❶ 实腹梁桥的构造
①板梁式桥。中小跨度的钢筋混凝土及预应力混凝土梁的主梁多采用矩形、∏形或T形截面(见桥梁标准设计)。钢桥的主梁多采用型钢、钢板铆接或焊接成工字形截面的钢板梁桥。单线铁路上承式钢板梁桥由两片主梁与纵、横联结系组成;下承式钢板梁桥则由两片主梁与纵、横梁、隅加劲及底面纵向联结系构成。公路桥的桥面宽,且无定轨,一般多采用多片主梁(钢筋混凝土,预应力混凝土或钢梁)并列,再用数片横隔梁(或横向联结系)连成整体,形成格子状结构,桥面板设于其上,形成格子梁桥。这种桥的制造、架设都很方便,而且作用在桥面上某处的荷载,将由主梁和横隔梁的空间作用传及整个桥跨结构,可以减轻直接承载的主梁的负担。大跨度的公路钢桥为了经济,一般用两片主梁,桥面上的荷载依次通过纵、横梁传给主梁,这种结构称双主梁桥。②箱形梁桥。由顶板(桥面)、底板与腹板构成整体封闭式的箱形截面的梁式桥。简称箱梁桥。箱形截面具有强大的抗扭能力,能使结构整体受力,应力较为均匀,可显著地节省材料,也减轻了结构的自重,此外还可较好地承受正负弯矩,在采用卓有成效的悬臂拼装或浇筑法施工时,箱形梁的横向稳定性也较好。因此,广泛用以建造大跨度预应力混凝土箱形梁桥和钢箱形梁桥。如采用正交异性钢板作为钢箱形梁的顶板(桥面板)及底板,可更进一步减轻自重,极大程度地提高跨越能力。如联邦德国1972年建成的摩泽尔桥,为钢箱连续梁,分跨为157+218+170+146+134+110米,桥面宽30.5米,取单箱单室截面,箱宽仅10.8米,因此桥墩顶帽横向尺寸只12.8米。该桥使用正交异性钢桥面板箱形梁,不仅跨越能力大,在桥墩高度超过124米的情况下,也大幅度地减小桥墩尺寸,节省圬工数量。正交异性钢桥面板是在厚度不大(10~16毫米)的钢板下面,每隔300~600毫米沿桥轴方向先焊上纵肋,再在垂直于纵肋方向每隔1400~1600毫米焊上横肋,在和纵肋相接处,互相焊牢。这样组成的钢板,在两个互相垂直的方向具有不同的抗弯刚度,故名正交异性板。在面板上铺防水层和50~100毫米厚的沥青铺装层,便形成轻型的钢桥面板。其纵肋可用扁钢、角钢或 T形钢和面板组成开口截面。或采用刚度较大的U形、V形钢和面板组成的抗扭能力更大的闭合截面,这种桥面板重量很轻,约为90~150公斤/平方米。
正交异性钢桥面板在承受局部荷载时,车轮荷载通过铺装层依次通过纵、横肋传给主梁(实际上起到纵、横梁作用)。从上部结构整体看,面板和纵肋又是箱形主梁截面的组成部分,形成一个整体承重结构。
正交异性钢桥面板和钢板梁组成∏形板梁桥,也可收到很好的效益。如1956年南斯拉夫贝尔格莱德建成的萨瓦一号桥,为分跨75+261+75米的连续梁桥。
③结合梁桥。为保证钢筋混凝土桥面板和钢梁共同受力,应在两者的接触面上设置可靠的联结装置,称为抗剪器,用以阻止桥面板和钢梁之间的水平错动。抗剪器系采用圆钢、型钢(角钢、槽钢等)或环形钢筋焊接在钢梁的上翼缘顶面而成(见钢和混凝土组合结构)。
结合梁桥的应力调整 结合梁桥受正弯矩部分的钢筋混凝土板,在未与钢梁形成整体前不能受力,只能在结合成整体后才能承受以后的恒载(公路桥中的桥面铺装、栏杆等的重量,铁路桥中的道碴、枕木、钢轨及其扣件等的重量,也称第二部分恒载)和活载;同样,在悬臂梁桥和连续梁桥受负弯矩部分的钢筋混凝土板,也不能直接利用它承受拉力。因此,需要对结合梁桥进行应力调整,即在施工时采取措施,人为地改善结构的受力状态,以达到节约材料,提高使用质量。应力调整的方法很多,在简支梁桥中,最简单的方法是在落地式脚手架上施工,待混凝土达到设计强度后拆去脚手架,即可保证全部恒载传到结合截面上;或在跨中设置一个临时支架,上设千斤顶,在混凝土未灌筑前,用千斤顶将钢梁顶起,这相当于对钢梁人为地加上了一个负弯矩,此时钢梁上部受拉、下部受压;当灌筑好混凝土板后拆除支架和千斤顶,这无异于对结合梁加上一个和原来方向相反的正弯矩,这就有可能使钢筋混凝土板在受力的第一阶段就负担了恒载,并可使钢梁受力得到改善。
对于悬臂梁或连续梁的结合梁桥,为了避免负弯矩(-M)区域钢筋混凝土板上边受拉,并改善钢梁的受力状态,也可采用应力调整的方法来实现。图3为连续结合梁桥应力调整的一种方法:在荷载作用下,梁上有两种不同受力区段,一是钢筋混凝土板受拉区段Ⅰ,一是受压区段Ⅱ)。施工时,在Ⅱ段下设临时支架,先在支架上用千斤顶将钢梁上顶,再浇Ⅱ段混凝土板;待混凝土固结后,拆除临时支架和千斤顶,再将两端支点下降Δ后,浇Ⅰ段混凝土板;全部结合梁形成后,再将两端支点向上顶回Δ达到设计标高。这样在Ⅰ区段的钢筋混凝土板即储存了很大预压应力,可有效地防止使用时拉裂。
❷ 下承式钢板梁适用于什么条件
下承式钢板梁建筑高度低,其用钢量显然较大,仅在平原地区当线路高程难于提高时使用
铁路桥梁标准设
经国家批准的标准跨度是4、5、6、8、10、12、16、20、24、32、40、48、56、64、80、96、128和160米。跨度小于或等于32米的上承梁式桥(或40米钢梁桥)常用铁路架桥机架设,为此单线混凝土桥每以纵向缝将一孔梁分为两片,且对每一梁片的重量加以限制。跨度等于或大于48米的,均为钢桁架梁。为提高工地拼装速度及质量,其杆件及节点板等应从设计尺寸及工地孔眼精度等方面保证其能互换。因此在制订主要尺寸及细节构造时,须考虑工厂的工艺装备和技术水平。石拱桥、涵洞、墩台、沉井基础等也都有标准设计,但因其大部分不适合工厂制造,从设计标准化所得效益稍逊。单线铁路桥梁标准设计最重要的有:
钢筋混凝土简支梁
现设计跨度为4~16米(旧设计有跨度20米者),均为道碴桥面,每一孔梁分为两片,以使其尺寸能和架桥机适应。每片的截面,跨度小的取矩形板状,跨度较大的取∏形或T形。∏形的优点是在梁片架设后,不需将两片相连就可通车,缺点是较T形费料,且每片有四个支座,不易摆平,现已不生产。T形梁两片在隔板处相连。现用的标准设计分为两类:一为“正常高度梁”,一为“低高度梁”。前者建筑高度为1.0~2.4米,后者为0.85~1.6米。前者每片重量为9.4~51.5吨,后者为8.4~54.1吨。低高度梁适用于平原铁路,能在满足桥下净空要求下,降低线路高程,以降低路基造价。
❸ 上承式钢板梁桥的计算原则
结构的地震有限元法。上承式钢板梁桥的计算原则是结构的地震响应有限元法。上承式桥,桥面系设置在桥跨主要承重结构(桁架、拱肋、主梁等)上面的桥梁,称为上承式桥。根据容许建筑高度的大小和实际需要,桥面可以布置在桥跨结构的不同位置。其优点是:桥面系构造简单、施工方便,桥跨主要承重结构的宽度可以做得小一些(也可以密排),因而节省墩台圬工;另外,桥上视野开阔。缺点是桥面到梁底的建筑高度较大。上承式拱桥是拱桥的重要形式,与拱桥的其他形式相似,抗震也是其无法回避的问题。与中、下承式拱桥相比,上承式拱桥的桥面位置较中、下承式拱桥高,使得上承式拱桥的质量中心比中下承式拱桥的高,并且大跨度中、下承式拱桥一般采用漂浮式桥面系,而在大跨度上承式钢拱桥中,由于靠近拱脚的拱上立柱较高,为提高立柱稳定性,通常将桥面与立柱铰接甚至刚接,这样,在地震作用下,与漂浮式桥面系相比,桥面质量对拱肋响应的影响会有较大不同,这些都使上承式拱桥的地震响应具有其自身特点。近年来,不少学者对拱桥的抗震问题进行较深入研究,并取得了一系列的成果。这些文献中,对中承式拱桥的研究较多,对钢管混凝土拱桥的研究也较多,而对上承式钢拱桥的地震响应研究较少。