『壹』 钢材中的化学成分对钢材性能主要有什么影响
钢中除铁、碳两种基本元素外,还含有其他的一些元素,它们对钢的性能和质量有一定的影响。
(1)碳。碳是决定钢材性能的主要元素。随着含碳量的增加,钢的强度、硬度提高,塑性、韧性降低。但当含碳量大于1.o%时,由于钢材变脆,抗拉强度反而下降。
(2)硅、锰。硅和锰是钢材中的有益元素。硅和锰是在炼钢时为了脱氧加入硅铁和锰铁而留在钢中的合金元素。
硅的含量在1%以内,可提高钢材的强度,对塑性和韧性没有明显影响。但含硅量超过1%时,钢材冷脆性增加,可焊性变差。
锰的含量为0.8%~1%时,可显著提高钢的强度和硬度,几乎不降低塑性及韧性。当其含量大于1%时,在提高强度的同时,塑性及韧性有所下降,可焊性变差。
(3)硫、磷。硫和磷是钢材中主要的有害元素,炼钢时由原料带入。
硫能够引起热脆性,热脆性严重降低了钢的热加工性和可焊性。硫的存在还使钢的冲击韧性、疲劳强度、可焊性及耐蚀性降低。
磷能使钢材的强度、硬度、耐蚀性提高,但显著降低钢材的塑性和韧性,特别是低温状态的冲击韧性下降更为明显,使钢材容易脆裂,这种现象称为冷脆性。冷脆性使钢材的冲击韧性以及焊接等性能都下降。
(4)氧、氮。氧和氮是钢材中的有害元素,它们是在炼钢过程中进入钢液的。这些元素的存在降低了钢材的强度、冷弯性能和焊接性能。氧还使钢材的热脆性增加,氮还使钢材的冷脆性及时效敏感性增加。
(5)铝、钛、钒、铌。铝、钛、钒、铌等元素是钢材中的有益元素,它们均是炼钢时的强脱氧剂,也是合金钢中常用的合金元素。适量地加入这些元素,可以改善钢材的组织,细化晶粒,显著提高钢材的强度和改善钢材的韧性。
『贰』 引起钢材脆性破坏的主要因素有哪些应如何防止脆性破坏的发生呢
钢材的破坏分塑性破坏和脆性破坏两种。
脆性破坏:加载后,无明显变形,因此破坏前无预兆,断裂时断口平齐,呈有光泽的晶粒状。脆性破坏危险性大。
影响脆性破坏的因素
1.化学成分
2.冶金缺陷(偏析、非金属夹杂、裂纹、起层)
3.温度(热脆、低温冷脆)
4.冷作硬化
5.时效硬化
6.应力集中
7.同号三向主应力状态
1 ) 钢材质量差、厚度大:钢材的碳、硫、磷、氧、氮等元素含量过高,晶粒较粗,夹杂物等冶金缺陷严重,韧性差等;较厚的钢材辊轧次数较少,材质差、韧性低,可能存在较多的冶金缺陷。
(2) 结构或构件构造不合理:孔洞、缺口或截面改变急剧或布置不当等使应力集中严重。
(3) 制造安装质量差:焊接、安装工艺不合理,焊缝交错,焊接缺陷大,残余应力严重;冷加工引起的应变硬化和随后出现的应变时效使钢材变脆。
(4) 结构受有较大动力荷载或反复荷载作用:但荷载在结构上作用速度很快时(如吊车行进时由于轨缝处高差而造成对吊车梁的冲击作用和地震作用等),材料的应力- 应变特性就要发生很大的改变。随着加荷速度增大,屈服点将提高而韧性降低。特别是和缺陷、应力集中、低温等因素同时作用时,材料的脆性将显著增加。
(5)在较低环境温度下工作:当温度从常温开始下降肘,材料的缺口韧性将随之降低,材料逐渐变脆。这种性质称为低温冷脆。不同的钢种,向脆性转化的温度并不相同。同一种材料,也会由于缺口形状的尖锐程度不同,而在不同温度下发生脆性断裂。
为了防止钢材的脆性断裂,可以从以下几个方面着手:
1、裂纹
当焊接结构的板厚较大时(大于25mm),如果含碳量高,连接内部有约束作用,焊肉外形不适当,或冷却过快,都有可能在焊后出现裂纹,从而产生断裂破坏。针对这个问题,把碳控制在0.22%左右,同时在焊接工艺上增加预热措施使焊缝冷却缓慢,解决了断裂问题。
焊缝冷却时收缩作用受到约束,有可能促使它出现裂纹。措施是:在两板之间垫上软钢丝留出缝隙,焊缝有收缩余地,裂纹就不会出现。
把角焊缝的表面作成凹形,有利于缓和应力集中。凹形表面的焊缝,焊后比凸形的容易开裂,原因是凹形缝的表面有较大的收缩拉应力,并且在45°截面上焊缝厚度最小。凸形缝表面拉力不大,而45°截面又有所增强,情况要好的多。在凹形焊缝开裂的条件下,改用凸形焊缝,就不再开裂。
2、应力
考察断裂问题时,应力是构件的实际应力,它不仅和荷载的大小有关,也和构造形状及施焊条件有关。几何形状和尺寸的突然变化造成应力集中,使局部应力增高,对脆性破坏最为危险。施焊过程造成构件内的残余拉应力,也是不利的。因此,避免焊缝过于集中和避免截面突然变化,都有助于防止脆性断裂。
3、材料选用
为了防止脆性断裂,结构的材料应该具有一定的韧性。材料断裂时吸收的能量和温度有密切关系。吸收的能量可以划分为三个区域,即变形是塑性的、弹塑性的和弹性的。要求材料的韧性不低于弹性,以避免出现完全脆性的断裂,也没有必要高于弹塑性,对钢材要求太高,必然会提高造价。钢材的厚度对它的韧性也有影响。厚钢板的韧性低于薄钢板。
4、构造细部
发生脆性断裂的原因是存在和焊缝相交的构造缝隙,或相当于构造缝隙的未透焊缝。构造焊缝相当于狭长的裂纹,造成高度的应力集中,焊缝则造成高额残余拉应力并使近旁金属因热塑变形而时效硬化,提高脆性。低温地区结构的构造细部应该保证焊缝能够焊透。因此,设计时必须注意焊缝的施工条件,以保证施焊方便,能够焊透。
『叁』 哪些因素可使钢材变脆
从理论角来度来讲影响钢材脆性的主自要因素是钢材中硫和磷的含量问题;
如果工艺路线不经过热处理那么这个因素影响就小一些;
如果工艺路线走热处理这一步(含锻打,铸造)那么这个影响就相当的明显;
就必须采取必要的措施;
1;
设计选材上尽量避开对热影响区和淬火区敏感的材料;
2不得已而用之那么就要在工艺上采取预防措施;
建议再仔细查阅一下金属材料学;
3设计过程中采取防脆断措施如工艺圆角;
加强筋;
拔模等;
有很多;
建议查阅机械设计手册中的工艺预防措施和手段;
『肆』 钢中的什么元素能使钢材在高温下变脆
钢中的杂质是硫、磷。高温变脆是硫,称为热脆;低温变脆是磷,叫做冷脆。
『伍』 含量高钢形成热脆性的元素是磷 对吗
不对。
含量高钢形成热脆性的元素是硫。对钢进行热加工(锻造,轧制)时,加热温度常在1000℃以上,这时晶界上的FeS+Fe共晶熔化,导致热加工时钢的开裂。硫在固态铁中溶解度极小,它能与铁形成低熔点(1190℃)的FeS。FeS+Fe共晶体的熔点更低(989℃)。这种低熔点的共晶体一般以离异共晶形式分布在晶界上。
含量高钢形成冷脆性的元素是磷。随着温度的降低,大多数钢材的强度有所增加,而韧性下降,金属材料在低温下呈现的脆性称为冷脆性,钢材中磷含量的增加会显著增加钢材的冷脆性。
冷脆性金属材料在低温下呈现的冲击值明显降低的现象,大多是含磷元素高引起。热脆性指某些钢材400-500℃温度区间长期停留后室温下的冲击值有明显下降的现象。在高温时并不表现出脆性,只有用常温冲击试验才能表现出脆性上升,可比正常值下降50%-60%以上。低合金铬镍钢、锰钢、含铜钢易有热脆性,当含硫量达到一定程度时就会出现热脆性的性质。
『陆』 哪些因素可使钢材变脆,从设计角度防止构件脆断的措施有哪些
导致钢结构构件脆性断裂的因素很多,主要因素有化学成份 、温度、构件厚度、冶金缺陷、构造缺陷等。钢中碳元素含量增高会使钢的脆性转变温度升高 ,随含碳量的增加 , 钢的最大恰贝冲击值显著降低。恰贝冲击值与试验温度曲线梯度趋于缓慢 ,而脆性转变温度显著升高。
预防措施:
(1)、 设计构件的断面应尽量选用最薄断面 ,增加构件厚度将增大脆断的危险 .
(2)、保证焊接质量,尽量减少因焊接造成的缺陷,设计上应选择适当的焊缝金属缺口韧性,较厚板材或型钢焊前必须预热,施焊过程中尽量不在负温条件下进行 ,焊接后必须保温缓冷,尽量保证焊接质量,减少缺陷产生。
(3)、设计焊接结构应尽量避免焊缝集中和重叠交叉。要采用较好的焊接工艺(合适的输入热量和操
作方法)。
(4)、在结构设计中应尽量将因缺陷引起的应力集中减小到最低限度 , 如避免尖锐角 ,尽量用较大半
径的圆弧 。
(5)、设计人员选用钢材时 ,除应核算强度外,还应保证材料有足够韧性 ,应从断裂力学理论出发选择具有较高断裂韧性的材料。
(6)钢材含什么元素高变脆扩展阅读:
钢材用途分类:
1、结构钢
(1)、建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。如碳素结构钢、低合金钢、钢筋钢等。
(2)、机械制造用结构钢是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等
2、工具钢
一般用于制造各种工具,如碳素工具钢、合金工具钢、高速工具钢等。按用途又可分为刃具钢、模具钢、量 具钢。
3、特殊钢
具有特殊性能的钢,如不锈耐酸钢、耐热不起皮钢、高电阻合金、耐磨钢、磁钢等。
4、专业用钢
这是指各个工业部门专业用途的钢,如汽车用钢、农机用钢、航空用钢、化工机械用钢、锅炉用钢、电工用钢、焊条用钢等。
5、按钢的品质分
优质碳素结构钢、合金结构钢、碳素工具钢和合金工具钢、弹簧钢、轴承钢等
钢号后面,通常加符号“A”或汉字“高”以便识别。
『柒』 钢中常存杂质中什么元素使钢易出现热脆
一、
硅:在钢中是有益元素
硅是由炼钢时加入的脱氧剂带入钢中的。由于硅的脱氧能力较强,硅与钢液中的
FeO能结成密度较小的硅酸盐以炉渣的形式被除去。脱氧后钢不可避免地残留着少量硅,这些残留下来的硅能溶于铁素体,使得铁素体强化,从而提高钢的强度、硬度和弹性。因此,硅在钢中是有益元素,但作为杂质元素存在时其质量分数应不超过0.4%。
二、
锰:在钢中是有益元素
锰是由炼钢时加入的脱氧剂带入钢中的。锰从
FeO中夺取氧形成MnO进入炉渣。锰不能与硫化合成MnS,以减少硫对钢的有害影响,改善钢的热加工性能。在室温下,锰大部分溶于铁素体,对钢有一定的强化作用。因此,锰在钢中是有益元素,但作为杂质元素存在时其质量分数应不超过0.8%。
三、
硫:在钢中是有害元素
硫是由生铁和燃料带入的杂质,炼钢时难以除尽。在固态下硫不深于铁,而以
FeS的形式存在,FeS与Fe能形成低熔点的共晶体(Fe+FeS),熔点仅为985℃,且分布在奥氏体晶界上。当钢在1000~1200℃压力加工时,由于低熔点共晶体熔化,显著减弱晶粒之间的联系,使钢材在压力加工时沿晶界开裂,这种现象为热脆。因此,钢中硫的质量分数必须严格控制。
为了消除硫所形成的热脆,在炼钢时必须增加锰。由于
Mn与S能形成高熔点(1620℃)的MnS,并呈粒状分布在晶粒内,MnS在高温时有一定的塑性,从而避免了钢的热脆。
硫虽然产生热脆,但对改善钢材的切削加工性能却有利。如在硫的质量分数较高的钢(
Ws=0.08%~0.45%)中适当提高锰的质量分数(WMn=0.70~1.55%),可形成较多的MnS,在切削加工中MnS能起断屑作用,可改善钢的切削加工性,这种钢称为易切削钢,广泛应用于标准件等的生产。
四、
磷:在钢中是有害元素
磷是由生铁和燃料带入的杂质,炼钢时难以除尽。磷能全部熔于铁素体,提高了铁素体的强度、硬度;但在室温下钢的塑性、韧性急剧下降,变脆,这种现象称为冷脆。所以,磷是一种有害杂质元素,因此要严格控制磷在钢中的含量。
磷的有害作用在一定条件下也可以转化,例如易切削钢,把磷的含量提高到
W
p
=0.05%~0.15%,使铁素体脆化,从而改善钢的切削加工性能。在炮弹钢(W
c
=0.60%~0.90%、W
Mn
=0.60%~1.0%)中加入较多磷,可使钢的脆性增大,炮弹爆炸时碎片增多,增加杀伤力。
『捌』 钢材脆性破坏的原因有哪些
钢结构发生脆性破坏的主要原因是:1、钢材的质量差:钢材的碳、硫、磷、氧、氮等元素含量过高,晶粒较粗,夹杂物等冶金缺陷严重,韧性差等。2、结构构件构造不当:孔洞、缺口或截面改变急剧或布置不当等使应力集中严重。3、制造安装质量差:焊接、安装工艺不合理,焊缝交错,焊接缺陷大,残余应力严重。4、结构承受较大动力荷载,或在较低环境温度下工作等:该项对较厚钢材影响更为严重。钢结构是主要由钢制材料组成的结构,是主要的建筑结构类型之一。结构主要由型钢和钢板等制成的钢梁、钢柱、钢桁架等构件组成,各构件或部件之间通常采用焊缝、螺栓或铆钉连接。因其自重较轻,且施工简便,广泛应用于大型厂房、场馆、超高层等领域。『玖』 影响钢材发生冷脆的化学元素是哪些
影响钢材发生冷脆的化学元素主要有氮和磷,而使钢材发生热脆的化学元素主要是氧和硫。
对于钢材,脆性越高其硬度越大,抗弯曲强度越高,而对于塑性较强的钢材来说正好与之相反,塑性强度大的钢材其硬度低,易弯曲不易折断,对于这两种钢材来说其性能有明显的差别。
冷脆性只发生在具有体心立方晶格的金属中。锅炉与压力容器中广泛采用的低碳钢及低合金钢都是体心立方晶格型,所以会发生遇冷变脆的现象。而面心立方晶格的金属,如铝、铜、镍都不会产生冷脆现象。
(9)钢材含什么元素高变脆扩展阅读:
加工硬化降低了钢材的韧性,同时使韧脆转变温度增加。这种影响随钢材类型不同及加工硬化量的大小而变化。对于冲压封头,试验结果表明,冷压封头的韧脆转变温度高于热压封头,且冲击韧度值也有所减小。
对于冷脆性的材料会在温度变低的情况下脆性急剧增加,因此,选用冷脆性材料时因注意使用的环境以及温度等的影响因素,尽量避免不必要的意外发生,在选材时要把温度对钢材的影响因素考虑在内。