① 为什么取屈服点作为钢材强度的标准值
钢材材料的屈服点具有典型意义,屈服点可以大概理解为某种材料最多能(允许)承受多大力量(按单位受力面积估算)。屈服点的作用是可以在设备设计或工程设计选钢材材料时,先大概估算一下某种材料是否能承受特定的作用力,如果判断基本合适,然后再做详细受力计算。这都是在“常温”的特定条件下,不考虑高温条件下的情况。
② 为什么采用钢材的屈服点作为强度设计标准
随着建筑物抗震技术的发展及对抗震机理的深入分析,消能抗震成为建筑物抗震技术的一个发展趋势。低屈服点钢作为消能抗震设计中主要部件的制作材料,其研制、发展自20 世纪90 年代以来受到广泛关注,并在钢种的研制和工程应用方面取得显著进展。
机理分析
最初用于制作消能构件的是普通低碳钢,其屈服强度在200 MPa 以上,但伸长率较低。为提高消能阻尼器的抗震效果,必须制备出强度更低、塑性更好的钢板。为此,研究人员对钢板屈服强度的产生机理进行分析,提出了降低屈服强度的有效方法。
为降低强度,必须消除如晶界强化、固溶强化、位错强化和析出强化等强化手段。低屈服点钢采用接近工业纯铁的成分设计,通过晶粒粗化及添加少量Ti、Nb 固定C、N 原子以降低其对位错运动的阻碍作用。
Ti 在钢中可依次形成TiN→Ti4C2S2→TiS 和TiC,所有多余的Ti(Ti-3.42N-1.5S)最后可以形成TiC。台湾中钢的研究表明,钢中多余的Ti 量达到0.03%或者与3.99C 比值为2 时,铁素体晶粒尺寸显著增加,认为较多的Ti 使得TiN、TiS 和TiC 等颗粒粗化从而失去晶界钉扎作用。
而当多余的Ti 量超过0.03%时,由于多余Ti 产生的溶质拖拽效应反而使得晶粒尺寸减小。但仅靠多余的Ti 不能产生如此明显的晶粒长大效果,自由C 原子的消除也有一定的作用。即仅仅添加Ti 并不能使钢板的屈服强度降低到100MPa 以下。
台湾中钢对加Ti 的部分钢板在650~950℃进行了回火试验。结果发现,在750~850℃回火,很多钢板的屈服强度从200MPa 迅速降低到100MPa以下,而不含Ti 的钢板只有小幅的下降。
(2)为什么屈服点是钢材的性能指标扩展阅读
影响因素
影响屈服强度的内在因素有:结合键、组织、结构、原子本性。
如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:
(1)固溶强化;
(2)形变强化;
(3)沉淀强化和弥散强化;
(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。
影响屈服强度的外在因素有:温度、应变速率、应力状态。
随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。
工程意义
传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n因场合不同可从1.1到2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。
需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。
屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。
参考资料来源:网络-屈服点
参考资料来源:网络-屈服强度
③ 为什么把屈服点作为结构钢材静力强度承载力极限
原因是屈服点是指在此点,材料在此一外力作用下,产生不可逆变形。
回钢材或试样在拉答伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
④ 为什么说屈服点Q,抗拉强度和伸长率是建筑用钢的重要技术性能指标呢
钢材在外力作用下产生变形,当取消外力后,能恢复原来形状不产生永久变形的性质,称为钢材的弹性。钢材在拉伸过程中,当荷载超过弹性极限后,将产生塑性变形。此时,力与变形不再成正比,变形较力增长为快,到达临界点后钢材开始暂时皮则市区抵抗变形的能力,称为屈服。外力不增加而变形继续增加,钢材屈服的这段时间点,出现一个最高点和一个最低点,设计中一般一下屈服点作为强度取值的依据。 抗拉强度表示钢材在拉力作用下瞎答,抵抗破坏的最燃神棚大能力。当屈服阶段的变形增加到一定程度以后,外力继续增加,曲线随之上升,变形随之增大,钢材进入强化阶段。当曲线到达最高点时,相对应的最大荷载,除以原始横截面面积,所得的应力,称为抗拉强度。 伸长率是指时间被拉断后,所增加的长度与原来长度的比值。
⑤ 为什么取屈服点作为钢材强度的标准值
钢材材料的屈服点具有典型意义,屈服点可以大概理解为某种材料最多能回(允许)承受多答大力量(按单位受力面积估算)。屈服点的作用是可以在设备设计或工程设计选钢材材料时,先大概估算一下某种材料是否能承受特定的作用力,如果判断基本合适,然后再做详细受力计算。这都是在“常温”的特定条件下,不考虑高温条件下的情况。
⑥ 为什么说屈服点Q,抗拉强度和伸长率是建筑用钢的重要技术性能指标呢
原因:
(1)通常的结构抗震用钢除了要求具有高的强度和良好的塑性外,还要考虑钢的应变时效敏感性、脆性转变温度、低周疲劳抗力和焊接等性能。低屈服点钢主要用于制作消能阻尼器,其抗震方式决定了钢的性能要求。
具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。
(2)抗拉强度反映了材料的断裂抗力。抗拉强度即表征材蚂塌料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。
(3)伸长率是金属导体制品的重要机械性能指标,是关系产品优劣和能承受外力大小的重要标志,抗拉强度及伸长率的大小与材料性质、加工方法和热处理条件有关。以裸电线或裸导体为例进行伸长率试验。
(6)为什么屈服点是钢材的性能指标扩展阅读
1、抗拉强度的实际意义
(1)σb标志韧性金属材料的实际承载能力,但这种承载能力仅限于光滑试样单向拉伸的受载条件,而且韧性材料的σb不能作为设计参数,因为σb对应的应变远非实际使用中所要达到的。如果材料承受复杂的应力状态,则σb就不代表材料的实际有用强度。由于σb代表实际机件在静拉伸条件下的最大承载能力,且σb易于测定,重现性好,所以是工程上金属材料的重要力学性能标志之一,广泛用作产品规格说明或质量控制指标。
(2)对脆性金属材料而言,一旦拉伸力达到最大值,材料便迅速断裂了,所以σb就是脆性材料的断裂强度,用于产品设计,其许用应力便以σb为判据。
(3)σ的高低取决于屈服强度和应变硬化指数。在屈服强度一定时,应变硬化指数越大,σb也越高。
(4)抗拉强度σb与布氏硬度HBW、疲劳极限 之间有一定的经验关系。
2、屈服点钢的技术发展:
低屈服点钢主要用于制作抗震用消能阻尼器(energydissipation damper), 也有文献称之为耗能阻尼器或者抗震设施(seismic control devices)、消能构件或加劲阻尼装置(ADAS,added dampingandstiffness)等,或将消能减震称之为耗能减震。
传统的抗震设计,依靠建筑物柱梁的变形来吸收地震能量,其主要结构件的变形在震后很难修复。而消能阻尼器利用自身的反复变形吸收地震能量,有效保护了主体建筑的安全,并且这些阻尼器构件只是抗侧力构件的一个组成部分,其屈服耗能不会影响结构的承重能力。
与其他减震材料相比,具有构造简单、经济耐用、震后更换方便和可靠性强等优点,既可用于新建筑物的抗震,也可用于旧建筑抗震能力的提高。目前采用低屈服点钢制作的无约誉物答束柱、钢剪力墙、各种类型的减震阻尼器和其他抗震设施在以日本为代表的很多国家得到广泛推广,并产生了大量相关的抗震设计技术。
研究显示,无约束柱的芯部包含钢管和砂浆以防止变形并对拉压应力具有稳定的回复特性。全尺寸、大容量的无约束柱试验已经证实了其回复特性及应力分布、二次弯矩效应和钢管的安全性。用超高强度钢和超低屈服庆慧点钢制作的无约束柱已经用于制作新型的抗震结构件。
例如使用低屈服点钢生产的弹塑性滞后型剪力钢墙在大变形条件下能充分保持稳定,可以作为高韧性构件用于建筑物的消能抗震。
Chen 等研究了低屈服点钢剪力墙的周期性行为。在低屈服点钢剪力墙系统中,采用低屈服点钢板作钢护板,传统的结构钢用作边部框架,在交变载荷下进行了系列试验研究,并测试低屈服点钢剪力墙的刚性、强度、变形能力及消能作用。
同时分析了钢板的宽厚比效应、剪力墙的连续性及边部框架的柱梁连接设计等问题。结果显示,所有测试的试样均具有良好的消能作用,刚性剪力墙系统和框架剪力墙系统都有良好的变形能力。
此外,Susantha等以低屈服点钢板的厚度和截面构造作为测试的主要变量,研究了低屈服点钢改善钢桥桥墩的延展性问题。结果表明,与无低屈服点钢的桥墩相比,使用厚度合适的低屈服点钢板加固的桥墩具有更好的延展性和消能作用。
参考资料来源:网络-屈服点
网络-抗拉强度
网络-伸长率
⑦ 钢筋的屈服点有什么用
钢筋受力的四个阶段,先是弹性阶段,然后到达屈服点,进入屈服阶段,这个阶段特点是版钢筋的应力不增权加,但是应变增大。也就是说强度不变然后应变增大到一定地步时,进入强化阶段,这个阶段钢筋强度显著提升,但是应变也增大。最后到达强化的顶点时,进入颈缩阶段,这个阶段强度下降,应变增加。
通俗的讲就是,弹性快到头了的时间点就是屈服点!
⑧ 为什么说屈服点,抗拉强度和伸长率是建筑工程用钢的重要技术性能指
屈服点和抗拉强度决定了钢筋何时结束弹性受力阶段闷基,是结构受力计算的基本依据及指标。迹早
钢筋的伸长率决定了钢筋的塑性受力指标的好坏,不至在弹性受力阶段结束后立刻被拉断,是结构塑性的重要保证。这一指标是抗震设计时的姿罩雀钢筋材料重要参数,是强条,黑体字哦。
⑨ 为什么屈服强度在钢结构中是一个重要指标
当应力超过弹性极限后,变形庆搏增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服培搏点。由于下屈服点的数值较为稳定,因此以它作为材料抗力配差祥的指标,称为屈服点或屈服强度
⑩ 对于有屈服点的钢筋为什么取其屈服强度作为强度限值
由于有屈服点的钢材到达屈服点后会产生很大的塑性变形 导致结构构件可能在钢材尚未进入强化阶段就产生破坏或者产生很大的变形和过宽的裂缝 以致不能使用 所以对于有屈服点的钢筋要取其屈服强度作为强度限值