Ⅰ 请问各位大侠:如何利用细钢丝测量钢板、钢管、角钢等型材的挠度,就是变形量,求答案!
在长度略大于被测对象长度的钢丝绳的两端拴一个便于手握紧、用内力拉钢丝绳的容圆柱,在被测长两端、贴合被测表面、用力绷紧钢丝绳,再用直尺或塞尺测量被测表面与钢丝绳之间的最大间隙,此间隙是型材的挠度,可以用总长多少米弯曲多少毫米表示。
Ⅱ 钢管支撑立柱挠度怎么计算
受压不考虑饶度,考虑压缩量。
如果是做方案,根据杆件约束条件,验算稳定专性,好属像有系数什么的吧。
材料力学里,拉、压杆的变形公式是一样的,如果不考虑压杆失稳,塑性变形等因素,在弹性变形范围内如果拉力和压力相等,产生的变形是一样的:Fl/EA,EA就叫拉伸(压缩)刚度。
Ⅲ 钢结构工程的挠度值一般控制在多少范围内
一般情况下钢结构主梁控制在1/400,次梁的话控制在1/250。
1、主要的影响因素就是梁的刚度。
2、要减小挠度可以通过增加梁高、张拉预应力钢筋、增加配筋率来控制。
3、增加梁高就是增大惯性矩,前两种方法效果比较明显,经常采用。
4、其他影响挠度因素的还有,温度、湿度、混凝土的徐变收缩、荷载大小、所用材料强度等。
5、一般来说,滚珠丝杠副的长径比在50以下是安全范围,不应超过60,过长会产生丝杠因自重下垂。运行时容易产生振颤现象。
6、钢架构工程的优点众多:其中包括钢结构自重较轻、钢结构工作的可靠性较高、钢材的抗振(震)性、抗冲击性好、钢结构制造的工业化程度较高、钢结构可以准确快速地装配、钢结构室内空间大;容易做成密封结构、钢结构易腐蚀、钢结构耐火性差。
(3)钢管挠度有什么用扩展阅读:
预应力混凝土梁施工预拱度设计
桥梁挠度的产生的原因有永久作用挠度和可变荷载挠度。永久作用(包括结构自重、桥面铺装和附属设备的重力、预应力、混凝土徐变和收缩作用)是恒久存在的,其产生挠度与持续时间相关,可分为短期挠度和长期挠度。
可变荷载挠度虽然是临时出现的,但是随着可变荷载的移动,挠度大小逐渐变化,在最不利的荷载位置下,挠度达到最大值,一旦汽车驶离桥面,挠度就告消失。
预制梁台座顶面处置
设置预拱度的方法,是将预制梁台座顶面作成下凹曲面。如果曲线设置得当,则梁体在自重和预应力作用下经过一段时间的变形,梁体将既不上拱也不下凹。
预拱度观测
由于设计的梁型较多,而实际施工中各种梁型都是按一种预拱度进行控制的,为了使观测结果更具有代表性,选取了跨径和截面型式相同的 2 片铁路桥梁、4 片公路桥梁共 6 片梁进行观测。观测时间分别为存梁的第 1、第 10、第 30、第 60、第 90、第 120、第 180 天共 7 个时间点进行观测。
梁体挠度值的变化有以下特点:
1、经过 80 d 的存梁期后,梁体的挠曲变形仍未停止,部分变形将在使用阶段完成。
2、梁体上挠值随时间增加而减小,但上挠值的变化与时间并不成线性关系。在施加预应力初期,上挠值的变化较快,随梁体混凝土龄期的延长,上挠值的变化越来越慢。
3、铁路桥梁的上挠值的变化要比同条件下公路桥梁的上挠值要大。一般情况下,在梁体施加完预应力后,铁路桥梁的上挠值要减少 2.5 cm 左右,而公路桥梁的上挠值要减少 1.5 cm 左右,在经过相同的存梁期后,铁路桥梁的剩余上挠值要小于跨公路桥梁。
4、同为铁路桥梁或同为公路桥梁,施加完预应力后梁体的预拱度值经过相同存梁时间后剩余的预拱度值亦不相同。
参考资料:网络-拱度
Ⅳ 钢管的抗弯强度与钢管的壁厚有多大关系
与截面的抗弯模量有关,而壁厚是影响抗弯模量的重要因素。查查材料力学。
Ⅳ 钢管挠度计算
受压不考虑饶度,考抄虑压缩量。
如果是做方案,根据杆件约束条件,验算稳定性,好像有系数什么的吧。
材料力学里,拉、压杆的变形公式是一样的,如果不考虑压杆失稳,塑性变形等因素,在弹性变形范围内如果拉力和压力相等,产生的变形是一样的:fl/ea,ea就叫拉伸(压缩)刚度。
Ⅵ 钢管强度及扰度的计算公式
静力作用下钢管的强度和挠度按材料力学公式就可以计算。作为承重构件时尚需验算构件的整体稳定和局部稳定等等。钢管节点的设计参照《钢结构设计规范》GB 50017━2003 钢管结构
Ⅶ 无缝钢管的挠度公式是什么
无缝钢管的挠度公式可参考《梁在简单载荷作用下的边形》,内有转角方程、挠曲线方程、端截面转角、最大挠度的公式。
Ⅷ 脚手架钢管扰度如何计算
我在别处复制了一段话,不知道能否帮上你
【摘 要】该文论述了脚手架在现场施工的应用情况,详细叙述了脚手架的支撑体系的计算,并且比较了施工中常见的两种钢管脚 手架的情况。
【关键词】扣件式钢管脚手架 门式钢管脚手架 地基承载力
前言
在桥梁施工中,虽然脚手架在工程中有着重要的地位,而且按照施工设计要求也应当列入单位工程施工组织设计内,但现在却还经常发现许多单位的施工组织设计内并无详细叙述;即使有,往往也很简单并不符合实际施工的要求。为确保施工安全,对脚手架的验算很有必要。
在现在桥梁施工中, 应用比较多的有两种脚手架,一是扣件式钢管脚手架 ,另一种为门式钢管脚手架。本文主要介绍这二种脚手架的设计计算方法。
扣件式钢管脚手架
扣件式钢管脚手架是以横向横杆、纵向横杆、立杆、脚手板和剪刀撑、扫地杆、底座、拉撑件以及连接它们的扣件组成的一种钢管脚手架。
1、扣件式钢管脚手架设计计算
桥梁施工采用的扣件式钢管脚手架一般主要作为模板支架,承受混凝土结构物的施工荷载。扣件式钢管脚手架的承载能力按概率极限状态设计法的要求,采用分项系数设计表达式进行设计。一般进行的计算为:纵向、横向水平杆等受弯构件的强度和连接扣件的抗滑承载力计算;立杆的稳定性计算;立杆地基承载力计算。
(1)荷载计算
在桥梁施工中,作用在扣件式钢管脚手架上的荷载一般有施工结构物荷载、操作人员体重、施工设备重力和扣件式钢管脚手架自重力。各种荷载的作用部位和分布可按实际情况采用。扣件式钢管脚手架荷载的传递顺序为:脚手板→横向横杆→纵向横杆→立杆→底座→地基。
(2)纵向、横向水平杆的抗弯强度计算
纵向、横向水平杆的抗弯强度计算公式如下:
δ= ≤[f]
m——弯矩设计值
横向、纵向水平杆的内力一般按照三跨连续梁计算弯矩(如果特殊情况可按多跨连续梁弯矩计算):
w——截面模量。
[f]——钢材的抗弯强度设计值。
(3)纵向、横向水平杆的扰度计算:
纵向、横向水平杆扰度按下式计算:
υ= ≤[υ]
υ——扰度
e——钢材的弹性模量
i——纵向、横向水平杆的截面惯性矩
q——纵向、横向水平杆上的等效均布荷载
l——纵向、横向水平杆的跨度
[υ]——容许扰度,应按下表采用。
(4)连接扣件的抗滑承载力计算
纵向、横向水平杆与立杆连接时,其扣件的抗滑承载力应符合下式规定:
r≤[r]
r——纵向、横向水平杆传给立杆的竖向作用力(q*l)
[r]——扣件抗滑承载力设计值。
(5)立杆的稳定性计算
立杆的稳定性计算:
≤[f]
n——模板支架计算立杆的轴向力设计值
n=1.2∑ngk+1.4
∑nqk
∑ngk——模板及支架自重、新浇混凝土自重与钢筋自重产生的轴向力的总和。
∑nqk——施工人员及施工设备荷载标准值、振捣混凝土时产生的荷载标准值产生的轴向力总和。
ф——轴心受压构件的稳定系数,应根据长细比λ取值,
当λ>250时,ф=7320/λ2
a——立杆的截面面积。
[f]——钢材的抗弯强度设计值。
(6)立杆地基承载力计算
根据试验结果,荷载板底面的应力与其沉量的关系曲线如下图所示。从图中可看出,在荷载作用下地基土的变形。如果荷载应力超过p0,地基承载变形将发生突变,丧失地基承载力。所以立杆基础底面的平均压力一定要满足下式要求:
p≤[fg]
p——立杆基础底面的平均压力,
[fg]——地基承载力设计值,
门式钢管脚手架
以门架、交叉支撑、连接棒、挂扣式脚手板或水平架、锁臂等组成基本结构,再设置水平加固杆、剪刀撑、扫地杆、封口杆、托座与底座的一种标准化钢管脚手架。
1、门式钢管脚手架设计计算
桥梁施工采用的门式钢管脚手架一样一般作为模板支架,承受混凝土结构物施工荷载(见上图)。脚手架的承载能力也采用了现行结构统一的设计表达形式。即同样采用按概率极限状态设计法。
与扣件钢管脚手架不同,门式钢管脚手架的主要破坏形式是在抗弯刚度弱的门架平面外多波鼓曲失稳破坏。由于门式钢管脚手架的基本单元,门架是一个框架结构,在施工荷载作用下,施工层的门架杆件在门架平面内受局部弯矩作用。因此门式钢管脚手架主要是靠门架立杆轴心受压将竖向荷载传给基础的,风荷载作用时,将在门架平面方向产生弯矩,这也要靠门架的立杆轴心力组成力偶矩来抵抗。总之,门式钢管脚手架主要受轴压力。既计算主要评定门式钢管脚手架的稳定性,其公式如下:
n≤[nd]
n——作用于一榀门架的轴向力设计值
[nd]——一榀门架的稳定承载力设计值。
2、门式钢管脚手架地基承载力计算与扣件式钢管脚手架计算相同。
p≤[fg]
p——立杆基础底面的平均压力,
[fg]——地基承载力设计值,
通过以上对脚手架的稳定性和地基承载力的验算,取得了脚手架支撑体系安全施工的理论依据。
门式脚手架与扣件式脚手架比较
1、施工工艺比较 :
门式脚手架:1)装拆方便,施工工效高;约为扣件式脚手架的2~3倍。2)工人劳动相对强度较低。
扣件式脚手架:1)装拆比较方便,施工工效较低。
2、搭设高度比较:
门式脚手架:搭设高度一般≤45米。
扣件式脚手架: 搭设高度一般≤50米。
3、经济效益比较:
门式脚手架:1)用钢量较省。2)脚手架部件规格品种多,一次性投资大。3)脚手架管理困难,保养不易。
扣件式脚手架:1)用钢量较多。2)脚手架一次性投资小。
4、文明施工比较
门式脚手架:脚手架组装标准化,排列整齐,美观。
扣件式脚手架:脚手架组装尚可。
安全施工应当特别注意的问题
在脚手架搭使用期间中严禁拆除交叉支撑、加固杆件、扫地杆等。作业层的施工荷载一定要符合设计要求,不得超载。
搭设钢管脚手架的场地必须平整坚实,并严格作好排水工作。
Ⅸ 为减小钢管杆杆身挠度,可采用以下哪些方法
各型电杆应按下列荷载条件进行计算:1最大风速、无冰、未断线。2覆冰、相应风速、未断线。3最低气温、无冰、无风、未断线(适用于转角杆和终端杆)。各杆塔均应按以下3种风向计算杆身、导线的风荷载:1风向与线路方向相垂直(转角杆应按转角等分线方向)。2风向与线路方向的夹角成60°或45°。3风向与线路方向相同。风向与线路方向在各种角度情况下,杆塔、导线的风荷载,其垂直线路方向分皿和顺线路方向分量,应符合GB 50061的规定。杆塔的风振系数β,当杆塔高度为30m以下时取1.0。风荷载档距系数α,应按下列规定取值:1风速20m/s以下,α=1.0。2风速(20~29)m/s,α=0.85。3风速(30~34)m/s,α=0.75。4 风速35m/s及以上,α=0.7。配电线路的钢筋混凝土电杆,应采用定型产品。电杆构造的要求应符合现行国家标准。配电线路采用的横担应按受力情况进行强度计算,选用应规格化。采用钢材横担时,其规格不应小于:∠63mm×∠63mm×6mm。钢材的横担及附件应热镀锌。拉线应根据电杆的受力情况装设。拉线与电杆的夹角宜采用45°。当受地形限制可适当减小,且不应小于30°。跨越道路的水平拉线,对路边缘的垂直距离,不应小于6m。拉线柱的倾斜角宜采用10°~20°。跨越电车行车线的水平拉线,对路面的垂直距离,不应小于9m。拉线应采用镀锌钢绞线,其截面应按受力情况计算确定,且不应小于25mm2。空旷地区配电线路连续直线杆超过10基时,宜装设防风拉线。钢筋混凝土电杆,当设置拉线绝缘子时,在断拉线情况下拉线绝缘子距地面处不应小于2.5m,地面范围的拉线应设置保护套。拉线棒的直径应根据计算确定,且不应小于16mm。拉线棒应热镀锌。腐蚀地区拉线棒直径应适当加大2mm~4mm或采取其他有效的防腐措施。电杆基础应结合当地的运行经验、材料来源、地质情况等条件进行设计。电杆埋设深度应计算确定。 多回路的配电线路验算电杆基础底面压应力、抗拔稳定、倾覆稳定时,应符合GB50061的规定。多回路的配电线路验算电杆基础底面压应力、抗拔稳定、倾覆稳定时,应符合GB50061的规定。现浇基础的混凝土强度不宜低于C15级,预制基础的混凝土强度等级不宜低于C20级。采用岩石制做的底盘、卡盘、拉线盘应选择结构完整、质地坚硬的石料(如花岗岩等),且应进行试验和鉴定。配电线路采用钢管杆时,应结合当地实际情况选定。
Ⅹ 方钢管计算挠度的时候 是按照实心钢管计算还是空心钢管计算,和钢管的壁厚什么关系 急急急 在线等
当然有关系了,计算惯性矩时要用的。