A. 焊接常见问题及处理方法
一、焊接中的局部变形的原因及预防措施
(一)产生原因
(1)加工件的刚性小或不均匀,焊后收缩,变性不一致。(2)加工件本身焊缝布置不均,导致收缩不均匀,焊缝多的部位收缩大、变形也大。(3)加工人员操作不当,未对称分层、分段、间断施焊,焊接电流、速度、方向不一致,造成加工件变形的不一致。(4)焊接时咬肉过大,引起焊接应力集中和过量变形。5)焊接放置不平,应力集中释放时引起变形。
(二)预防措施
(1)设计时尽量使工件各部分刚度和焊缝均匀布置,对称设置焊缝减少交叉和密集焊缝。(2)制定合理的焊接顺序,以减少变形。如先焊主焊缝后焊次要焊缝,先焊对称部位的焊缝后焊非对称焊缝, 先焊收缩量大的焊缝后焊收缩量小的焊缝,先焊对接焊缝后焊角焊缝。(3)对尺寸大焊缝多的工件,采用分段、分层、间断施焊,并控制电流、速度、方向一致。(4)手工焊接较长焊缝时, 应采用分段进行间断焊接法, 由工件的中间向两头退焊,焊接时人员应对称分散布置,避免由于热量集中引起变形。(5)大型工件如形状不对称,应将小部件组焊矫正完变形后,在进行装配焊接,以减少整体变形。(6)工件焊接时应经常翻动,使变形互相抵消。(7)对于焊后易产生角变形的零部件,应在焊前进行预变形处理,如钢板v 形坡口对接,在焊接前应将接口适当垫高,这样可使焊后变平。(8)通过外焊加固件增大工件的刚性来限制焊接变形,加固件的位置应设在收缩应力的反面。
(三)处理方法
对已变形的工件,如变形不大,可采用火烤矫正。如变形较大,采用边烤边用千斤顶顶的方法矫正。
二 钢结构焊接裂纹的原因及预防措施
(一)热裂纹
热裂纹是指高温下所产生的裂纹, 又称高温裂纹或结晶裂纹,通常产生在焊缝内部,有时也可能出现在热影响区,表现形式有:纵向裂纹、横向裂纹、根部裂纹弧坑裂纹和热影响区裂纹。其产生原因是由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层形式存在从而形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂纹。此外, 如果母材的晶界上也存在有低熔点共晶和杂质,当焊接拉应力足够大时,也会被拉开。总之,热裂纹的产生是冶金因素和力学因素共同作用的结果。针对其产生原因,其预防措施如下:
(1)限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素和有害杂质的含量,特别应控制硫、磷的含量和降低含碳 ,一般用于焊接的钢材中硫的含量不应大于0.04 5% ,磷的含量不应大于0.055% ;另外钢材含碳量越离,焊接性能越差,一般焊缝中碳的含量控制在0.10% 以下时,热裂纹敏感性可大大降低。(2)调整焊缝金属的化学成分,改善焊缝组织,细化焊缝品粒,以提高其塑性,减少或分散偏析程度,控制低熔点共品的有害影响。(3)采用碱性焊条或焊剂,以降低焊缝中的杂质含摄,改善结晶时的偏析程度。(4)适当提高焊缝的形状系数,采用多层多道焊接方法, 避免中心线偏析,可防止中心线裂纹。(5)采用合理的焊接顺序和方向,采用较小的焊接线能超,整体预热和锤击法,收弧时填满弧坑等工艺措施。
(二) 冷裂纹
冷裂纹一般是指焊缝在冷却过程中温度降到马氏体转变温度范围内(300— 200℃以下)产生的,可以在焊接后立即出现,也可以在焊接以后的较长时间才发生, 故也称为延迟裂纹。其形成的基本条件有3个:焊接接头形成淬硬组织;扩散氢的存在和浓集;存在着较大的焊接拉伸应力。其预防措施主要有:
(1)选择合理的焊接规范和线能 ,改善焊缝及热影响区组织状态, 如焊前预热、控制层问温度、焊后缓冷或后热等以加快氢分子逸出。(2)采用碱性焊条或焊剂,以降低焊缝中的扩散氧含量。(3)焊条和焊剂在使用前应严格按照规定的要求进行烘干(低氢焊条300℃ ~3 50℃保温lh;酸性焊条l 00℃ ~l50℃保温lh;焊剂200℃~250。C保温2h),认真清理坡口和焊丝,太除油污、水分和锈斑等脏物,以减少氢的来源。(4)焊后及时进行热处理.一是进行退火处理,以消除内应力,使淬火组织回火,改善其韧性;二:是进行消氢处理, 使氢从焊接接头中充分逸出。(5)提高钢材质量,减少钢材中的层状夹杂物。(6)采取可降低焊接应力的各种工艺措施。
三、钢结构焊接检验中的相关问题
(一)焊缝等级、检验等级、评定
等级的区别与联系要求进行内部质量探伤的焊缝,按质量等级分一级和二级,称一级焊缝和二级焊缝,此即为焊缝等级。检验等级系指检验检测达到的精度,即检测仪器与检测方法结合而得到的检测结果的精确程度。超声波探伤采用G B /T ll 34 5 l 9 89标准按检测等级由低到高分为A、B、C三个级别,射线探伤采用GB/T 3 3 2 3一l 9 8 7标准按检测等级由低到高分为A、A B、B三个级别,它们分别规定了手工超声波探伤的检测方法、探测面、检测范围和允许缺陷当量(dB值)以及射线探伤所要达到的灵敏度(透照厚度与像质计的关系)。
评定级别是指探伤人员在检出缺陷后依据标准对缺陷测量进而确定的焊缝内部质量级别。具体来说,超声波探伤指对波高在测长线与判废线之间(Ⅱ区)缺陷测长后,依标准GB/Tl1345 l989表6进行缺陷定级;射线探伤是指测量底片上缺陷指示长度和大小,依标准GB /T3 3 2 3一l987表6.表7、表9、表l0并综合评级(见该标准l 6.1~l 6.4),这一条是每一个探伤人员必须熟练掌握的。
(二)超标缺陷处理与复探、扩探GB 50205 钢结构工程施工质量验收规范》只规定了检测方法.检测比例和合格级别, 对于缺陷的处理没有明确要求。
参照JG l 8 l 建筑钢结构焊接技术规程》和其他行业焊接检验标准规范的要求,对十检出的缺陷可作如下处理:(1)检测出的不允许缺陷必须返修,返修后按同种检测方法检测合格后方认为该焊缝合格。(2)对要求抽查检验的焊缝,发现不允许缺陷后,应在被检测区域两端整条焊缝长度的各l 0%且不小于00inin(长度允许时)的区域扩检。a)若在扩检区域未发现超标缺陷,应认为该焊缝合格。b)若在扩检区域发现超标缺陷,则该条焊缝全检。(3)对于现场安装要求抽查检验的焊缝,发现不允许缺陷后,按下述原则扩检;a)增加该类型同一焊工焊接的两条焊缝检测,若此两条扩检焊缝未发现超标缺陷,应认为该批焊缝合格。b)若此两条扩检焊缝发现超标缺陷, 则每一条含超标缺陷的焊缝按卜述原则再各抽检两条焊缝。C)若再次抽检的焊缝未发现超标缺陷,应认为该批焊缝合格。d)若再次抽检的焊缝仍发现有超标缺陷, 则该焊工焊接的该类型焊缝全检。同时,可协商适当增加其余焊缝检测比例。
B. 在焊接施工过程中,什么焊缝最难
在焊接施工过程中仰焊缝最难,因为仰焊缝熔池不好控制,受重力作用影响大,焊缝质量难以控制。
C. 电焊焊管道怎么焊有几种焊法
管道焊接常用的方法有焊条电弧焊(SMAW)、埋弧焊(SAW)、钨极气体保护焊( GTAW)、熔化极气体保护焊(GMAW)、药芯焊丝电弧焊(FCAW)和下向焊等几种。
电焊说起来挺简单、其实也挺复杂的、管道可以说是最难焊的、角度比较多、焊管道角度比较重要、也就是焊条和焊缝成的角度一般是>=90度、在就是电流、比如焊底口电流就要小一点焊上口就要大的多、爬坡焊和立缝随然看起来差不多但是电流也是有差距的、
焊接方法:按焊接方法不同可分为电弧焊管、高频或低频电阻焊管、气焊管、炉焊管、邦迪管等。
电焊钢管:用于石油钻采和机械制造业等。
炉焊管:可用作水煤气管等,大口径直缝焊管用于高压油气输送等;螺旋焊管用于油气输送、管桩、桥墩等。
(3)什么焊缝最难施焊扩展阅读:
GB/T3091-1993(低压流体输送用镀锌焊接钢管)。主要用于输送水、煤气、空气、油和取暖热水或蒸汽等一般较低压力流体和其他用途管。其代表材质Q235A级钢。
GB/T3092-1993(低压流体输送用镀锌焊接钢管)。主要用于输送水、煤气、空气、油和取暖热水或蒸汽等一般较低压力流体和其它用途管。其代表材质为:Q235A级钢。
GB/T14291-1992(矿用流体输送焊接钢管)。主要用于矿山压风、排水、轴放瓦斯用直缝焊接钢管。其代表材质Q235A、B级钢。GB/T14980-1994(低压流体输送用大直径电焊钢管)。主要用于输送水、污水、煤气、空气、采暖蒸汽等低压流体和其它用途。其代表材质Q235A级钢。
GB/T12770-1991(机械结构用不锈钢焊接钢管)。主要用于机械、汽车、自行车、家具、宾馆和饭店装饰及其他机械部件与结构件。其代表材质0Cr13、1Cr17、00Cr19Ni11、1Cr18Ni9、0Cr18Ni11Nb等。
GB/T12771-1991(流体输送用不锈钢焊接钢管)。主要用于输送低压腐蚀性介质。代表材质为0Cr13、0Cr19Ni9、00Cr19Ni11、00Cr17、0Cr18Ni11Nb、0017Cr17Ni14Mo2等。
对焊接的要求:
1) 焊接施工开始前需提交各相关施工方案,并在各工序作业前分工序做专业技术交底。需提交的方案包括:洁净管道施工方案、洁净管道焊接程序、内窥镜检测程序;
2) 焊工应经相关劳动部门培训合格,并持有特种作业操作证。自动焊机操作的焊工应提供相应的洁净管道自动焊接培训的证明材料。
3) 依据设计要求和该项工艺的专业要求,对所有参加该专项洁净管道施工的全部人员进行专项质量培训,明确正确做法及作业要求;
4) 焊接使用的净化气体(用在被焊接管道的内表面)和保护气体(担当外部焊接部分的保护层)应提供完整的质量证书,包括氧含量和水分含量。
5) 在不能进行自动焊接的焊缝,可选择优秀焊工实施手工焊接。
6) 所有的焊缝应没有蚀损斑、针孔、腐蚀标记和点固焊缝印记等,内外表面无明显凹凸,焊波均匀、顺直;
7) 必须按照方案和工序技术交底的要求在施工过程中严格检查;
8) 预制焊缝、现场焊缝都要按照检测比例的要求,及时进行内窥镜检测。当有X光无损检测要求时,按照设计要求的比例进行抽检;
焊接施工过程的记录资料要及时如实建立,当工程现场的管理方有特殊要求时,按照其特殊要求执行。
D. 铝合金焊接困难吗
看看下面的文章你就知道了。
铝及铝合金零件的焊接工艺方法
【摘要】铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。长期以来,由于焊接方法及焊接工艺参数的选取不当,焊接时的常出现缺陷,本文介绍了此类金属零件焊接时的工艺步骤及其焊接参数的选取。
【关键词】铝合金 焊接 加工工艺
铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。长期以来,由于焊接方法及焊接工艺参数的选取不当,造成铝合金零件焊接后因应力过于集中产生严重变形,或因为焊缝气孔、夹渣、未焊透等缺陷,导致焊缝金属裂纹或材质疏松,严重影响了产品质量及性能。
1 铝合金材料特点
铝是银白色的轻金属,具有良好的塑性、较高的导电性和导热性,同时还具有抗氧化和抗腐蚀的能力。铝极易氧化产生三氧化二铝薄膜,在焊缝中容易产生夹杂物,从而破坏金属的连续性和均匀性,降低其机械性能和耐腐蚀性能。
2 铝合金材料的焊接难点
(1)极易氧化。在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。
(2)易产生气孔。铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。氢气孔目前难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面吸附空气中的水分等。实践证明,即使氩气按GB/T4842标准要求,纯度达到99.99% 以上,但当水分含量达到20ppm时,也会出现大量的致密气孔,当空气相对湿度超过80%时,焊缝就会明显出现气孔。
3 铝合金材料焊接的工艺方法
(1)焊前准备
采用化学或机械方法,严格清理焊缝坡口两侧的表面氧化膜。
化学清洗是使用碱或酸清洗工件表面,该法既可去除氧化膜,还可除油污,具体工艺过程如下:体积分数为6%~10%的氢氧化钠溶液,在70℃左右浸泡0.5min→水洗→体积分数为15%的硝酸在常温下浸泡1min进行中和处理→水洗→温水洗→干燥。洗好后的铝合金表面为无光泽的银白色。
机械清理可采用风动或电动铣刀,还可采用刮刀、锉刀等工具,对于较薄的氧化膜也可用0.25mm的铜丝刷打磨清除氧化膜。
清理好后立即施焊,如果放置时间超过4h,应重新清理。
(2)确定装配间隙及定位焊间距
施焊过程中,铝板受热膨胀,致使焊缝坡口间隙减少,焊前装配间隙如果留得太小,焊接过程中就会引起两板的坡口重叠,增加焊后板面不平度和变形量;相反,装配间隙过大,则施焊困难,并有烧穿的可能。合适的定位焊间距能保证所需的定位焊间隙,因此,选择合适的装配间隙及定位焊间距,是减少变形的一项有效措施。根据经验,不同板厚对接缝较合理的装配工艺参数。
(3)选择焊接设备
目前市场上焊接产品种类较多,一般情况下宜采用交流钨极氩弧焊(即TIG焊)。它是在氩气的保护下,利用钨电极与工件问产生的电弧热熔化母材和填充焊丝的一种焊接方法。该焊机工作时,由于交流电流的极性是在周期性的变换,在每个周期里半波为直流正接,半波为直流反接。正接的半波期间钨极可以发射足够的电子而又不致于过热,有利于电弧的稳定。反接的半波期间工件表面生成的氧化膜很容易被清理掉而获得表面光亮美观、成形良好的焊缝。
(4)选择焊丝
一般选用301纯铝焊丝及311铝硅焊丝。
(5)选取焊接方法和参数
一般以左焊法进行,焊炬和工件成60°角。焊接厚度15mm以上时,以右焊法进行,焊炬和工件成90°角。
焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,间隙不得大于1mm,以多层焊完成。壁厚在1.5mm以下时,不开坡口,不留间隙,不加填充丝。焊固定管子对接接头时,当管径为200mm,壁厚为6mm时,应采用直径为3~4mm的钨极,以220~240A的焊接电流,直径为4mm的填充焊丝,以1~2层焊完。
根据经验,在铝及铝合金焊接时,应选择其适用的焊接参数。
E. 如何全面攻克KTY节点焊接难点
近几年来,随着钢结构技术的日益完善,人们追求的造型新颖独特,在这些造型中KTY节点起着关键的承接作用。此外,海上油田建设的发展,海上采油平台、导管架等海洋钢结构工程大量生产制造并投入使用,在海洋工程结构中KTY节点也是最为常见的焊接接头。在KTY节点焊接时,通常会有小夹角焊缝,焊接时难于施焊,焊接后经过UT检测,焊缝根部通常会存有未熔合、气孔、夹渣等焊接缺陷。焊缝焊接后在外观检查时,焊趾多呈现“直角形”,在后续的返工过程中浪费了大量的返工成本,本文将对常见的KTY节点焊接缺陷产生的原因及预防措施和操作要点进行分析。1. 焊接缺陷产生部位(1)焊趾缺陷 焊缝焊接后,经过RT或UT检测时,通常会发现焊趾部位存有细微裂纹,焊工在进行打底焊接时,通常表现为焊缝外观成形良好,利用打磨机打磨后便在焊趾或焊根部发现夹渣或外观表现不规则形状的裂纹,特别在焊接厚板管桁架或者相贯口时,此种缺陷表现更明显。(2)填充层缺陷 焊接填充焊道时,每层焊道两侧咬肉很难控制。在焊接时,焊道中间凸起很明显,焊接后非常容易出现夹渣、未熔合等缺陷。为了保证焊缝内部质量,每焊一层焊缝时严格对焊道进行打磨,不仅影响了焊接进度,同时焊接质量难以保证,导致超声波检测时合格率很低,焊缝缺陷如图1~3所示。(3)焊缝外观质量不合格 在对焊缝外观进行检查时,通常会发现焊缝两侧有咬边现象,且现象明显,有的焊缝焊趾部位成“直角形”,在后期的疲劳点打磨时,需要先将直角部位加焊,然后再进行平滑打磨,浪费了大量的人工成本。2. 焊接缺陷的种类及成因分析依据焊缝根部产生的缺陷种类及产生时间可以判定此裂纹为焊接热裂纹(或叫结晶裂纹)。热裂纹成因为:①熔池的低熔点共晶。②焊接过程中的拉应力。焊接前,对焊缝坡口都进行了严格清理和检查,可排除导致低熔点共晶的因素。由于结构的特殊性(厚度大、尺寸大、刚性大),焊接中焊缝要承受很大的焊接应力,所以这是造成结晶裂纹的主要原因。填充焊焊缝内部质量达不到要求主要是由于焊道与焊道之间清理不干净,导致焊缝内部存有夹渣、未焊透等焊接缺陷,UT检测时对于缺陷根源会存有盲区,因此导致焊缝进行多次返修。盖面焊焊接时,由于焊工对焊缝要求不明确或者焊工技能达不到要求,导致焊缝两侧存有咬边、夹沟过深及焊脚过大等焊接缺陷,为后期的焊缝修补添加了大量的工作量,导致生产成本过高。3. 预防措施及操作要点通过工程实践对比可以粗略的计算出,焊缝的返修成本约为正常焊接成本的6~7倍,焊缝外观成形差及焊缝表面缺陷的处理无形之中也会浪费大量的生产成本,因此拥有良好的焊接技能水平是控制生产成本的主要环节。(1)“引弧点焊法”打底焊接及填充焊技巧 “引弧点焊法”主要解决焊缝根部裂纹,同时也降低背面焊缝成形的控制难度。焊接时,起焊点的位置、焊条角度、焊接方向等都与常规操作时一样,但不同之处在于“引弧点焊法”尽量减小熔池宽度。对于焊缝间隙大的部位可采用引弧多点点焊方法,即“左引弧,右引弧”或“左引弧,右引弧,中间引弧”,焊条收弧时采用回旋式收弧,以避免出现弧坑裂纹。填充焊焊接时,采用小电流多层多道焊,每层焊肉不宜过厚,以便焊道内气体逸出熔池,避免形成气孔等焊接缺陷,在盖面焊之前预留1.5~2mm盖面余量,进而保证焊缝的外观成形。(2)加强理论培训 部分焊工在焊接时不明确相贯点焊缝要求,根据规范要求将KTY节点中相贯部位的焊接做专业培训,进而减少焊缝外观出现夹沟及焊趾偏小/偏大的问题,避免造成后期因焊缝修补而增加的生产成本浪费。支管与主管以最高点和最低点为基准进行四等分,由上向下分别为趾部区、侧部区、过渡区和根部区(见图6)。趾部区焊接大样:根据钢结构焊接工艺规程GB50661要求,主管与支管焊接时,趾部区有效焊缝高度达到1.5t(t为支管的壁厚,见图7)。侧部区焊接大样:主管与支管焊接时,侧部区焊缝有效焊缝高度要求达到t(t为支管的壁厚),当内侧贴垫板焊接时,内侧垫板要求与支管壁贴合紧密;当采用碳弧气刨清根的方法焊接时,要求反面附加焊脚高度为8~10mm,具体如图8所示。过渡区焊接大样:主管与支管焊接时,过渡区焊缝有效焊缝高度要求达到1.5t(t为支管的壁厚),采用垫板焊接或者碳弧气刨清根的方法焊接要求与侧部区焊接大样要求相同。跟部区焊接大样:主管与支管焊接时,跟部区域焊接方法与过渡区焊接大样焊接要求相同。(3)关于UT检测存有盲区的改善 由于部分焊缝在同一区域会出现多次返修,为此对焊工进行询问,发现利用碳弧气刨已经返修到UT检测人员所说的缺陷深度,因此出现上述问题的原因是由于UT检测的局限性,即对于同一个部位的缺陷只能检测到缺陷点距离探头最近的一点,而对于同一部位的深处缺陷难以检测。为此,针对上述问题,要求焊工在对焊缝进行返修时,气刨深度为(h+5)mm(其中h为探伤员所画缺陷深度),气刨宽度适当加宽5mm左右。具体操作如图11所示。4. 结语通过对工程中常见的KTY节点焊接缺陷及形成机理进行深入剖析,对于理论知识进行系统讲解,在工程实践中进行全面的尝试,最终焊缝一次合格率有了很大的提高。另外,由于焊缝外观成形漂亮,所以焊缝修补打磨量较前期降低了85%以上。通过工程实践证明,此种方法对于同种类型构件的焊接具有很好的借鉴作用。
F. 焊接种类和方法
一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点?
钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。
(1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。
(2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。
钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。
二、电弧焊的分类有哪些,有什么优点?
利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。
三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点?
(1)焊接接头由焊缝金属和热影响区组成。
1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。
2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。
(2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。
1)熔合区位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。
2)过热区紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。
3)正火区加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。
4)部分相变区加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。
四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合?
电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。电阻焊分为点焊、缝焊和对焊3种形式。
(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。
(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。
(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。
1)电阻对焊焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。
2)闪光对焊焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。继续移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并继续加压,使焊件焊合。闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊接受力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,可以焊接0.01 mm的金属丝,也可以焊接直径500 mm的管子及截面为20 000 mm2的板材。
G. 焊缝根据施焊时焊工所持焊条与焊件的相对位置分类.什么条件差
焊接板件,分为平焊、横焊、立焊、仰焊四个位置,其中仰焊最难。焊接管件分垂直固定焊、水平固定焊和45°固定焊,其中45°焊难度最大。
H. 电焊仰焊怎么样焊才能焊好
仰焊是四种焊接位置中焊接操作最困难的一种,仰焊时熔化的金属因重力作用容易下坠,使熔滴过渡和焊缝成形困难,电焊仰焊焊好的方法如下:
1、仰焊时,必须注意尽可能地采用最短的弧长施焊,使熔滴金属在很短的时间内由焊条过渡到熔池中去,促使焊缝成形。
2、仰焊时焊条直径和焊接电流比平焊时小,以减少焊接熔池的面积,使焊缝容易成型。
3、施焊时焊条与焊缝两侧应成90°夹角,与焊接方向保持80°~90°夹角,在整个焊接过程中,焊条要保持在上述位置均匀地运条,运条的手法可采用直线形和直线往复形。
4、仰焊时一定要注意保持正确的操作姿势,焊接点不要处于人的正上方,应为上方偏前,且焊缝偏向操作人员的右侧,仰焊的焊条夹持方式与立焊相同。
(8)什么焊缝最难施焊扩展阅读:
酸性焊条可用交流、直流焊接电源,适用于各种位置的焊接。厚度<4mm的板材,对线时应留2mm~3mm的空隙,而且板材间隙中应清除杂质。在焊接电流物质基础调节上,电流不应过小,应在90A~100A之间,否则得不到足够的熔深而且电弧也不稳定,难以保证焊缝质量。
焊缝下面容易形成焊瘤,背面则会出现内凹缺陷,同时在施焊中还常发生熔渣超前现象,因此在运条方面,仰焊比平焊、立焊、横焊的难度大,也更难掌握。
焊接各层的电流调节上变化不是太大,而且在仰焊时,无论采用哪种运条方法,均应形成较薄的焊道。焊缝表面要平直,不允许出现凸型,以保证焊缝工艺要求及外观质量。