㈠ 轧钢的工艺流程
与热轧相比,冷轧厂的加工键颂线比较分散掘戚,冷轧产品主要有普通冷轧板、涂镀层板也就是镀锡板、镀锌板和彩涂板。经过热轧厂送来的钢卷,先要经过连续三次技术处理,先要用盐酸除去氧化膜,然后才能送到冷轧机组。在冷轧机上,开卷机将钢卷打开,然后将钢带引入五机架连轧机轧成薄带卷。从五机架上出来的还有不同规格的普通钢带卷,它是根据用户多种多样的要求来加工的。冷轧厂生产各种各样不同品质的产品,那飞流直下,似银河落九天的是镀锡板,那银光闪闪的是镀锌板,有红、黄、蓝各种颜色的是彩色涂层钢板。镀锡板是制造罐头和易拉罐的原料,又叫马口铁,以前我国所需要的镀锡板全靠进口,自从武钢镀锡板大量生产后,部分替代了进口货。武钢生产镀锡板采取的是电镀锡工艺,这些镀锡板稿散郑好像镜子一样,光鉴照人,就像诗人描写的:“轧钢工人巧手绘锦帐,千万面银镜送给心爱的姑娘,你知道不知道,在那爱妻牌洗衣机上,有我们汗水的芬芳”。镀锌板的生产工艺有两种,一种是热镀锌,一种是电镀锌。那貌不惊人包装特别的是硅钢片,它们用在发电设备、机电设备、轻工、食品和家电上。用镀锌板作为基材,在反面涂上各种涂料就成为彩色涂层钢板。由于工艺先进,涂层十分牢固,可以直接用于家电产品和作装饰材料。除了板材以外,轧钢厂也生产长材,如型钢、钢轨、棒材、圆钢和线材,它的生产过程和轧钢原理与板材类似,但是使用的轧辊辊型完全不同。
㈡ 我想到钢厂做轧钢,请问轧钢都是干什么的要详细点。
轧钢就是用轧机对钢坯进行压力加工,获得需要的形状规格和性能的过程。轧机主要由几组轧辊构成,轧辊是一对转动方向相反的辊子,两个辊子之间形成一定形状的缝或孔,钢坯通过轧辊就成为一定形状的钢材。
在再结晶温度以上的轧制称为热轧;在再结晶温度以下的轧制称为冷轧。
我们常见的汽车板、桥梁钢、锅炉钢、管线钢、螺纹钢、钢筋、电工硅钢、镀锌板、镀锡板包括火车轮都是通过轧钢工艺加工出来的。
我国大钢厂从70年代已用先进的连轧轧机 ,连轧机采用了一整套先进的自动化控制系统,全线生产过程和操作监控均由计算机控制实施,轧件在几架轧机上同时轧制,大大提高了生产效率和质量。
我国粗钢产量位居世界第一。国内十大钢铁企业年产粗钢均在1000万吨以上。今年来,钢铁重组进入快车道,比如宝钢控股的广东钢铁集团,山东济钢、莱钢为主组建的山东钢铁集团,还有河北钢铁集团等。但是,我国钢铁业要振兴,必须走精细化道路。热轧卷和冷轧卷目前还停留在重产量轻质量的瓶颈。轧钢行业必须走高端路线,造船业和汽车制造业、建筑业的兴旺,给轧钢行业带来机遇,但是矿石的涨价给我国轧钢行业带来新的困境。
国内轧钢行业要真正做大做强,必须不断对钢坯质量、加热、辊型控制、卷取能力、酸洗等系列环节加强。另外,做重型机械的一重、二重、上重、太重等必须奋起,探索高精轧钢设备。国内宝钢、鞍钢、武钢、首钢设计院,东大、北科大等院校轧钢研究机构亦要多加强与钢铁集团的联合开发。
中国轧钢业要振兴,路还很长。
轧钢机
轧机是实现金属轧制过程的设备。泛指完成轧材生产全过程的装备,包括有主要设备、辅助设备、起重运输设备和附属设备等。但一般所说的轧机往往仅指主要设备。据说在 14 世纪欧洲就有轧机,但有记载的是 1480 年意大利人 达 ' 芬奇 (Leonardo da Vinci) 设计出轧机的草图。 1553 年法国人布律列尔 (Brulier) 轧制出金和银板材,用以制造钱币。此后在西班牙、比利时和英国相继出现轧机。图 1 1728 年设计的生产圆棒材用的轧机 为 1728 年英国设计的生产圆棒材用的轧机。英国于 1766 年有了串行式小型轧机, 19 世纪中叶,第一台可逆式板材轧机在英国投产,并轧出了船用铁板。 1848 年德国发明了万能式轧机, 1853 年美国开始用三辊式的型材轧机 ( 图 2 最初的三辊式轧机侧视 ) ,并用蒸汽机传动的升降台实现机械化。接着美国出现了劳特式轧机。 1859 年建造了第一台连轧机。万能式型材轧机是在 1872 年出现的; 20 世纪初制成半连续式带钢轧机,由两架三辊粗轧机和五架四辊精轧机组成。
中国于 1871 年在福州船政局所属拉铁厂 ( 轧钢厂 ) 开始用轧机;轧制厚 15mm 以下的铁板, 6 ~ 120mm 的方、圆钢。 1890 年汉冶萍公司汉阳铁厂装有蒸汽机拖动的横列双机架 2450mm 二辊中板轧机和蒸汽机拖动的三机架横列二辊式轨梁轧机以及 350/300mm 小型轧机。随着冶金工业的发展,现已有多种类型轧机。轧机的主要设备有工作机座和传动装置 (图 3 二辊可逆式初轧机示意) 。
工作机座
由轧辊、轧辊轴承、机架、轨座、轧辊调整装置、上轧辊平衡装置和换辊装置等组成。
轧辊
是使金属塑性变形的部件 ( 见轧辊 ) 。
轧辊轴承
支承轧辊并保持轧辊在机架中的固定位置。轧辊轴承工作负荷重而变化大,因此要求轴承摩擦系数小,具有足够的强度和刚度,而且要便于更换轧辊。不同的轧机选用不同类型的轧辊轴承。滚动轴承的刚性大,摩擦系数较小,但承压能力较小,且外形尺寸较大,多用于板带轧机工作辊。滑动轴承有半干摩擦与液体摩擦两种。半干摩擦轧辊轴承主要是胶木、铜瓦、尼龙瓦轴承,比较便宜,多用于型材轧机和开坯机。液体摩擦轴承有动压、静压和静 - 动压三种。优点是摩擦系数比较小,承压能力较大,使用工作速度高,刚性好,缺点是油膜厚度随速度而变化。液体摩擦轴承多用于板带轧机支承辊和其它高速轧机。
轧机机架
由两片“牌坊”组成以安装轧辊轴承座和轧辊调整装置,需有足够的强度和钢度承受轧制力。机架形式主要有闭式和开式两种。闭式机架是一个整体框架,具有较高强度和刚度,主要用于轧制力较大的初轧机和板带轧机等。开式机架由机架本体和上盖两部分组成,便于换辊,主要用于横列式型材轧机。
此外,还有无牌坊轧机。
轧机轨座
用于安装机架,并固定在地基上,又称地脚板。承受工作机座的重力和倾翻力矩,同时确保工作机座安装尺寸的精度。
轧辊调整装置
用于调整辊缝,使轧件达到所要求的断面尺寸。上辊调整装置也称“压下装置”,有手动、电动和液压三种。手动压下装置多用在型材轧机和小的轧机上。电动压下装置包括电动机、减速机、制动器、压下螺丝、压下螺母、压下位置指示器、球面垫块和测压仪等部件;它的传动效率低,运动部分的转动惯性大,反应速度慢,调整精度低。 70 年代以来,板带轧机采用 AGC( 厚度自动控制 ) 系统后,在新的带材冷、热轧机和厚板轧机上已采用液压压下装置,具有板材厚度偏差小和产品合格率高等优点。
上轧辊平衡装置
用于抬升上辊和防止轧件进出轧辊时受冲击的装置。形式有:弹簧式、多用在型材轧机上;重锤式,常用在轧辊移动量大的初轧机上;液压式,多用在四辊板带轧机上。
为提高作业率,要求轧机换辊迅速、方便。换辊方式有 C 形钩式、套筒式、小车式和整机架换辊式四种。用前两种方式换辊靠吊车辅助操作,而整机架换辊需有两套机架,此法多用于小的轧机。小车换辊适合于大的轧机,有利于自动化。目前,轧机上均采用快速自动换辊装置,换一次轧辊只需 5 ~ 8 分钟。
传动装置
由电动机、减速机、齿轮座和连接轴等组成。齿轮座将传动力矩分送到两个或几个轧辊上。
辅助设备包括轧制过程中一系列辅助工序的设备。如原料准备、加热、翻钢、剪切、矫直、冷却、探伤、热处理、酸洗等设备。
起重运输设备 吊车、运输车、辊道和移送机等。
附属设备 有供、配电、轧辊车磨,润滑,供、排水,供燃料,压缩空气,液压,清除氧化铁皮,机修,电修,排酸,油、水、酸的回收,以及环境保护等设备。
轧机的命名
按轧制品种、轧机型式和公称尺寸来命名。“公称尺寸”的原则对型材轧机而言,是以齿轮座人字齿轮节圆直径命名;初轧机则以轧辊公称直径命名;板带轧机是以工作轧辊辊身长度命名;钢管轧机以生产最大管径来命名。有时也以轧机发明者的名字来命名 ( 如森吉米尔轧机 ) 。
轧机的选择
按生产的产品品种、规格、质量和产量的要求来选定成品或半成品轧机的类型和尺寸,并配备必要的辅助、起重运输和附属设备,然后根据各种因素的要求最后加以平衡选定。
轧机动力设施
1590 年英国开始用水轮机拖动轧辊,直到 1790 年还有用水轮机配以石制飞轮拖动四辊式钢板轧机的 ( 图 4 水轮机拖动的钢板轧机 ) 。 1798 年英国开始用蒸汽机拖动轧机。现代的轧机均为直流或交流电动机拖动,有单机拖动,也有通过齿轮成组拖动。
轧机的分类
轧机可按轧辊的排列和数目分类,可按机架的排列方式分类,也可按生产的产品分类,分别列于表 1 轧机按轧辊的排列和数目分类、表 2 轧机按机架排列方式分类和表 3 轧机按生产产品分类。
轧机的发展
现代轧机发展的趋向是连续化、自动化、专业化,产品质量高,消耗低。 60 年代以来轧机在设计、研究和制造方面取得了很大的进展,使带材冷热轧机、厚板轧机、高速线材轧机、 H 型材轧机和连轧管机组等性能更加完善,并出现了轧制速度高达每秒钟 115 米的线材轧机、全连续式带材冷轧机、 5500 毫米宽厚板轧机和连续式 H 型钢轧机等一系列先进设备。轧机用的原料单重增大,液压 AGC 、板形控制、电子计算器过程控制及测试手段越来越完善,轧制品种不断扩大。一些适用于连续铸轧、控制轧制等新轧制方法,以及适应新的产品质量要求和提高经济效益的各种特殊结构的轧机都在发展中。 ( 见彩图 鞍山钢铁公司初轧厂连轧机组生产情景 、 初轧坯的定尺切断设备—— 2000 吨大剪 、 板坯初轧机在轧制板坯 、 上海第五钢铁厂初轧车间均热炉出钢 、 中国制造的 4200 毫米厚板轧机 、 宽厚钢板的热矫直机 、 钢板粗轧机前的高压水除铁鳞机 、 2300 毫米钢板轧机生产场面 、 1700 毫米带钢热轧机主控室 、 带钢冷轧机正在生产 、 带钢冷轧机生产的成品——钢卷 、 带钢的热镀锌机组 、 H 形宽边工字钢轧钢机 、 中型轧钢厂 、 型材定尺切断的主要方法——热锯 、 大型轧钢厂的钢轨冷床 、 保证线材性能的线材散卷冷却 、 轧制线材的新式 45° 无扭精轧机 、 小型轧钢机的围盘。横列式小型轧机的重要辅助设备 、 线材轧机的成品收取设备——线材卷取机 、 轧制直径 140 毫米无缝钢管的自动轧管机 、 70 年代制成的大直径钢管,直径 2540 毫米 、 现代管材生产方法之一——大直径螺旋焊管 、 无缝钢管厂保证钢管尺寸精度的均整机 、 无缝钢管坯正在穿孔 、 轧制箔材用的森吉米尔 20 辊轧机 、 火车车轮和轮箍轧机的工作情景 、 中国制造的大型锻压设备—— 32000 吨水压机 、 新型塑性加工设备——精锻机 、 3000 吨卧式挤压机 、 铝箔轧机 、 品类繁多的轧辊,用于轧制各种产品 、 铝连续铸轧机 )
㈢ 钢板的加工工艺是什么
铸坯,加热,轧制(根据不同板厚的要求,由厚到薄轧制工序递增获得厚、中、薄板),修边定尺,包装。
㈣ 轧机、轧钢机的压轧工艺流程是什么
轧机、轧钢机的压轧工艺流程如下:
轧制过程:
一般单机架二十辊冷轧机的轧制过程可分为上料及穿带、可逆轧制;卸料及重卷3个阶
段。
二十辊轧机,特别是森吉米尔二十辊轧机,是采用大张力进行轧制的;轧制过程是从钢
带在轧机前后的卷取机/开卷机施加张力之后才开始的,这之前即是上料及穿带阶段。
上料及穿带阶段:
一般用上料小车将钢卷送到开卷机卷筒上;开卷多采用浮动开卷机,
以保证钢带始终处在轧机中央位置;浮动开卷机由光电对中装置通用液压缸来进行控制;开
卷后钢带经矫直机(三辊直头或五辊矫直机)进行矫直;部分轧机设有液压剪可以进行切头;钢带用上摆式导板台跨过机前卷取机,直接送到二十辊轧机;然后开卷机继续往前送出钢带穿过轧机一直送到机后卷取机钳口,钳口钳住钢带带头并在卷筒上缠绕2—3圈后停止送带,穿带结束。
可逆轧制阶段:
穿带结束后,首先安放好上、下工作辊(穿带时,工作辊已取下),然后调准轧制线,关闭轧机封闭门,机前压板压下,出口侧擦拭器压紧钢带,轧机工艺润滑冷却系统启动供液,轧机带钢压下,卷取机转动给钢带前张力,机前后测厚仪、测速仪进入轧制线,机组运转开始第一道次的轧制。
轧制过程中,如果发现钢带边部有缺陷将影响到高速轧制,则当缺陷部位经过轧辊时;
操作工按一下操作台上的按钮,将其缺陷位置信号输入AGC系统。轧制将结束时轧机减速,当钢带尾部到达机前卷取机位置时,机组停车,第一道次结束。测厚仪、测速仪退出轧制
线,轧机压下抬起,钢带张力解除,冷却润滑剂停止供给,压板抬起。
第二道轧制时,钢带反向运动,机前机后位置互换。第二道次工作开始时机后卷取机反
向运行将机前钢带头部送人机前卷取机卷筒钳口,钳口钳住带头后,机前卷取机转动将钢带
在卷筒上缠绕2—3圈;然后,轧机供给冷却润滑液,轧机压下,机前后卷取机传动给出后
张力,机前后测厚仪、测速仪进入轧制线,机组运转开始第二道次的轧制。
从第二道次开始,轧制就在机前后卷取机和二十辊轧机之间往返进行。当轧机的自动厚度控制(ACC)系统投入工作时可以实现全自动控制。当轧制过程中钢带有缺陷的部位过轧辊时,轧机会自动减速。轧制终了,轧机会自动停车。
一般可逆式轧机轧制奇数道次,但是在机前后卷取机为胀缩式卷筒时,可以轧制偶数道
次,即在轧机开卷机一侧也可以卸卷。
一般在成品道次轧制前,需要更换工作辊,以获得高质量的及有特殊要求的钢带表面质
量。在成品道次轧制后,轧机停车,压下拾起,测厚仪、测速仪退出轧制线,轧机停止冷却润滑液供给,卷取机的压辊压下,或者将卸卷小车升起用小车座辊顶住钢卷,避免钢卷松卷卷取机转动将钢带尾部全部卷到卷筒上。至此可逆轧制过程结束。
卸卷及重卷阶段:
对于胀缩式卷筒卷取机,卸卷比较简单。首先用捆扎带在钢卷径向捆
扎一道,卸卷小车升起顶住钢卷,卷取机卷筒收缩,钳口打开,钢卷便被卸卷小车托住,卸卷小车和卷取机的辅助推板同步移动,便将钢卷从卷取机上卸下,卸卷小车继续移动将钢卷送到钢卷存放台上。
对于轧机前后为实心卷筒的卷取机,钢卷不能够从卷筒上直接卸下,只有将钢卷重新卷
到一台胀缩式卷筒卷取机上,才能将钢卷卸下来。森吉米尔二十辊轧机、森德威二十辊轧机,采用实心卷筒卷取机时,机组一般设有重卷机构,将成品钢卷及实心卷筒一起从卷取位置转移到重卷开卷位置i然后将钢卷从开卷机往重卷机上重新卷取一次,由于重卷过程是在轧机轧制区域之外的位置进行的,所以重卷和轧制可以同时进行,互不影响。
轧制工艺:
1、压下制度:
轧机的压下制度,应根据轧机的技术参数、轧制材料的力学性能、产品的质量要求来制
定,同时还要考虑轧机生产能力要高,消耗要低。
用二十辊轧机轧制优质碳素钢,相对来说是非常容易的,使用二十辊轧机的目的是追求
产品的高质量,有高的尺寸精度、板形和表面质量,获得更薄的产品。
碳素钢,特别是低碳软钢,在二十辊轧机上,一个轧程的总压下率能达到95%以上,道次压下率可以达到66%。
对于可逆式冷轧机,由于各道次是在同一-架轧机上轧制,所以道次压下率分配是用等压力轧制原则来确定压下规程。一般第一道第二道的压下率最大,随着被轧钢带的加工硬
化,道次压下率逐渐减小,以使各道次的轧制压力大致相等。
为了提高轧机的生产能力,在充分利用轧机及机前后卷取机主传动功率的前提下,要尽
可能地加大道次压下率以减少轧制道次。但是,有时为了获得良好的板形及表面质量,减少
钢带纵向的厚度偏差,也可以适当地增加轧制道次,在总压下率相同的情况下,采用较多的轧制道次能使钢带的强度略有提高。成品道次的压下率对板形的影响较大,一般采用10%
左右。
2、张力制度:
冷轧钢带的一个特点是张力轧制;没有张力就无法进行钢带的冷轧。张力可以降低轧
制压力,改善板形,稳定轧制过程。张力制度对于钢带冷轧非常重要。
采用小直径工作辊轧制的二十辊轧机(及多辊轧机),轧制过程的工艺特点则是采用大
张力轧制。
必须采用大的单位张力,是由于被轧制材料具有物理—力学性能各向异性现象,或在小
变形弧长度内工作辊具有不大的歪斜,这样沿带材宽度出现压下和延伸的不均衡性。在压
下量小的区域内重新分布张力时,张力达到屈服极限,井可能使带材宽度方向的延伸均衡。
实际上,在多辊轧机上轧制时,金属的变形是依靠轧辊压下和卷取机建立的带材张力共同完
成的。
多辊轧机中采用的单位张力的大小取决于材料的物理—力学性能及冷加工硬化程度、带
材厚度及其边部质量。一般单位张力为20%一70% 。
为了实现稳定轧制过程所必须的大的单位张力及总张力,要求在多辊轧机中设置具有
大功率传动的卷取机。一般二十辊轧机卷取机电机功率达到轧机主传动功率的70%一
80%,有的甚至达到100%。
各道次张力按如下方法确定。一般来说,第一道次轧制时,由于酸洗机组的卷取张力较
小,为了避免造成钢带层间错动而擦伤表面,第一道的后张力根小,小于酸洗机组卷取张力。
为了增加第一道轧制的后张力,二十辊轧机入口侧设有压板来增加轧制后张力;前张力可以
根据工艺要求自由决定。在以后的轧制道次中,根掘轧制钢带品种、规格,或者采用前张力
大于后张力,或者后张力大于前张力。一般采用将前一道次的轧制前张力作为本道次的后
张力,单位前张力大于单位后张力。成品道次的前张力(卷取张力)有两种情况。对于胀缩式卷筒卷取机,由于在卷取机上可以直接卸卷并且钢卷直接进罩式炉进行紧卷退火,为防止在退火中产生粘结,卷取张力应减小,卷取张力小于50Mpa时,退火粘结的几率就很低了,但卷取张力低会影响轧机生产能力;对于实心卷筒卷取机,由于需要进行重卷,重卷时可以
采用较小的张力(10—40Mpa),因此轧制时能够采用大张力,可以提高轧机生产能力。
道次的张力还应根据板形随时进行调整,特别是轧制带材较薄时。当材料中部有波浪时,应减小张力防止拉裂带边或断带;当带材产生边浪时,可以适当增加张力。
3、速度制度:
轧制速度的确定,应根据设备的能力,在轧机允许使用的速度范围内尽可能采用高的轧
制速度,以提高轧机的生产能力;同时,当轧制速度增加时,轧制压力相应有所减小。
一般第一道次轧制时采用较低的轧制速度,因为第一道的压下量大,如果再用高速度轧
制,将使轧辊急剧发热,由于多辊轧机轧辊冷却条件较差,将影响轧辊寿命;另外,由于坯料纵向厚度偏差大,板形与轧辊不完全符合,第一道轧制时要对坯料进行调整,要求速度较低;同时采用高速度大压下,主电机能力也不能满足。
以后的道次,则根据压下制度和张力制度及主电机的功率决定轧制速度,使主电机的能
力得到发挥。
每道次轧制的启动和制动时,分别有一个升速和降速的过程。在轧制过程中,应尽可能
少调速,以保证轧制的稳定性,从而达到厚度偏差的均一性。
4、辊形:
由于二十辊轧机机架的刚性和零凸度设计,以及轧辊辊形的多种有效的调整手段,所以,
二十辊轧机能够全部使用没有辊形凸度的平辊进行轧制。根据需要,工作辊和第二中间辊也
可以适当地配置凸度辊;第一中间辊永远是平辊,但—头带有锥度,供轧辊轴向调整使用;支撑辊的背衬轴承不能有凸度。
㈤ 在轧钢过程中如何控制板型
宽带钢轧机板形控制技术比较研究(转)
宽带钢轧机板形控制技术比较研究
张清东 黄纶伟 周晓敏
摘 要 运用软件仿真方法并结合生产实践,从板形调控功效和板带轧机综合性能两个方面,比较研究了目前国际上各主要板形控制技术.研究结果不仅有助于板带轧机的选型和板形技术的配置,也有益于先进板形技术的创制.
关键词 板带轧机;板形技术;比较研究
分类号 PG 335.11
Comparative Study on Shape Control Technologies for Wide Strip Mills
ZHANG Qingdong HUANG Lunwei ZHOU Xiaomin
(Mechanical Engineering School, UST Beijing, Beijing 100083,China )
ABSTRACT The main advanced shape control technologies in operation now were studied and compared, for this reason, shape-adjusting action matrices and mills' overall shape control performances of these actuators were imitated by numerical calculation methods. The research conclusions will be not only beneficial to design of strip rolling mills and selection of shape control actuators for a mill, but also beneficialto creating new advanced shape control technologies.
KEYWORDS strip rolling mill; shape control technology; comparative study
自70年代以来,由于市场对板形质量的要求愈来愈高,推动板形控制技术成为板带生产的关键性技术.围绕板形控制技术的开发,国际上先后出现了诸如HC,CVC,UC,K-WRS,PC等多种不同机型的新一代高技术板带轧机.这些轧机都拥有1项自有的标志性板形控制技术并辅以多项其他通用板形控制技术(如弯辊、压下倾斜、分段冷却),在生产中都配备有板形自动检测装置并实现了板形自动控制.
板形控制技术都是具有特定设备形态的工艺技术,其板形控制性能与自身的设备条件,如辊系结构与尺寸(辊数、直径、辊长等),以及工艺条件,如轧制力与轧件宽度等有关.因此,研究和比较板形控制技术需要针对已知的设备条件和工艺条件,从板形调控功效和板带轧机性能两方面进行.
1 板形调控功效的定义[1]
板形调控功效是在一种板形控制技术的单位调节量作用下,轧机承载辊缝形状在沿带钢宽度方向上各处的变化量,公式表示如下:
(1)
式中:E(x)—板形调控功效函数,可能是简单多项式或高阶复杂多项式;gf (x)—承载辊缝形状变化量的函数;S —广义调节量(力或位移);x—沿板宽方向坐标.
调控功效也可用单位调节量引起的沿板宽方向辊缝形状变化量的离散值表示:
E=[e1,e2,…,ei,…] (2)
此时,E—板形调控功效矩阵.
以上形式的板形调控功效可以表示板形控制技术对承载辊缝形状的各个描述指标(凸度、楔形度、边部减薄量、局部突起量)的调控作用.
在板形平坦度自动控制系统中,板形调控功效矩阵可表示为板形控制技术的单位调节量所引起的带钢前张应力沿横向各处的变化量,公式表示如下:
E=[q1,q2,…,qi,…] (3)
其中,m—板宽范围内板形仪测量区段数;qi—第i区段上带钢前张应力变化量.
板形调控功效可以通过实验或软件仿真2种方法确定.其中实验方法需在规模相同的实验轧机或者直接在生产轧机上进行,难度较大.软件仿真的方法经济有效,能灵活地模拟各种轧制条件,应用较为广泛.
2 板形控制技术的板形调控功效仿真比较
板形调控功效可以准确地描述一种板形控制技术的板形控制思想和调控特性,研究和比较板形控制技术首先要研究并比较其板形调控功效.
运用有限单元法和影响函数法对目前使用的主要板形控制技术——CVC,HC,PC,K-WRS,DSR,弯辊和压下倾斜的板形调控功效进行仿真研究,结果见图1和2.各图的纵坐标为以0.001 mm为单位的辊缝开度变化量,横坐标为距带钢中心线的距离与半板宽之比,其中DW为工作辊直径,DI为中间辊直径,DB为支持辊直径,B为板宽,P为总轧制力.图中的曲线形态和相应函数表达式表示了各板形技术的板形调控功效的大小、特性.
图1 6种板形控制技术仿真.横坐标为距带钢中心线距离与半板宽之比(r);纵坐标为以0.001mm为单位的辊缝开度的变化(γ).(a)四辊CVC,(b)六辊CVC,
(c)UC,(d)PC,(e)K-WRS,(f)不对称弯辊与压下倾斜
Fig.1Shape-adiusting action of six shape control actuators by imitation
图2 DSR辊各个压块和工作辊弯辊的调控功效
Fig.2Shape-adjusting action of padsactuators and WT bending on DSR
从图可见,CVC,HC,PC和对称弯辊技术的板形调控功效都是对称的,并且都以2次成分为主.其中4次成分含量最多的有:六辊CVC轧机的中间辊抽辊和工作辊弯辊,以及PC轧机的轧辊交叉和UC轧机中间辊弯辊.
压下倾斜和不对称弯辊技术的板形调控功效是非对称的,并且整体调控作用明显.DSR的单个压块压力调节的板形调控功效除一个是高次对称的,其余皆是非对称的,有一定的局部调控作用.DSR的全体压块压力可以各种对称或非对称分布模式给出,相应提供各种对称或非对称的板形调控功效.K?朩RS轧机的工作辊抽辊没有板形调控作用,其作用在于均匀化磨损.
另外,图中的板形调控功效是在一定的板宽、辊径、辊长和轧制力下计算所得.进一步研究可以发现:
(1)板宽与辊长之比对调控功效有一定影响.随着比值的增大,各种板形控制技术的调控功效的大小增加,尤其4次成分增加更多.
(2)各种板形控制技术的调控功效对轧辊直径变化的敏感程度不同.如工作辊弯辊对轧辊直径的变化较为敏感,而CVC则基本上与轧辊直径无关.
(3)平均单位板宽轧制压力对某些板形控制技术的板形调控功效具有影响.对比可知,以力为调节量的板形控制技术的调控功效基本不受影响,而以辊形、抽辊为调节量的板形控制技术,其调控功效大小随轧制压力增大而增大.
3 板形调控功效在控制系统中的作用
板形调控功效是板形自动控制系统中板形控制策略设计的前提和归宿,它在一定程度上决定了所采取的板形控制策略,以及控制效果评价函数形式和各板形控制技术设定值调节量的求解方法,是板形自动控制模型建立的基础.板形调控功效对板形自动控制模型的影响在现有3类闭环反馈控制模型中都显而易见[2].
3.1 基于模式识别类
对于板形调控功效函数较简单的板形控制技术,运用线性最小二乘法把实测板形信号分解为与各调控功效函数相对应的种模式:
求得达极小值时的各值,直接用于确定种板形控制技术的设定值的调节量,一般有.
3.2 基于最小二乘评价函数类
对于板形调控功效函数较复杂的板形技术,不进行模式识别,直接运用线性最小二乘原理建立离散的板形控制效果评价函数并求解各板形控制技术设定值的调节量:
(6)
确定使达到极小值的,
[S]p×1=[A]-1p×p[R]p×1 (7)
式中,A—板形调控功效矩阵;R—板形实测值矩阵.
3.3 基于板形参数评价函数类
首先,运用最小二乘法将板形实测值拟合为完全4次多项式:
y(x)=λ+λ1x+λ2x2+λ3x3+λ4x4 (8)
再转化为用于表达板形调控功效的板形参数同时将板形控制目标表示为以板形参数分别构造加权的对称及非对称的控制效果评价函数.运用登山探索法直接确定使达到极小值的各板形控制技术设定值的调节量.
以上3类模型分别为3种不同的控制策略及数学模型,用于控制不同的板形技术.
4 板带轧机板形控制性能界定指标
板形控制的实质在于对承载辊缝形状的控制.各种板形控制技术的板形控制原理都是调控承载辊缝的形状.在轧制过程中,影响轧件板形(承载辊缝形状)的干扰因素主要是轧辊辊形变化(轧机方面的)和轧制力波动(轧件方面的).板形控制性能优良的板带轧机,其承载辊缝形状应该同时具有足够大的可调控范围和对轧制力、轧辊辊形变动干扰的抵抗能力.因此提出以下板带轧机板形控制性能界定指标.
4.1 辊缝形状调控域
辊缝形状调控域即轧机各项板形控制技术共同对辊缝形状的各个描述指标——凸度、楔形度、边部减薄量、局部突起量——的最大可调控范围.但一般可以将带钢宽度跨距内的辊缝曲线用离散数值表示,并通过多项式拟合得到曲线的2次凸度和4次凸度,并在坐标系中建立辊缝凸度最大可调控范围,称之为辊缝凸度调节域.
4.2辊缝横向刚度
轧机一方面应具有承载辊缝形状的可调控柔性,另一方面则应具有当轧制力发生波动和存在干扰时辊缝形状保持相对稳定的能力即辊缝刚性.辊缝的刚性用辊缝横向刚度K界定:
K=△q/△Cw (9)
式中,—轧制压力q的变化量;—辊缝凸度对应于的变化量.
4.3辊形自保持性(稳定性)
轧机的各轧辊在服役期内不断发生表面磨损,下机后可以测得磨损后的轧辊表面轮廓曲线,再与上机前的轧辊初始辊形曲线相减,就可得到轧辊在服役期内表面上的(中点或边部点的)相对磨损量分布曲线,称为轧辊磨损曲线或磨损辊形.定义辊形自保持性参数Rw:
Rw=1.0-Wmax.K/Lw (10)
其中,Wmax—宽度方向上最大相对磨损量;Lw—磨损曲线宽度;K—轧辊径长比.
如果轧辊表面磨损均匀,则轧辊具有最优的辊形自保持性即辊形稳定性,Rw=1.0.实际生产中,除表面局部剥落外,轧辊磨损曲线多为近似光滑曲线型(C型,高次或低次多项式)、“梯形(T型)”、“阶梯型(S型)”和“猫耳型(CE型)”.
轧辊表面不均匀磨损导致辊缝形状变动和某些板形控制技术的调控功效变化.辊缝调节域表明了辊缝的调节柔性,辊缝横向刚度表明了辊缝在轧制力变动时的稳定性.建立将二者结合组成的Cw-Cq-q坐标系,以轧制宽度B为参变量,可以得到描述轧机板形控制性能的三维图.如果轧辊自保持性良好,则这一板形控制性能的三维图在整个轧辊服役期内保持恒定.
辊缝的调节柔性和刚度特性以及轧辊的辊形自保持性是比较板带轧机的板形控制性能的主要依据.
板形调控功效是板形控制技术的特质,也是决定板带轧机板形控制特性的基本“元素”.因此,比较板带轧机的板形控制性能也可以说明板形控制技术的优劣.
5 板形调控功效决定板带轧机性能
板带轧机板形控制技术的配置方案决定了轧机的机型,也决定了轧机的板形控制策略——“柔性辊缝”或“刚性辊缝”.如果轧机的标志性板形控制技术的调控思想是扩大辊缝形状调控域,则称之为柔性辊缝型;如果是提高辊缝横向刚度,则称之为刚性辊缝型.
CVC轧机和PC轧机同属高柔度、低刚度辊缝,即柔性辊缝型;HC(UC)轧机属于低凸度、高刚度辊缝型,即刚性辊缝型;VCL(VCR)支持辊技术可提高辊缝刚度并使支持辊具有优良的辊形自保持性,也属于刚性辊缝型;DSR技术既可以实现柔性辊缝控制也可实现刚性辊缝控制.
6 板带轧机综合性能比较
板带钢热轧和冷轧机的主要机型有常规四辊,CVC,HC(UC),PC,K?朩RS,VCL(VCR),DSR等.通过软件仿真和生产实践调研从8个方面对各种机型板带轧机的综合性能进行比较,见表1.
表1 板带轧机综合性能比较
Table 1 Comparison of overall performances in strip rolling mill
项目 常规四辊 CVC HC(UC) PC K-WRS VCL(VCR) DSR
轧辊是否抽动 否 是 是 交叉 是 否 是 否
辊缝形状调控域 C A A A C B B A
辊缝横向刚度 C C A C C A A A
辊形自保持性 C C C C B A A B
轧件行进稳定性 B B B C B A A A
辊耗 A C C V B A A C
实现自由轧制 C C B C A C A C
结构及维护简易 A B B C B A B C
避免过大轴向力 A B B C B A A A
辊形及磨辊简易 A C B A A C C A
比较结果进一步说明目前的板带轧机各种机型都各有所长也各有所短,还没有一种机型具有绝对的优势.
尤其是各机型都有明显缺点:CVC辊形曲线易被磨损破坏,辊间接触压力分布呈S型使支持辊(和工作辊)磨损严重不均.HC(UC)轧机辊间接触压力呈三角形分布,使辊端出现较大的接触压力尖峰,从而导致辊面的剥落,增大辊耗和换辊次数.PC轧机机械结构复杂,工作辊轴向力大,交叉点与轧制宽度中心线重合难,轧件易跑偏.K?朩RS和CVC热轧机上下工作辊的不相等“磨损箱”必造成工作辊移位后的非对称辊缝,导致轧件楔形和单边浪的出现,甚至跑偏的发生;而PC轧机由于轧辊不移动可以避免此类问题.使用常规平辊的K-WRS轧机对板形控制无有贡献,但如采用具有特殊辊廓曲线的工作辊,则能兼有板形控制的功能.K-WRS轧机能使磨损分散化和平缓化,为热轧自由规程轧制提供条件,而CVC,HC(UC),PC技术都无此能力.
7 结束语
比较研究进一步证明,目前的各项板形控制技术都同时具有优势和局限,处于发展中、尚未成熟.这一方面给板带轧机的选型和板形控制技术的配置制造了难度,另一方面也留下了针对板形控制技术的较大创新空间.正因此,近年来有关板形的研究始终都是前沿和热点,板形技术向系列化和一体化模式发展.系列化主要表现在连轧机组各机架板形控制技术的开发、兼顾板形的轧制道次设定,以及以轧机为重点同时开发热轧层流冷却、热轧精整、冷轧酸洗、冷轧平整与精整中的板形控制技术.一体化主要表现在热轧和冷轧机的机型配置、辊形设计、工艺制度和控制模型被整合为一体的板形综合控制技术.
张清东(北京科技大学机械工程学院,北京 100083)
黄纶伟(北京科技大学机械工程学院,北京 100083)
周晓敏(北京科技大学机械工程学院,北京 100083)
参考文献
1,黄纶伟.DSR板形技术研究:[学位论文].北京:北京科技大学,1999.3
2,张清东.冷轧宽带钢板形检测与自动控制.钢铁,1999(10): 69