导航:首页 > 方管焊管 > 直缝焊管机组水压机纵剪

直缝焊管机组水压机纵剪

发布时间:2023-06-04 01:47:56

❶ 高频直缝焊管

定径粗矫直和定径最后一架水平辊好好调一下就可以了,用粗矫直来控制直线度。

❷ 高频焊管机的调试技巧请问一下大师,高频励磁电压开到最高了,可是还加不起火,是什么问题

生产流程
生产工艺流程主要取决于产品品种,从原料到成品需要经过一系列工序,完成这些工艺过程需要相应的各种机械设备和焊接、电气控制、检测装置,这些设备和装置按照不同的工艺流程要求有多种合理布置,高频焊管典型流程:纵剪―开卷―带钢矫平―头尾剪切―带钢对焊―活套储料―成型―焊接―清除毛刺―定径―探伤―飞切―初检―钢管矫直―管段加工―水压试验―探伤检测―打印和涂层―成品。
质量影响
高频焊管生产中操作对焊接质量的影响
1 输入热量?
因为焊接工艺的主要参数之一,即焊接电流(或焊接温度)难以测量,所以用输入热量来代替,而输入热量又可用振荡器输出功率来表示:
N = Ep·Ip
式中 N——输出功率,kW;
??Ep——屏压,kV;
??Ip——屏流,A〔1〕?。
当振荡器、感应器和阻抗器确定后,振荡管槽路、输出变压器、感应器的效率也就确定了,输入功率的变化同输入热量的变化大致是成比例的。
当输入热量不足时,被加热边缘达不到焊接温度,仍保持固态组织而焊不上,形成焊合裂缝;当输入热量大时,被加热边缘超过焊接温度易产生过热,甚至过烧,受力后产生开裂;当输入热量过大时,焊接温度过高,使焊缝击穿,造成熔化金属飞溅,形成孔洞。熔化焊接温度一般在1350~1400℃为宜。
2 焊接压力?
焊接压力是焊接工艺的主要参数之一,管坯的两边缘加热到焊接温度后,在挤压力作用下形成共同的金属晶粒即相互结晶而产生焊接。焊接压力的大小影响着焊缝的强度和韧性。若所施加的焊接压力小,使金属焊接边缘不能充分压合,焊缝中残留的非金属夹杂物和金属氧化物因压力小不易排出,焊缝强度降低,受力后易开裂;压力过大时,达到焊接温度的金属大部分被挤出,不但降低焊缝强度,而且产生内外毛刺过大或搭焊等缺陷。因此应根据不同的品种规格在实际中求得与之相适应的最佳焊接压力。根据实践经验单位焊接压力一般为20~40MPa。?
由于管坯宽度及厚度可能存在的公差,以及焊接温度和焊接速度的波动,都有可能涉及到焊接挤压力的变化。焊接挤压量一般通过调整挤压辊之间的距离进行控制,也可以用挤压辊前后管筒周差来控制。
3 焊接速度?
焊接速度也是焊接工艺主要参数之一,它与加热制度、焊缝变形速度以及相互结晶速度有关。在高频焊管时,焊接质量随焊接速度的加快而提高。这是因为加热时间的缩短使边缘加热区宽度变窄,缩短了形成金属氧化物的时间,如果焊接速度降低时,不仅加热区变宽,而且熔化区宽度随输入热量的变化而变化,形成内毛刺较大。在低速焊时,输入热量少使焊接困难,若不符合规定值时易产生缺陷。?
因此在高频焊管时,应在机组的机械设备和焊接装置所允许的最大速度下,根据不同规格品种选择合适的焊速。

❸ 一般高频直缝焊管机组的生产流程都有那些

高频焊管机组生产流程基本上是:原料—开卷—剪切焊接—活套—校平—成型—焊接刮疤—冷却—精整—测速—矫直—切管—落料—成品。由于扬州新飞翔焊管机械型号的不同,配置的不同,可能会有稍微的不一样。

❹ 凌源钢铁股份有限公司的主体生产设备:

铁系统:高炉总容积2880m3。
钢系统:120吨顶底复吹转炉1座,35吨氧气顶吹转炉3座;600吨混铁炉2座,单吹颗粒镁铁水预处理设施3套,LF钢包精炼炉2台;七机七流高效方坯连铸机1台,双机双流高效板坯连铸机2台,五机五流高效连铸机3台。
材系统:年产100万吨的880mm中宽热带轧机1套;年产150万吨的全连续棒材生产线2套,年产60万吨的中型材生产线1套;年产30万吨的直缝焊管机组6套和螺旋焊管机组2套;年产50万吨的全连续式高速线材生产线1套。
2010年末,公司总股本为80400.22万股,其中国家股43147.3万股,占股本总额的53.67%,无限售条件的流通股37252.9万股,占股本总额的46.33%。

❺ 焊管设备中的开卷机有什么作用

开卷机,顾名思义,就是将钢卷打开,并将钢卷的一段引入后面的作业的过程,内这个功能就是开容卷机的作用,在各种生产中,开卷机都发挥了这样的功能。
开卷机还可以避免开卷时,由于带卷过开卷而造成的散卷,还能够调整加在带钢上的后张力;就是这样焊管机组开卷机能够避免在带卷的捆带打开后,带钢头部在被下一设备咬到前就发生了头部反弹现象。冠杰焊管知识。

❻ 万急:高频焊接原理

焊管高频焊接原理

作者:江南五里湖
高频焊接起源于上世纪五十年代,它是利用高频电流所产生的集肤效应和相邻效应,将钢板和其它金属材料对接起来的新型焊接工艺。高频焊接技术的出现和成熟,直接推动了直缝焊管产业的巨大发展,它是直缝焊管(ERW)生产的关键工序。高频焊接质量的好坏,直接影响到焊管产品的整体强度,质量等级和生产速度。
作为焊管生产制造者,必须深刻了解高频焊接的基本原理;了解高频焊接设备的结构和工作原理;了解高频焊接质量控制的要点。
1 高频焊接的基本原理
所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢?
集肤效应 是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。
邻近效应 是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。
这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。
2 高频焊接设备的结构和工作原理
了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,排除钢板表面的氧化层和杂质,使钢板完全熔合成一体。
高频发生器 过去的焊管机组上使用高频发生器是三回路的:高频发电机组;固体变频器;电子高频振荡器,后来基本上都改进为单回路的了。调节高频振荡器输出功率的方法有多种,如自耦变压器,电抗法,晶闸管法等。
馈电装置 这是为了向管子传送高频电流用的,包括电极触头,感应圈和阻抗器。接触焊中一般采用耐磨的铜钨合金的电极触头,感应焊中采用的是紫铜制的感应圈。阻抗器的主要元件是磁心,它的作用是增加管子表面的感抗,以减少无效电流,提高焊接速度。阻抗器的磁心采用铁氧体,要求它的居里点温度不低于310°,居里点温度是磁心的重要指标,居里点温度越高,就能靠得离焊缝越近,靠得越近,焊接效率也越高。
近年来,世界上一些大公司开始采用了固态模块式结构,大大提高了焊接可靠性,保证了焊接质量。如EFD公司设计的WELDAC G2 800高频焊机由以下部分组成:整流及控制单元(CRU),逆变器,匹配及补偿单元(IMC),CRU与IMC间的直流电缆,IMC到线圈或接触组件。
机器的两个主要部分是CRU及IMC。CRU包括一个带有主隔绝开关及一个全桥二极管整流器的整流部分(它把交流电转换为直流电),一个带有控制装置及外部控制设备界面的控制器。IMC包括逆变器模块,一个匹配变压器以及一个用于为感应线圈提供必需的无功功率的电容组。
主供电电压(3相480V),通过主隔绝开关被送到主整流器中。在主整流器中,主电压被转换为640V的直流电并且通过母线与主直流线缆相连接。直流电通过由数个并联电缆组成的直流电输送线被送到IMC。DC线缆在IMC单元母线上终止。逆变部分的逆变器模块通过高速直流保险同DC母线以并联方式连接在一起。DC电容也与DC母线连接在一起。
每个逆变器模块构成一个全桥IGBT三极管逆变器。三极管的驱动电路则在逆变器模块内的一个印刷电路板上。直流电由逆变器变为高频交流电。根据具体的负载,交流电的频率范围在100-150KH范围之间。为根据负载对逆变器进行调整,所有逆变器都以并联方式同匹配变压器连接。变压器有数个并联的主绕组,及一个副绕组。变压器的匝数比是固定的。
输出电容由数个并联电容模块组成。电容器以串联方式同感应线圈相连接,因此输出电路也是串联补偿的。电容器的作用是根据感应线圈对无功功率的要求进行补偿,及通过此补偿来使输出电路的共振频率达到所要求的数值。
频率控制系统被设计用来使三极管始终工作在系统的共振频率上。共振频率通过测量输出电流的频率确定。此频率随即被用来作为开通三极管的时基信号。三极管驱动卡向每个逆变器模块上的每个三极管发送信号来控制三极管何时开通,何时关断。
感应加热系统的输出功率控制是通过控制逆变器的输出电流来控制的。上述控制是通过一个用来控制三极管驱动器的功率控制卡完成的。
输出功率参考值由IMC操纵面板上的功率参考电位计给出,或者由外部控制面板输出给控制系统。此数值被传送给系统控制器后,将与由整流单元测量系统测量出的 DC功率数值相比较。控制器包括一个限定功能,它可以根据参考功率值与DC功率测量值的比较结果计算出一个新的输出电流设定值。控制器计算出来的输出功率设定值被送到功率控制卡,此控制卡将根据新的设定值来限定输出电流。
报警系统根据IMC中报警卡的输入信号及IMC,CRU中的各类监视设备发出的信号来工作。报警将显示在工作台上。
控制及整流器单元(CRU)
逆变器,匹配及补偿单元 (IMC)
直流线缆 输出功率总线,线圈及接触头连接
冷却系统安装在一个自支撑钢框架内,所有部件联结成为一个完整的单元。系统包括:带有电机的循环泵,热交换器(水/水),补偿容器,输出过程端(次输出)压力表,主进水口温度控制阀门,控制阀以及电气柜。主进水口端的热交换器使用未处理的支流水作为冷却用水,次端的热交换器则使用净化后的中性饮用水作为冷却水。未处理的水由恒温阀门控制,它用来测量次输出端的温度。钢框架可以用螺栓固定在门上。
3高频焊接质量控制的要点
影响高频焊接质量的因素很多,而且这些因素在同一个系统内互相作用,一个因素变了,其它的因素也会随着它的改变而改变。所以,在高频调节时,光是注意到频率,电流或者挤压量等局部的调节是不够的,这种调整必须根据整个成型系统的具体条件,从与高频焊接有关联的所有方面来调整。
影响高频焊接的主要因素有以下八个方面:
第一, 频率
高频焊接时的频率对焊接有极大的影响,因为高频频率影响到电流在钢板内部的分布性。选用频率的高低对于焊接的影响主要是焊缝热影响区的大小。从焊接效率来说,应尽可能采用较高的频率。100KHz的高频电流可穿透铁素体钢0.1mm, 400KHz则只能穿透0.04mm,即在钢板表面的电流密度分布,后者比前者要高近2.5倍。在生产实践中,焊接普碳钢材料时一般可选取 350KHz~450KHz的频率;焊接合金钢材料,焊接10mm以上的厚钢板时,可采用50KHz~150KHz那样较低的频率,因为合金钢内所含的铬,锌,铜,铝等元素的集肤效应与钢有一定差别。国外高频设备生产厂家现在已经大多采用了固态高频的新技术,它在设定了一个频率范围后,会在焊接时根据材料厚度,机组速度等情况自动跟踪调节频率。
第二, 会合角
会合角是钢管两边部进入挤压点时的夹角。由于邻近效应的作用,当高频电流通过钢板边缘时,钢板边缘会形成预热段和熔融段(也称为过梁),这过梁段被剧烈加热时,其内部的钢水被迅速汽化并爆破喷溅出来,形成闪光,会合角的大小对于熔融段有直接的影响。
会合角小时邻近效应显著,有利提高焊接速度,但会合角过小时,预热段和熔融段变长,而熔融段变长的结果,使得闪光过程不稳定,过梁爆坡后容易形成深坑和针孔,难以压合。
会合角过大时,熔融段变短,闪光稳定,但是邻近效应减弱,焊接效率明显下降,功率消耗增加。同时在成型薄壁钢管时,会合角太大会使管的边缘拉长,产生波浪形折皱。现时生产中我们一般在2°--6°内调节会合角,生产薄板时速度较快,挤压成型时要用较小的会合角;生产厚板时车速较慢,挤压成型时要用较大的会合角。有厂家提出一个经验公式:会合角×机组速度≮100,可供参考。
第三, 焊接方式
高频焊接有两种方式:接触焊和感应焊。
接触焊是以一对铜电极与被焊接的钢管两边部相接触,感应电流穿透性好,高频电流的两个效应因铜电极与钢板直接接触而得到最大利用,所以接触焊的焊接效率较高而功率消耗较低,在高速低精度管材生产中得到广泛应用,在生产特别厚的钢管时一般也都需要采用接触焊。但是接触焊时有两个缺点:一是铜电极与钢板接触,磨损很快;二是由于钢板表面平整度和边缘直线度的影响,接触焊的电流稳定性较差,焊缝内外毛刺较高,在焊接高精度和薄壁管时一般不采用。
感应焊是以一匝或多匝的感应圈套在被焊的钢管外,多匝的效果好于单匝,但是多匝感应圈制作安装较为困难。感应圈与钢管表面间距小时效率较高,但容易造成感应圈与管材之间的放电,一般要保持感应圈离钢管表面有5~8 mm的空隙为宜。采用感应焊时,由于感应圈不与钢板接触,所以不存在磨损,其感应电流较为稳定,保证了焊接时的稳定性,焊接时钢管的表面质量好,焊缝平整,在生产如API等高精度管子时,基本上都采用感应焊的形式。
第四, 输入功率
高频焊接时的输入功率控制很重要。功率太小时管坯坡口加热不足,达不到焊接温度,会造成虚焊,脱焊,夹焊等未焊合缺陷;功率过大时,则影响到焊接稳定性,管坯坡口面加热温度大大高于焊接所需的温度,造成严重喷溅,针孔,夹渣等缺陷,这种缺陷称为过烧性缺陷。高频焊接时的输入功率要根据管壁厚度和成型速度来调整确定,不同成型方式,不同的机组设备,不同的材料钢级,都需要我们从生产第一线去总结,编制适合自己机组设备的高频工艺。
第五, 管坯坡口
管坯的坡口即断面形状,一般的厂家在纵剪后直接进入高频焊接,其坡口都是呈“I”形。当焊接材料厚度大于8~10mm以上的管材时,如果采用这种“I”形坡口,因为弯曲圆弧的关系,就需要融熔掉管坯先接触的内边层,形成很高的内毛刺,而且容易造成板材中心层和外层加热不足,影响到高频焊缝的焊接强度。所以在生产厚壁管时,管坯最好经过刨边或铣边处理,使坡口呈“X”形,实践证明,这种坡口对于均匀加热从而保障焊缝质量有很大关系。
坡口形状的选取,也影响到调节会合角的大小。
焊接接头口设计在焊接工程中设计中是较薄弱的环节,主要是许多钢结构件的结法治坡口设计不是出自焊接工程技术人员之手,硬性套标准和工艺性能较差的坡口屡见不鲜。坡口形式对控制焊缝内部质量和焊接结构制造质量有着很重要作用。坡口设计必须考母材的熔合比,施焊空间,焊接位置和综合经济效益等问题。应先按下式计算横向收缩值ΔB。
ΔB=5.1Aω/t+1.27d
式中Aω——焊缝横截面积,mm³ ,t——板厚,mm,d——焊缝根部间隙,mm。 找出ΔB与Aω的关系后,即可根据两者关系列表分析,处理数据,进行优化设计,最后确定矩形管对接焊缝破口形式(图2)。

第六, 焊接速度
焊管机组的成型速度受到高频焊接速度的制约,一般来说,机组速度可以开得较快,达到100米/每秒,世界上已有机组速度甚至于达到400米/每秒,而高频焊接特别是感应焊只能在60米/每秒以下,超过10mm的钢板成型,国内机组生产的成型速度实际上只能达到8~12米/每秒。
焊接速度影响焊接质量。焊接速度提高时,有利于缩短热影响区,有利于从熔融坡口挤出氧化层;反之,当焊接速度很低时,热影响区变宽,会产生较大的焊接毛刺,氧化层增厚,焊缝质量变差。当然,焊接速度受输出功率的限制,不可能提得很高。
国内机组操作经验显示,2~3 mm的钢管焊接速度可达到40米/秒,4~6mm的钢管焊接速度可达到25米/秒,6~8 mm的钢管焊接速度可达到12米/秒,10~16 mm的钢管焊接速度在12米/秒以下。接触焊时速度可高些,感应焊时要低些。
第七, 阻抗器
阻抗器的作用是加强高频电流的集肤效应和相邻效应,阻抗器一般采用M-XO/N-XO类铁氧化体制造,通常做成Φ10mm×(120--160)mm规格的磁棒,捆装于耐热,绝缘的外壳里,内部通以水冷却。
阻抗器的设置要与管径相匹配,以保证相应的磁通量。要保证阻抗器的磁导率,除了阻抗器的材料要求以外,同时要保证阻抗器的截面积与管径的截面积之比要足够的大。在生产API管等高等级管子时,都要求去除内毛刺,阻抗器只能安放在内毛刺刀体内,阻抗器的截面积相应会小很多,这时采取磁棒的集中扇面布置的效果要好于环形布置。
阻抗器与焊接点的位置距离也影响焊接效率,阻抗器与管内壁的间隙一般取6~15 mm,管径大时取上限值;阻抗器应与管子同心安放,其头部与焊接点的间距取10~20 mm,同理,管径大时取大的值。
第八, 焊接压力
焊接压力也是高频焊接的主要参数。理论计算认为焊接压力应为100~300MPa,但实际生产中这个区域的真实压力很难测量。一般都是根据经验估算,换算成管子边部的挤压量。不同的壁厚取不同的挤压量,通常2mm以下的挤压量为:3~6 mm时为0.5t~ t;6~10 mm时为0.5t;10 mm以上时为0.3t~0.5t。
API钢管生产中,常出现焊缝灰斑缺陷,灰斑缺陷是难熔的氧化物,为达到消除灰斑的目的,宝钢等厂家多采取了加大挤压力,增加焊接余量的方法,6mm以上钢管的挤压余量达0.8~1.0的料厚,效果很好。
高频焊接常见的问题及其原因,解决方法:
《1》焊接不牢,脱焊,冷叠;
原因:输出功率和压力太小;
解决方法:1 调整功率;2 厚料管坯改变坡口形状;3 调节挤压力
《2》焊缝两边出现波纹;
原因:会合角太大,
解决方法:1 调整导向辊位置;2 调整实弯成型段;3 提高焊接速度
《3》焊缝有深坑和针孔;
原因:出现过烧
解决方法:1 调整导向辊位置,加大会合角;2 调整功率;3提高焊接速度
《4》焊缝毛刺太高;
原因:热影响区太宽
解决方法:1提高焊接速度;2 调整功率;
《5》夹渣;
原因:输入功率过大,焊接速度太慢
解决方法:1 调整功率;2 提高焊接速度
《6》焊缝外裂纹;
原因:母材质量不好;受太大的挤压力
解决方法:1 保证材质;2 调整挤压力
《7》错焊,搭焊
原因:成型精度差;
解决方法:调整机组成型模辊;
高频焊接是焊管生产中的关键工序,由于系统性的影响因素,至今还需要我们在生产第一线中探索经验,每一台机组都有它的设计和制造差别,每一个操作者也有不同的习惯,也就是说有,机组和人一样,都有自己的个性。我们将这些资料提供给大家,是为了让我们更好得了解高频焊接的基本原理,从而更好地结合自己的生产实践,总结出适合于自己机组的操作规程。

附:API标准关于管子焊接质量的规定
(美国石油学会)API—5L/5CT焊缝标准
API-5CT标准规定:
10.5 压扁试验
10.5.4 第1组试验方法----非整体热处理的管子
试样应在平行板间压扁。在每组压扁试样中,一个试样应在90°位置压扁,另一个试样应在0°位置压扁。试样应压扁至相对管壁相接触为止。在板间距离不小于表 C.23或表E.23规定值时,试样任何部位不应产生裂纹或断裂。在整个压扁过程中,不应出现不良的组织结构、焊缝未熔合、分层、金属过烧或挤出金属等现象。
10.5.5 第1和第2组试验方法----整体热处理的管子
试样应在平行板间压扁,且焊缝处于弯曲程度最大处。由检验人员决定,还应使焊缝位于距弯曲程度最大处90°位置进行压扁试验。试样应压扁至相对管壁相接触为止。在板间距离不小于表C.23或表E.23规定值时,试样任何部位不应产生裂纹或断裂。在整个压扁过程中,不应出现不良的组织结构、焊缝未熔合、分层、金属过烧或挤出金属等现象。

API-5L标准规定:
6.2.2 压扁试验验收标准
压扁试验验收标准如下:
a) 钢级高于A25级的电焊钢管以及规格小于12-3/4的激光焊钢管。
1)对于规定壁厚等于或大于0.500in(12.7mm),且钢级为X60或更高钢级的钢管原始外径(OD)的三分之二的焊缝应不出现开裂。对所有其他钢级和规定壁厚的钢管,压扁到钢管原始外径的1/2时,焊缝不应出现开裂。
2)对D/t大于10的钢管继续压扁到钢管原始外径(OD)的三分之一,除焊缝之外不应出现焊缝或断裂。
3)对所有D/t的钢管,继续压扁,直到钢管的管壁贴合为止,在整个压扁试验过程中,不得出现分层或过烧金属的现象。
b)对A25钢级的焊接钢管,压扁到钢管原始外径的四分之三焊缝应不出现开裂。继续压扁到到钢管原始外径的60%,除焊缝之外的金属应不出现焊缝或断裂。
注1:对于所有压扁试验,规格小于2-3/8的钢管,焊缝包括熔合线两侧各1/4in(6.4mm)范围内的金属,规格不小于2-3/8的钢管焊缝包括熔合线两侧各1/2in(12.7mm)范围内的金属
注2:对于经过热减径机的电焊钢管,在热减径前进行压扁试验,压扁试验的原始外径由制造厂确定。其他情况下,原始外径为规定外径。

表C.23 电焊管压扁试验板间距离
钢级 D/t 最大板间距离mm
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子规定外径,mm。
t——管子规定壁厚,mm。
(a) 如果压扁试样失效于12或6点位置,压扁试验应继续进行,直到剩余试样在3或9点位置失效。12或6点位置上的早期失效不应作为拒收依据。
(b) 见A.5(SR11)。压扁应至少为0.85D。

表E.23 电焊管压扁试验板间距离
钢级 D/t 最大板间距离in
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子规定外径,in。
t——管子规定壁厚,in。
(a)如果压扁试样失效于12或6点位置,压扁试验应继续进行,直到剩余试样在3 或9点位置失效。12或6点位置上的早期失效不应作为拒收依据。
(b)见A.5(SR11)。压扁应至少为0.85D。

❼ 直缝高频电阻焊管成型工艺有哪些

1.在高频焊管生产过程中 ,如何确保产品质量符合技术标准的要求和顾客的需要 ,则要对钢管生产过程中影响产品质量的因素进行分析。通过对本公司 Φ76mm高频焊接钢管机组某月份不合格品的统计 ,认为在生产过程中影响钢管产品质量的要素有原材料、焊接工艺、轧辊调节、轧辊材质、设备故障、生产环境及其它原因等七个方面。其中原材料占 32 .44% ,焊接工艺占 24 .85 % ,轧辊调节占 22 .72 % ,三者相加占 80 .01 % ,是主要环节。而轧辊材质、设备故障、生产环境及其它原因等四个方面的要素 ,对钢管产品质量的影响占19.99% ,属相对次要环节。因此 ,在钢管生产过程中 ,应对原材料、焊接工艺和轧辊调节三个环节进行重点控制。

2 原材料对钢管焊接质量的影响 影响原材料质量的因素主要有钢带力学性能不稳定、钢带的表面缺陷及几何尺寸偏差大等三个方面 ,因此 ,应从这三个方面进行重点控制。

1)钢带的力学性能对钢管质量的影响焊接钢管常用的钢种为碳素结构钢 ,主要的牌号有 Q195、Q215、Q235 SPCC SS400 SPHC等多种 。钢带屈服点和抗拉强度过高 ,将造成钢带的成型困难 ,特别是管壁较厚时 ,材料的回弹力大 ,钢管在焊接时存在较大的变形应力 ,焊缝容易产生裂缝。当钢带的抗拉强度超过 635 MPa、伸长率低于 10 %时 ,钢带在焊接过程中焊缝易产生崩裂。当抗拉强度低于 30 0MPa时 ,钢带在成型过程中由于材质偏软 ,表面容易起皱纹。可见 ,材料的力学性能对钢管的质量影响很大 ,应从材料强度方面对钢管质量进行有效地控制。

)钢带表面缺陷对钢管质量的影响钢带表面缺陷常见的有镰刀弯、波浪形、纵剪啃边等几种 ,镰刀弯和波浪形一般出现在冷轧钢带轧制过程中 ,是由压下量控制不当造成的。在钢管成型过程中 ,镰刀弯和波浪形会引起带钢的跑偏或翻转 ,容易使钢管焊缝产生搭焊 ,影响钢管的质量。钢带的啃边 (即钢带边缘呈现锯齿状凹凸不平的现象 ) ,一般出现在纵剪带上 ,产生原因是纵剪机圆盘刀刃磨钝或不锋利造成的。由于钢带的啃边 ,时时出现局部缺肉 ,使钢带在焊接时易产生裂纹、裂缝而影响焊缝质量的稳定性。

3)钢带几何尺寸对钢管质量的影响当钢带的宽度小于允许偏差时 ,焊接钢管时的挤压力减小 ,使得钢管焊缝处焊接不牢固 ,出现裂缝或是开口管 ;当钢带的宽度大于允许偏差时 ,焊接钢管时的挤压力增加 ,在钢管焊缝处出现尖嘴、搭焊或毛刺等焊接缺陷。所以 ,钢带宽度的波动 ,不但影响了钢管外径的精度 ,而且严重影响了钢管的表面质量。对要求同一断面壁厚差不超过规定值的钢管 ,即要求壁厚均匀程度高的钢管 ,钢带厚度的波动 ,会将同一卷钢带厚度差超出的允许值转移到成品钢管的壁厚差 ,使大批钢管厚度超出允许偏差而判废。厚度的波动不仅影响成品钢管的厚度精度 ,同时 ,由于钢带的厚薄不一 ,使钢管在焊接时 ,挤压力和焊接温度不稳定 ,造成了钢管焊接时焊缝质量不稳定。此外 ,由于钢材内部存在着夹层、杂质、沙眼等材料缺陷 ,也是影响钢管质量的一个重要因素。因此 ,在钢带焊接前 ,要检查每卷钢带的表面质量和几何尺寸 ,对钢带质量不符合标准要求的 ,不要进行生产 ,以免造成不必要的损失。
3 高频焊接对钢管质量的影响 在钢管高频焊接过程中 ,焊接工艺及工艺参数的控制、感应圈和阻抗器位置的放置等对钢管焊缝的焊接质量影响很大。

1) 钢管焊缝间隙的控制钢带进入焊管机组经成型辊成型、导向辊定向后 ,形成有开口间隙的圆形钢管管坯 ,调整挤压辊的挤压量 ,使得焊缝间隙控制在 1~ 3mm,并使焊口两端保持齐平。焊缝间隙控制得过大 ,会使焊缝焊接不良而产生未熔合或开裂 ;焊缝间隙控制得过小 ,由于热量过大 ,造成焊缝烧损 ,熔化金属飞溅 ,影响焊缝的焊接质量。

2) 高频感应圈位置的调控感应圈应放置在与钢管同一中心线上 ,感应圈前端距挤压辊中心线的距离 ,在不烧损挤压辊的前提下 ,应视钢管的规格而尽量接近。若感应圈距挤压辊较远时 ,有效加热时间较长 ,热影响区宽 ,使得钢管焊缝的强度下降或未焊透 ;反之感应圈易烧毁挤压辊。

3) 阻抗器位置的调控阻抗器是一个或一组焊管专用磁棒 ,阻抗器的截面积通常应不小于钢管内径截面积的 70 % ,其作用是使感应圈、管坯焊缝边缘与磁棒形成一个电磁感应回路 ,产生邻近效应 ,涡流热量集中在管坯焊缝边缘附近 ,使管坯边缘加热到焊接温度。阻抗器应放置在 V形区加热段 ,且前端在挤压辊中心位置处 ,使其中心线与管筒中心线一致。如阻抗器位置放置的不好 ,影响焊管的焊接速度和焊接质量 ,使钢管产生裂纹。

4)高频焊接工艺参数——输入热量的控制高频电源输入给钢管焊缝部位的热量称为输入热量。将电能转换成热能时 ,其输入热量的公式为 :
Q=KI2 Rt (1)
式中 Q—输入管坯的热量 ;K—能量转换效率 ; I—焊接电流 ;R—回路阻抗 ; t—加热时间。

加热时间 :t=Lv (2)

式中 L—感应圈或电极头前端至挤压辊的中心距 ;v—焊接速度。

当高频输入的热量不足且焊接速度过快时 ,使得被加热的管体边缘达不到焊接的温度 ,钢铁仍保持其固态组织而焊接不上 ,形成了未熔合或未焊透的裂纹 ;当高频输入热量过大且焊接速度过慢时 ,使得被加热的管体边缘超过了焊接温度 ,容易产生过热甚至过烧 ,使焊缝击穿 ,造成金属飞溅而形成缩孔。从公式 (1)、(2)中可知 ,可以通过调整高频焊接电流 (电压 )或调整焊接速度的方法 ,来控制高频输入热量的大小 ,从而使钢管的焊缝既要焊透又不焊穿 ,获得焊接质量优良的钢管
4 轧辊调节对钢管质量的影响 从钢管废品因果分析图可看出 ,轧辊调节是属钢管的操作工艺。在生产过程中 ,轧辊损坏或磨损严重时 ,在机组上需要更换部分轧辊 ,或某个品种连续生产了足够的数量 ,需要更换整套的轧辊。这时都应对轧辊进行调节 ,以获得良好的钢管质量。如轧辊调节得不好 ,易造成钢管管缝的扭转、搭焊、边缘波浪、鼓包及管体表面有压痕或划伤 ,钢管椭圆度大等缺陷 ,因此 ,换辊时应掌握轧辊调节的技巧。

1 )更换钢管规格 ,一般都对整套轧辊进行更换。轧辊调节的方法是 :用钢丝从机组入口到出口拉一条中心线 ,进行调整 ,使各架孔型在一条中心线上 ,并使成型底线符合技术要求。更换轧辊规格后 ,首先对成型辊、导向辊、挤压辊、定径辊作一次全面的调节 ,然后重点对成型辊的封闭孔型、导向辊、挤压辊调节。

2 )导向辊的作用是控制钢管的管缝方向和管坯底线高度 ,缓解边缘延伸 ,控制管坯边缘回弹 ,保证管缝平直而不扭转进入挤压辊。如导向辊调节不好 ,在钢管的焊接过程中 ,易造成钢管管缝的扭转、搭焊、边缘波浪等焊接缺陷。

3 )挤压辊是焊管机组的关键设备 ,其作用是将边缘被加热到焊接温度的管体在挤压辊的挤压力作用下完成压力焊接。在生产过程中 ,要控制挤压辊开口角的大小。挤压力过小时 ,焊缝金属强度下降 ,受力后会产生开裂 ;挤压力过大时 ,降低焊接强度 ,而且使外毛刺量增加 ,易造成搭焊等焊接缺陷。

4 )在焊管机组慢速起动的过程中 ,应密切注意各部位轧辊的转动情况 ,随时调节轧辊 ,以确保焊管的焊接质量和工艺尺寸符合规定的要求。

❽ 广州华岐和衡水华岐有什么区别

生产工艺没有太大区别。
广州华岐公司拥有先进水平的三条热镀锌生产线和六条高频直缝焊管机组。
衡水华岐拥有集钢管研发、设计、制造、销售、服务五位一体的全产业链商业模式,年生产销售各类钢管180万吨,水压、涡流、超声、X射线等相关配套辅助检测设施齐全。

❾ 50高频焊管机组飞车距切管长短不齐什么原因分析

高频焊管机组生产中电脑飞锯锯切管长短不齐的原因分析:
管速不稳定—回———检查测速辊是否打答滑、不灵活等;编码器、联轴节是否松动;更换锯车、管编码器,看看是否能解决;检查、调整轧机的状态
机械长期磨损产生间隙————维修或更换机械
有干扰信号————检查各接地点状况;线路是否良好。
金宇杰机电(www.jyj88.cn)在高频焊管机组制管及电脑飞锯方面有着深厚的研发经验,以上原因分析由我们提供,若对您有帮助望您采纳。

阅读全文

与直缝焊管机组水压机纵剪相关的资料

热点内容
不锈钢与铝合金怎么粘 浏览:733
浓硫酸选用什么钢管 浏览:856
426焊管多少钱一米 浏览:12
十堰知名无缝方矩管价格 浏览:67
高空铝合金窗外边要贴什么 浏览:864
数控模具专业发展怎么样 浏览:777
记忆合金在哪里兑换 浏览:951
80波纹排污管怎么焊接 浏览:317
油炸葱油饼模具到哪买多少钱一个 浏览:441
湛江市汇力钢材有限公司怎么样 浏览:497
镁和铜用什么焊接 浏览:256
钢管拆除属于什么工程 浏览:490
抛光拉丝模具怎么样 浏览:742
二手钢管和扣件多少钱一个 浏览:142
c35v是什么钢材 浏览:966
瑞安模具镀硬铬哪里专业 浏览:969
一顿钢板多少立方米 浏览:738
钢管扣件个多少重 浏览:985
钢结构在移动过程中把加固的方管拉裂正常吗 浏览:686
不锈钢304化学成分是多少 浏览:96