距; 4、每排钢筋中有多种钢筋信息且各种配筋间距不同:(1)B12@200/(1)B14@100+(1)B12@100/B10@200;计算时第一种钢筋信息距边一个起步距离,第二种钢筋信息距边的距离为起步距离加上本钢筋信息1/2间距; 说明 1、排数没有输入时默认为2;不同排数的钢筋信息用“+”连接;当用“+”连接时则表示垂直钢筋从左侧到右侧的顺序布置。 拉筋
㈡ 悬挑梁下部筋锚入剪力墙长度是多少
悬挑梁底部钢筋锚入剪力墙锚固长度是按图纸上的1.7米。
图纸优先于规范。看清楚图纸要求,1.7m到底是对上部筋的要求还是下部筋的要求。一般不会出现下部筋锚入剪力墙1.7m。
看设计是否采用了11G101-1图集,图集第89页有规定为15d。如果设计未采用11G101-1图集而是有专项的设计,就按照具体的设计而定。
(2)墙垂直钢筋锚入量怎么设置扩展阅读:
悬挑梁的构造
建筑物设计、施工乃至加固领域中,经常可遇到悬挑梁结构。因为悬挑梁在整个结构体系中的特殊性,所以一旦出现质量问题,将对整幢建筑物构成极大的安全隐患。
悬挑结构常常处于室外,面对雨水、二氧化碳等的直接侵蚀,且因为用户的使用原因,荷载也存在一定的不确定性,所以一旦出现裂缝,将极有可能进一步扩大,严重的将危及建筑物的安全。
悬挑结构设计受力的合理性、设计安全储备的控制、施工质量的把握、对有质量问题的悬挑梁加固的可行性和针对性都很重要。
(1) 梁顶面的纵向受力筋应按计算确定,而且不少于两根。
钢筋沿梁角配置,其伸入支座的长度应满足锚固要求,其余钢筋不应在梁的上部截断,且满足以下要求:弯起钢筋的弯起角度一般为45°;梁截面高h≥800 mm时,可弯起60°。
梁截面高较小时,可弯起30°;为了避免弯起钢筋在弯转处因其合力将混凝土压碎,钢筋在弯转处应有一定的圆弧形,圆弧半径一般不小于弯起钢筋直径的10倍。
(2) 弯起钢筋应根据施工对钢筋骨架的稳定和结构计算确定,当悬臂长度大于1.5 m时,无论计算是否需要,均要设置一排(从根部算起)弯起钢筋。若悬臂端有集中力作用时,宜设置多排弯起钢筋。
(3) 梁底部架立筋应不少于两根,其直径不小于12 mm。
㈢ 剪力墙竖向钢筋的锚固长度插筋直锚多长,弯锚多少
平直段满足锚固长度的要求做6D且不小于150的弯折(可以部分坐底的)其余的直锚版满足长度就可以权了,弯锚要求平直段不少于0.6倍锚固长度且不少于20倍直径,弯折长度不小于15D。
Lab=α×(fy/ft)×d。
式中:Lab为受拉钢筋的基本锚固长度;
fy为锚固钢筋的抗拉强度设计值;
ft为混凝土的轴心抗拉强度设计值;
α为锚固钢筋的外形系数,光圆钢筋取0.16,带肋钢筋取0.14;
d为锚固钢筋的直径。
(3)墙垂直钢筋锚入量怎么设置扩展阅读:
对短肢剪力墙结构的设计计算,因是剪力墙大开口而成,所以基本上与普通剪力墙结构分析相同,可采用三维杆-系簿壁柱空间分析方法或空间杆-墙组元分析方法,前者如建研院的TBSA、TAT、广东省建筑设计院的广厦CAD的SS模块;后者如建研院的TBSSAP、SATWE、清华大学的TUS、广东省建院的SSW等。其中空间杆墙组元分析方法计算模型更符合实际情况,精度较高。
虽然三维杆系-簿壁柱空间分析程序使用较早、应用较广,但对墙肢较长的短肢剪力墙,应该用空间杆-墙组元程序进行校核。