1. 影响超声波检测仪数值的因素
超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的 , 当探头发射的超声波脉冲通过被测物体到达材料分界面时 , 脉冲被反射回探头 , 通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。
影响 超声波测厚仪 示值的因素:
(1)工件表面粗糙度过大 , 造成探头与接触面耦合效果差 , 反射回波低 , 甚至无法接收到回波信号。对于表面锈蚀 , 耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理 , 降低粗糙度 , 同时也可以将氧化物及油漆层去掉 , 露出金属光泽 , 使探头与被检物通过耦合剂能达到很好的耦合效果。
(2)工件曲率半径太小 , 尤其是小径管测厚时 , 因常用探头表面为平面 , 与曲面接触为点接触或线接触 , 声强透射率低(耦合不好)。可选用小管径专用探头(6mm ) , 能较精确的测量管道等曲面材料。
(3)检测面与底面不平行 , 声波遇到底面产生散射 , 探头无法接受到底波信号。
(4)铸件、奥氏体钢因组织不均匀或晶粒粗大 , 超声波在其中穿过时产生严重的散射衰减 , 被散射的超声波沿着复杂的路径传播 , 有可能使回波湮没 , 造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。
(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂 , 长期使用会使其表面粗糙度增加 , 导致灵敏度下降 , 从而造成显示不正确。可选用500#砂纸打磨 , 使其平滑并保证平行度。如仍不稳定 , 则考虑更换探头。
(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑 , 造成声波衰减 , 导致读数无规则变化 , 在极端情况下甚至无读数。
(7)被测物体(如管道)内有沉积物 , 当沉积物与工件声阻抗相差不大时 , 测厚仪显示值为壁厚加沉积物厚度。
(8)当材料内部存在缺陷(如夹杂、夹层等)时 , 显示值约为公称厚度的70% , 此时可用超声波探伤仪进一步进行缺陷检测。
(9)温度的影响。一般固体材料中的声速随其温度升高而降低 , 有试验数据表明 , 热态材料每增加100°C , 声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C) , 切勿使用普通探头。
(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的 , 因超声波无法穿透未经耦合的空间 , 而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备) , 测厚时要特别注意 , 测厚仪的示值仅表示与探头接触的那层材料厚度。
(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气 , 使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当 , 将造成误差或耦合标志闪烁 , 无法测量。因根据使用情况选择合适的种类 , 当使用在光滑材料表面时 , 可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时 , 应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次 , 耦合剂应适量使用 , 涂抹均匀 , 一般应将耦合剂涂在被测材料的表面 , 但当测量温度较高时 , 耦合剂应涂在探头上。
(13)声速选择错误。测量工件前 , 根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时 , 将产生错误的结果。要求在测量前一定要正确识别材料 , 选择合适声速。
(14)应力的影响。在役设备、管道大部分有应力存在 , 固体材料的应力状况对声速有一定的影响 , 当应力方向与传播方向一致时 , 若应力为压应力 , 则应力作用使工件弹性增加 , 声速加快;反之 , 若应力为拉应力 , 则声速减慢。当应力与波的传播方向不一至时 , 波动过程中质点振动轨迹受应力干扰 , 波的传播方向产生偏离。根据资料表明 , 一般应力增加 , 声速缓慢增加。
(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层 , 虽与基体材料结合紧密 , 无名显界面 , 但声速在两种物质中的传播速度是不同的 , 从而造成误差 , 且随覆盖物厚度不同 , 误差大小也不同。
超声波测厚仪主要功能
1.简单易操作的参数配置界面
2.可调整的实时A扫描 , 可调整增益、闸门、消隐、范围、平移等参数
3.实时B扫描功能 , 显示工件的剖面图 , 用于观察被测工件的底面轮廓
4.数值视图 , 用大数字显示厚度值
5.厚度报警:可设置厚度界限 , 对界限外的测量值自动报警
6.最值模式:捕获测量过程中的最大最小值
7.差值模式:获得当前测厚值与标称厚度之差以及差值与标称厚度的百分比
8.支持毫米和英寸两种厚度单位
9.用户可选的测量分辨率米制X.XX和X.X , 英制为X.XXX和X.XX
10.用户可选的波形样式:外形线或填充
11.用户可选的整流模式:射频 , 倒相射频 , 全波 , 负半波 , 正半波
12.多种语言界面可选
13.待机时间:超长待机 , 长达35小时
2. 怎样解决超声波测厚仪测量时常见问题呢
超声波测厚仪测量时常见问题及解决方法:
(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。
(2)工件曲率半径过大,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。
(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。
(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。
(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。
(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。
(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。
(8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。
(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。
(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。
(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。
(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。
(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压
应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。
(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。
亚测(上海)仪器科技有限公司是一家集研制、开发、生产和销售为一体专业化仪器设备公司。公司超声波测厚仪器设备以恒定速度在其内部传播的各种材料均可采用此原理测量,如金属类、塑料类、陶瓷类、玻璃类。可以对各种板材和加工零件作精确测量,另一重要方面是可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。适合测量金属(如钢、铸铁、铝、铜等)、塑料、陶瓷、玻璃、玻璃纤维及其他任何超声波的良导体的厚度。
3. 奥氏体不锈钢铸件能进行无损检测吗
可以,可以做
射线探伤
,也可以做
超声波探伤
,不过超声波一般在板厚8mm以上效果好。不能用
磁粉
表面探伤,可以用渗透表面探伤。
4. 如图,材质为奥氏体不锈钢,焊缝组织也是奥氏体不锈钢,这个焊缝能用超声波检测吗
可以。超声检测和材料关系不大
5. 不锈钢锻件为何不能用超声检测
奥氏体不锈钢的焊缝不能用超声检测是因为存在双晶晶界
锻件,板材等原材料的是可以的
6. 铁素体不锈钢能做磁粉和超声波检测么
关于超声检测,一般来说主要考虑奥氏体不锈钢的声束偏移,特别横波从而需要特定的方法进行检测。如是铁素体的材料应可进行超声检测,但得验证声速的变化。关于磁粉检测,主要看磁导率是否适合进行磁粉检测,即正常的磁化强度下,能否获得足够的磁感应强度,采用高斯计进行测量!
7. 关于奥氏体钢、铸件的超声波无损检测的国标有吗 原来的GB/T7233只适用于非奥氏体钢
没有,想用的话可以用4730.用涡流检测
8. 衍射时差法超声检测为什么不能用于不锈钢
要知道衍射时差法超声检测(TOFD)为什么不能用于不锈钢,首先要明白TOFD原理,在这里就不赘述了,不知道可以网络。TOFD发现缺陷是依靠尖端衍射,而衍射波非常弱,通常比的反射波低30dB左右。而不锈钢通常金相组织比较粗大,比如奥氏体不锈钢组织粗大,会对声波产生散射等干扰(简单理解:粗大组织的材料噪声大),从而掩盖缺陷的衍射波。所以不锈钢或其他组织粗大的材质不适合TOFD。
9. 奥氏体不锈钢焊接接头能否采用超声波检测为什么
一.材料组织特点
奥氏体不锈钢焊缝凝固时未发生相变,室温下仍以铸态柱状奥氏体晶粒存在,这种柱状晶的晶粒粗大,组织不均,具有明显的各向异性,给超声波探伤带来许多困难,奥氏体不锈钢对接焊缝晶粒取向大致垂直与坡口柱状晶的特点是同一晶粒从不同方向测定有不同的尺寸,对于这种晶粒从不同方向探测引起的衰减与信噪比不同,当波束与柱状晶垂直时其衰减较大,信噪比较低。
手工多道焊成的奥氏体不锈钢焊缝,由于焊接工艺、规范存在差异,致使焊缝中不同部位的组织不同,声速及声阻抗也随之发生变化,从而使声速传播方向产生偏离,给缺陷定位带来困难。
二.探测条件的选择
1.波形:
超声波探伤中的信噪比及衰减与波长有关,当材质晶粒较粗,波长较短时信噪比低,衰减大。因此在奥氏体不锈钢焊缝中,一般选用纵波探伤,横波在奥氏体焊缝中不传播。
2.探头角度(k值):
奥氏体焊缝中危险性缺陷方向大多与探测面成一定角度,为了有效地检出焊缝中这种危险性缺陷,一般采用纵波斜探头探伤。由于奥氏体不锈钢焊缝为柱状晶,不同方向探测信噪比和衰减不同,因此纵波斜探头的折射角度选择要合理。实践证明,对于对接焊缝采用纵波折射角bl=45°既k1纵波斜探头探测信噪比高衰减较小。当焊缝较薄时也可采用bl=60°的探头探测,但灵敏度降低较为明显。
3.频率;
探伤奥氏体不锈纲焊缝时频率对衰减的影响很大,频率愈高,衰减愈大,穿透力愈低,奥氏体不锈钢焊缝晶粒粗大,宜选用较低的探伤频率,通常为0、5----2、5mhz,实践证明2mhz较好。
4.校准试块、对比试块的选择
由“一”材料组织特点可知,奥氏体不锈钢材料本身及焊缝与普通钢材有很大差别,目前很多标准要求用csk---ia试块做距离校准,用csk—iia试块做距离波幅曲线,通过下述试验可以看出误差很大,由于不同型号的奥氏体材料纵波声速差异很大,最好检测那一种型号的就用该种材料制作图二试块,并用同样的焊接方法形成焊缝。
10. 50mm厚不锈钢管能超声波探伤吗
可以探伤,不锈钢也分多钟类型的,比如是奥氏体不锈钢、马氏体不锈钢、双相不锈钢或者是铁素体不锈钢。
常见的是奥氏体不锈钢,比如304不锈钢。奥氏体不锈钢与一般的细晶材质的探伤方式有点不同,主要由于不锈钢材质的晶粒粗大,引起声束偏转和散射衰减等因素。比如要采用低频探头、纵波探头、以及专用的试块等方法。
NB/T47013.3-2015标准的附录中有关于奥氏体不锈钢材质的探伤方法。