⑴ 不锈钢圆钢表面为什么会出现裂纹现象
不锈钢圆钢是指横截面为均匀圆形的长材,其具有高韧性、抗疲劳性,冷弯性好,易焊接等优点,被广泛的应用在五金,造船,机械,航天,建筑等领域。不锈钢圆钢一般采取无扭转轧制方法,因而表面洁净光滑,尺寸精度高,在生产过程中往往由于工艺流程等原因导致圆钢表面产生裂纹,今天我们就来分析下裂纹产生的原因,以及如何减少和避免裂纹的产生。 不锈钢圆钢表面裂纹产生原因可分为三种: 1、产生裂纹的原因:产品在成品之前的轧件有耳子;轧制过程各道工序产生的耳子、飞边、严重刮伤、辊槽严重磨损等情况;对有严重缺陷的坯料清理不当。 2、产生裂纹的原因:轧制时,钢水中存在夹杂物,且氧含量较高,产生氧化物,在制造过程中并未对其进行清理,从而产生裂纹。3、 产生裂纹的原因:钢水中含有大量气体,当钢水凝固时气体排出形成气泡,靠近铸坯外层的气泡成为皮下气泡,在钢坯表面下呈蜂窝形垂直排列。通常钢坯经过轧制后内部气泡能焊合,但是,有些皮下气泡距离表面较近,加热时,当钢坯表面发生氧化或烧损时,皮下气泡便会暴露出来,发生氧化,无法焊合,从而产生裂纹。那么我们如何预防不锈钢圆钢表面裂纹呢?我们给大家提供了一下几种措施:1、减少和避免折叠产生裂纹的办法:合理设计孔型,消除成品前轧件的耳子;准确设计宽展,精确调辊槽位置,减轻或消除飞边、刮伤等缺陷。2、减少钢中夹杂物产生裂纹的办法:采用合理的脱氧合金化工艺,严格控制钢水含氧量,降低钢水夹杂物的含量。 3、减少皮下气泡产生裂纹的办法:全程保护浇筑过程,避免钢水二次氧化,减少气泡产生,提高铸坯的纯度;合理控制连铸钢水过热度,选择理化性能优良的保护渣,采取均匀冷却和二次弱冷却,避免铸坯表面出现裂纹。 不锈钢圆钢的质量好坏直接关系到其应用领域的安全与否,因此,我们必须对圆钢发生的裂纹现象给与足够的重视,分析其产生的原因,并通过改进制造工艺流程,降低夹杂物含量及减少气泡产生以达到消除或减少裂纹产生的目的,以上便是华祥为大家整理的关于不锈钢圆钢的有关知识,希望能对您有所帮助。
⑵ 焊接后钢管出现裂缝的原因和解决办法
出现裂缝的原因:
1.焊缝收缩应力太大,容易产生缓慢裂纹。
2.焊缝受热不均匀,容易发生脆性专。
3.焊接方法和顺序不合属理。
4.层间温度控制不好。
防止措施:
1.首先要选择合理的焊接顺序,采用对称焊。
2.多层多道焊,焊完每一道焊缝(别是打底 焊)时要认真处理好焊缝表面的焊渣、氧化皮,以防止赃物在下一层焊缝中形成缺陷。
3.调整冷却速度,冷却越快,变形越大。结晶裂纹倾向也越大。
4.焊后消除残余应力。
⑶ 如何快速有效的检测钢结构裂纹
裂纹一般在焊缝,或构件表面,大的裂纹用眼观察就能看到,但大裂纹旁边往往有毛细裂纹,这时眼观察不一定看的到,用磁粉探伤可以发现这些裂纹.
⑷ 不锈钢有裂纹是什么原因
第一种现抄象是由于钢袭中夹杂物未进行处理而导致的裂纹。产生裂纹的原因,轧制时,钢水中存在夹杂物,且氧含量较高,产生氧化物,在制造过程中并未对其进行清理,从而产生裂纹。
第二种现象是由表面折叠引起的裂纹。钢材在轧制过程中产生了折叠,使得圆钢表面呈现出沿轧制方向成直线状或锯齿状的裂纹。
第三种现象是由皮下气泡引起的裂纹。有些皮下气泡距离表面较近,加热时,当钢坯表面发生氧化或烧损时,皮下气泡便会暴露出来,发生氧化,无法焊合,从而产生裂纹。
⑸ 特种钢516c裂纹什么原因
1、焊接热影响区最高硬度与冷裂纹的敏感性的关系是:焊接热影响区硬度越高,产生冷裂纹的概率越高。
2、钢材焊接时,热影响区经常发生冷裂纹。试验证明冷裂纹的产生与下列因素有关:
(1)钢材化学成分对焊接热影响区产生裂纹影响:
钢材的强度与硬度与材料的化学元素有关,钢材中增加碳元素可增强钢材的强度与硬度,增加碳元素的高硬度钢在焊接热影响区的碳元素淬硬产生马氏体组织。钢材的焊接热影响区冷裂纹大多在马氏体内发生。因此,在钢的成份中炭当量越高,焊接热影响区产生马氏体的概率越高,焊接裂纹敏感系数也越高。
(2)焊接区的冷却速度快,也容易产生硬度高的马氏体组织。所以采用预热以及焊后保温等方法降低冷却速度,对防止产生冷裂纹也是有利的。
⑹ 钢材原材料裂纹产生原因有哪些
1
,压制变形量过大或切割毛刺过大,对钢材做成损伤,引起的裂纹。
2,硫磷等杂质元素超标,导致金属局部偏析,强度小于母材其他部位引起的裂纹。
这两点是金属未经焊接引起裂纹的原因。
⑺ 钢材工作部位(受力部位)有裂纹,能通过焊接补救吗,,怎样补救
可以复补救的
1、分析受力部制位的裂纹产生的原因,这个可以通过UT来检测一下如果属于母体自身的疲劳可以考虑换新
2、如果是因为机械的受力或者操作失误导致机械的裂纹的话,可以通过焊接修补来补救
3、补救前尽量不要采用碳弧气刨这样的容易产生碳积聚的坡口工具,尽量采用机械打磨方法,或者如果裂纹深度太深的话,可以采用WEWELDING100冷开槽焊条进行开槽,不会产生碳积聚,减少焊接过程中裂纹的风险
4、一般普通的焊工,采用WEWELDING600特种合金钢焊条即可施焊,冷焊工艺,通用性非常广,按照WEWELDING600使用说明进行操作即可。
5、焊后再次探伤。
⑻ 钢锭的裂纹是由什么造成的
1、 轧制钢材时,钢锭的皮下气泡被辗长而破裂形成的。锻前若不去掉,可能引起版锻件裂纹 2、由于钢中含氢较权多和相变时组织应力大引起。大型钢坯锻轧后冷却较快时容易产生白点白点是隐藏在内部的裂纹,降低钢的塑性和强度,白点是应力集中点,在交变载荷作用下易引疲劳裂纹 3、钢中存在非金属夹杂物,枝晶偏析、气孔、疏松等缺陷,在锻轧过程中沿纵向被拉长,使钢材断口呈片层状,层状断口严重队低钢材横向力学性能,锻造时极易沿分层破裂4、下料时,刀片之间的间隙太小,坯料中心部分金属不是被剪断的而是拉断的,使部分金属被拉掉。这样的坯料锻造时容易产生折叠和裂纹5、下料时,由于材料硬度过高、剪切时刀片上的单位压力太大而引起锻造将使端部裂纹进一步扩大
⑼ 史上最全钢材断裂的基本分析,强烈(2)
4. 含碳量在0.3%~0.8%的影响
亚共析钢的含碳量在0.3%~0.8%,先共析铁素体是连续相并首先在奥氏体晶界形成。珠光体在奥氏体晶粒内形成,同时占显微组织的35%~100%。此外,还有多种聚集组织在每一个奥氏体晶粒内形成,使珠光体成为多晶体。
由于珠光体强度比先共析铁素体高,所以限制了铁素体的流动,从而使钢的屈服强度和应变硬化率随着珠光体含碳量的增加而增加。限制作用随硬化块数量增加,珠光体对先共析晶粒尺寸的细化而增强。
钢中有大量珠光体时,形变过程中会在低温和/或高应变率时形成微型解理裂纹。虽然也有某些内部聚集组织断面,但断裂通道最初还是沿着解理面穿行。所以,在铁素体片之间、相邻聚集组织中的铁素体晶粒内有某些择优取向。
5. 贝氏体钢断裂
在含碳量为0.10%的低碳钢中加入0.05%钼和硼可优化通常发生在700~850℃奥氏体-铁素体转变,且不影响其后在450℃和675℃时奥氏体-贝氏体转变的动力学条件。
在大约525~675℃之间形成的贝氏体,通常称为“上贝氏体”;在450~525℃之间形成的称为“下贝氏体”。两种组织均由针状铁素体和分散的碳化物组成。当转变温度从675℃降至450℃时,未回火贝氏体的抗拉强度会从585MPa升高至1170MPa。
因为转变温度由合金元素含量决定,并间接影响屈服和抗拉强度。这些钢获得的高强度是以下两种作用的结果:
1)当转变温度降低时,贝氏体铁素体片尺寸不断细化。
2)在下贝氏体内精细的碳化物不断分散。 这些钢的断口特征在很大程度上取决于抗拉强度和转变温度。
有两种作用要注意:第一,一定的抗拉强度级别,回火下贝氏体的夏比冲击性能远远优于未回火的上贝氏体。原因是在上贝氏体中,球光体内的解理小平面切割了若干贝氏体晶粒,决定断裂的主要尺寸是奥氏体晶粒尺寸。
在下贝氏体中,针状铁素体内的解理面未排成一直线,因此决定准解理断裂面是否断裂的主要特征是针状铁素体晶粒尺寸。因为这里的针状铁素体晶粒尺寸仅为上贝氏体中的奥氏体晶粒尺寸的1/2。所以,在同一强度级别,下贝氏体转变温度比上贝氏体低许多。
除了上面的原因之外是碳化物分布。在上贝氏体中碳化物位于晶界沿线,并通过降低抗拉强度Rm增加脆性。在回火的下贝氏体中,碳化物非常均匀地分布的铁素体中,同时通过限制解理裂纹以提高抗拉强度并促进球化珠光体细化。
第二,要注意的是未回火合金中转变温度与抗拉强度的变化。在上贝氏体中,转变温度的降低会使针状铁素体尺寸细化同时升高延伸强度Rp0.2。
在下贝氏体中,为获得830MPa或更高的抗拉强度,也可通过降低转变温度提高强度的方法实现。然而,因为上贝氏体的断口应力取决于奥氏体晶粒尺寸,而此时的碳化物颗粒尺寸已经很大,因此通过回火提高抗拉强度的作用很小。
6. 马氏体钢断裂
碳或其它元素加入钢中可延迟奥氏体转变成铁素体和珠光体或贝氏体,同时奥氏体化后如果冷却速度足够快,通过剪切工艺奥氏体会变成马氏体而不需进行原子扩散。
理想的马氏体断裂应具有以下特征。
◆ 因为转变温度很低(200℃或更低),四面体铁素体或针状马氏体非常细。
◆ 因为通过剪切发生转变,奥氏体中的碳原子来不及扩散出晶体,使铁素体中的碳原子饱和从而使马氏体晶粒拉长导致晶格膨胀。
◆ 发生马氏体转变要超过一定的温度范围,因为初始生成的马氏体片给以后的奥氏体转变成马氏体增加阻力。所以,转变后的结构是马氏体和残余奥氏体的混合结构。
为了保证钢的性能稳定,必须进行回火。高碳(0.3%以上)马氏体,在以下范围内回火约1h,经历以下三个阶段。
1)温度达到约100℃时,马氏体某些过饱和碳沉淀并形成非常细小的ε-碳化物颗粒,分散于马氏体中而降低碳含量。
2)温度在100~300℃之间,任何残余奥氏体都可能转变成贝氏体和ε-碳化物。
3)在第3阶段回火中,大约200℃起取决于碳含量和合金成分。当回火温度升至共析温度,碳化物沉淀变粗同时Rp0.2降低。
7.中强度钢(620MPa