导航:首页 > 方管焊管 > 焊缝金属的硫来源于什么

焊缝金属的硫来源于什么

发布时间:2023-02-02 09:05:38

1. 在焊接过程中刘琳的主要危害是产生什么

钢中磷的主要危害是(降低钢材的塑性和韧性以及可焊性),在钢条焊接的时候,磷的主要危害是:
使焊缝产生冷脆现象,随着磷含量的增 加,将造成焊缝金属的韧性、特别是低,温冲击韧性下降,因此焊芯中磷含量不得大于 0.04%。在焊接重要结构时,磷含量不得大于 0.03%.
钢材的低温冷脆现象与钢材中磷含量密切相关,磷在钢中全部溶于铁素体中,可使铁素体的强度、硬度有所提高,但却使低温下钢的塑性、冲击韧性急剧降低,使钢变脆,这种现象称为冷脆。
磷对回火脆性的影响 钢的回火脆性与磷的含量有着密切的关系,甚至很少的磷含量也能提高钢对回火脆性的敏感。磷和锰共存时,直到高温回火范围都产生回火脆性。
磷对力学性能的影响 一定的磷含量对软钢固态能提高力学性能,但这种有利因素随着钢的碳含量的增高而消失,碳含量越高则磷所引起的脆性就越大。
磷对钢的焊接性不利 它能增加焊裂的敏感性,因此若欲获得优质的焊缝,钢中的磷必须尽可能降低,含磷量要严格控制,高级优质钢含磷量应≤0.035%.

硫在低碳钢中主要以FeS和MnS形式存在。FeS可无限地溶解于液态铁中,而溶于固态铁中的却很少,因此熔池凝固时FeS析出,并与α-Fe,FeO及(FeO)2 SiO2等形成低熔点共晶体,在焊缝结晶过程中析集于晶界上呈液态薄膜。因而在焊缝冷却时所造成的内应力作用下引起晶界处开裂-热裂纹。
硫是焊缝中常存的有害元素之一。硫能促使焊缝金属产生热裂纹、降低冲击韧度和耐腐蚀性,并能促使产生偏析。厚板焊接时,硫还会引起层状撕裂。

2. 硫是焊缝金属中有害的杂质之一当硫以什么形式存在时危害最大

对。硫是由生铁抄及燃料袭带入钢中的杂质。在固态下,硫在铁中的溶解度极小,而是以FeS的形态存在于钢中。由于FeS的塑性差,使含硫较多的钢脆性较大。更严重的是,FeS与Fe可形成低熔点(985℃)的共晶体,分布在奥氏体的晶界上。当钢加热到约1200℃

3. 焊缝里MNS是什么物质

MnS
硫化锰
硫是焊缝中常存的有害元素之一。硫能促使焊缝金属产生热裂纹、降低冲击韧度版和需腐蚀性,并能促权使产生偏析。厚板焊接时,硫还会引起层状撕裂。
硫在液态金属中以FeS的形式存在,熔渣中的Mn、MnO、CaO具有一定的脱硫作用;其反应式如下:
[Mn]+[FeS] =[MnS]+[Fe]
[MnO]+[FeS]=[MnS]+[FeO]
[CaO]+[FeS] =[CaS]+[FeO]
生成的MnS、CaS都进入熔渣中,由于MnO、CaO均属碱性氧化物,在碱性熔渣中含量较多,所以碱性熔渣的脱硫能力比酸性熔渣强。

4. 硫元素对不锈钢焊接的有利影响

焊缝中的有害元素有氢,氧,氮,硫,磷等。这些有害元素会使焊缝金属性能脆化,氢,硫,碗会引起裂纹,氢和氮还会导致气孔。空气中的氧气和氮气,焊条,焊剂受潮的水分,铁锈中结晶水以及油污等,在电弧高温作用下会分解为氮,氢,氧进入熔池液体金属。氮和氢溶入液体金属,氧与金属会发生氧化反应而形成氧化物,合金元素被烧损。铁锈,焊条皮,埋弧焊的焊剂也带入一些氧化物。此外,母材和焊接材料还会带入硫,磷等杂质。控制的方法有:焊接前清除,工件待焊处的锈,水,油污,按规定的参数,烘干焊条,焊剂,焊接时采取措施保护熔滴,溶池的液体金属和高温的焊缝金属,防止空气进入。在焊条药皮和埋弧焊焊剂中加入铁合金,在焊丝中加入金属元素进行渗合金,为焊缝金属添加元素,获得较为理想的焊缝金属化学成分,以保证焊缝金属具有必要的使用性能。

5. 焊缝中硫通常以什么形式存在

你好,硫通常在焊缝中以片状或条状形式存在。硫在焊缝中的危害是产生冷裂纹。

6. 熔焊的气体

1、焊接过程中,焊接区内充满大量气体。
用酸性焊条焊接时,主要气体成分是CO、H2、H2O;用碱性焊条焊接时,主要气体成分是CO、CO2;埋弧焊时,主要气体成分是CO、H2。
焊接区内的气体主要来源于以下几方面:一是为了保护焊接区域不受空气的侵入,人为地在焊接区域添加一层保护气体,如药皮中的造气剂(淀粉、木粉、大理石等)受热分解产生的气体、气体保护焊所采用的保护气体(CO2气体、Ar气)等;其次是用潮湿的焊条或焊剂焊接时,析出的气体、保护不严而侵入的空气、焊丝和母材表面上的杂质(油污、铁锈、油漆等)受热产生的气体,以及金属和熔渣高温蒸发所产生的气体等。
2、氮、氢、氧对焊缝金属的作用和影响
⑴氮 氮主要来自焊接区域周围的空气。手弧焊时,堆焊金属中约含有0.025%的氮。氮是提高焊缝金属强度、降低塑性和韧性的元素,也是在焊缝中产生气孔的主要原因之一。
⑵氢 氢主要来源于焊条药皮、焊剂中的水分、药皮中的有机物,焊件和焊丝表面上的污物(铁锈、油污)和空气中的水分等。各种焊接方法均使焊缝增氢,只是增氢的程度不同:手弧焊时用纤维素药皮焊条焊得的焊缝含氢量比母材高出70倍;只有采用低氢型焊条施焊时,焊缝的含氢量才比较低;而用CO2气体保护焊时,含氢量最低。
氢使焊缝金属的塑性性严重下降,促使在焊接接头中产生气孔和延时裂纹,并且还会在拉伸试样的断面上形成白点。
⑶氧 氧主要来源于空气、药皮和焊剂中的氧化物、水分及焊接材料表面的氧化物。随着焊缝中含氧量的增加,其强度、硬度和塑性会明显下降,还能引起金属的热脆、冷脆和时效硬化,并且也是焊缝中形成气孔(CO气孔)的主要原因之一。
总之,进入焊缝金属中的氮、氢、氧都是属于有害的元素。
3、对焊接区域要进行保护方法对焊接区域进行保护的目的是防止空气侵入熔滴和熔池,减少焊缝金属中的氮、氧含量。保护的方式有下列三种:
⑴气体保护 例如,气体保护焊时采用保护气体(CO2、H2、Ar)将焊接区域与空气隔离起来。
⑵渣保护 在熔池金属表面覆盖一层熔渣使其与空气分开隔离,如电渣焊、埋弧焊。
⑶气—渣联合保护 利用保护气体和熔渣同时对熔化金属进行保护,如手弧焊。
4、 减少焊缝金属中的含氧量
对焊接区域进行保护、防止空气与熔化金属进行接触是控制焊缝金属中含氧量的重要措施,但是不能根本解决问题,因为氧还可以通过许多其它渠道进入焊缝中,要彻底堵塞这些渠道事实上是不可能的,因此只能采取措施,对已进入熔化金属中的氧进行脱氧处理。
5、焊缝金属常用的脱氧方法
利用熔渣或焊芯(丝)金属与熔化金属相互作用进行脱氧,是焊缝金属常用的脱氧办法。
⑴扩散脱氧 当温度下降时,原先熔解于熔池中的FeO会不断地向熔渣进行扩散,从而使焊缝中的含氧量下降,这种脱氧方法称为扩散脱氧。
如果熔渣中有强酸性氧化物SiO2、TiO2等,它们会与FeO生成复合物,其反应式为
(SiO2+FeO)= FeO·SiO2
(TiO2+FeO)= FeO·TiO2
反应的结果使熔渣中的自由FeO减少,这就使熔池金属中的[FeO]不断地向渣中扩散,焊缝金属中的含量因此得以减少。
酸性熔渣(如焊条J422、焊剂HJK431熔化所成的熔渣)中含有较多量的SiO2、TiO,所以其脱氧方法主要是扩散脱氧。但是在焊接条件下,由于熔池冷却速度快,熔渣和液体金属相互作用的时间短,扩散脱氧进行得很不充分,因此用酸性焊条(剂)焊成的焊缝,其含氧量还比较高,焊缝金属的塑性和韧性也比较低。
6、用脱氧剂脱氧 在焊芯、药皮或焊丝中加入某种元素,使它本身在焊接过程中被氧化,从而保证被焊金属及其合金元素不被氧化或已被氧化的金属还原出来,这种用来脱氧的元素称为脱氧剂。常用的脱氧剂有碳、锰、硅、钛和铝。
碱性焊条的脱氧剂以铁合金的形式加入到药皮中去,如锰铁、硅铁等。埋弧焊常采用合金焊丝,如H08MnA、H10MnSi等。
用脱氧剂脱氧的效果比扩散脱氧好得多,所以用碱性焊条施焊的焊缝,其含氧量比用酸性焊条施焊时要低,塑性、韧性相应得到提高,因此碱性焊条常用来焊合金钢及重要的焊接结构。
7、 减少焊缝金属中的含氢量方法
减少焊缝金属中含氢量的常用措施有:
1) 烘干焊条的焊剂;
2) 清除焊件和焊丝表面上的杂质并尽量使焊丝及焊件表面保持干燥;
3) 在药皮和焊剂中加入适量的氟石(CaF2)、硅砂(SiO2),两者都具有较好的去氢效果;
4) 焊后立即对焊件加热,进行后热处理;
5) 采用低氢型焊条、超低氢型焊条和碱性焊剂。
熔焊
8、焊缝金属中硫的危害性
硫是焊缝中常存的有害元素之一。硫能促使焊缝金属产生热裂纹、降低冲击韧度和需腐蚀性,并能促使产生偏析。厚板焊接时,硫还会引起层状撕裂。
硫在液态金属中以FeS的形式存在,熔渣中的Mn、MnO、CaO具有一定的脱硫作用;其反应式如下
[Mn]+[FeS] =[MnS]+[Fe]
[MnO]+[FeS]=[MnS]+[FeO]
[CaO]+[FeS] =[CaS]+[FeO]
生成的MnS、CaS都进入熔渣中,由于MnO、CaO均属碱性氧化物,在碱性熔渣中含量较多,所以碱性熔渣的脱硫能力比酸性熔渣强。
9 、焊缝金属中磷的危害性。
磷也是焊缝中常存的有害元素之一。磷会增加钢的冷脆性,大幅度地降低焊缝金属的冲击韧度,并使脆性转变温度升高。焊接奥氏体类钢或焊缝中含碳量较高时,磷也会促使焊缝金属产生热裂纹。
磷在液态金属中以Fe2P、P2O5形式存在。脱磷反应可分为两步进行:第一步是将磷氧化成P2O5;第二步使之与渣中的碱性氧化物CaO生成稳定的复合物进入熔渣。其反应式为
2[Fe2P]+5(FeO=P2O5+11[Fe]
P2O5+3(CaO)=(CaO)3·P2O5
P2O5+4(CaO)=(CaO)4·P2O5
由于碱性熔渣中含有较多的CaO,所以脱磷效果比酸性熔渣要好。
但是实际上,不论是碱性熔渣还是酸性熔渣,其最终的脱硫、脱磷效果仍不理想。所以控制焊缝中的硫、磷含量,只能采取限制原材料(母材、焊条、焊丝)中硫、磷含量的方法。
10 、焊缝金属的合金化
合金化就是把所需要的合金元素,通过焊接材料过渡到焊缝金属(或堆焊金属)中去。
合金化的目的:1)补偿焊接过程中由于氧化、蒸发等原因造成的合金元素的损失;2)改善焊缝金属的组织和性能;3)获得具有特殊性能的堆焊金属。
常用的合金化方式有:应用合金焊丝;应用药芯焊丝或药芯焊条;应用合金药皮或粘结焊剂;应用合金粉末;应用熔渣与金属之间的置换反应。
11 、合金元素的过渡系数
合金元素在焊接过程中总有一部分因氧化、蒸发等原因损耗掉,不可能全部过渡到焊缝中去。合金元素的过渡系数是指焊接材料中的合金元素过渡到堆焊金属中的数量与其原始含量的百分比,即
式中η——某合金元素的过渡系数(%);
CF——堆焊金属中某合金元素的含量;
CT——焊条(焊丝、焊剂)中某合金元素的原始总含量。

7. 钨极氩弧焊时什么是钢焊缝金属中的有害元素

钨极氩弧焊时硫、磷是钢焊缝金属中的有害元素。硫是焊缝金属中有害的杂质之一,当硫以(FeS)形式存在时危害性最大。

8. 什么是EGW焊接有专业人士帮忙详细解释一下吗

EGW焊接即气电立焊,是由普通熔化极气体保护焊和电渣焊发展而形成的一种熔化极专气体属保护电弧焊方法。其优点是:生产率高,成本低。与窄间隙焊的主要区别在于焊缝一次成形,而不是多道多层焊。

EGW在多数情况下会将二氧化碳气体作为保护气体,但有时也会使用纯氩气、氩气二氧化碳混合气体、氩气氧气混合气体、氩气氦气混合气体。焊接焊丝经常会采用可形成焊渣、焊缝外观美观的焊剂焊丝,但有时也会使用实芯焊丝。

用母材端与铜衬片或耐火性内衬材料等将熔池围起来,可以在防止熔融金属滴落的同时进行向上立焊,因此能够在单条焊道(单次操作)中进行厚板焊接。其用途包括船舶侧外板、桥梁建设、储藏槽罐、压力容器等垂直方向对接缝的焊接。

(8)焊缝金属的硫来源于什么扩展阅读

气电立焊的焊接质量受焊接电弧长度的影响较大,必须对其弧长进行控制。以爬行式气电立焊机器人为基础,研究其焊接过程中弧长变化,建立了焊接小车和滑块为基础的二级联动弧长控制系统。

利用滑块的动态响应能力强、精度高的特点实现弧长的快速、高精度控制,利用对小车的控制实现滑块的自动归中,增大系统的调节能力。结果表明,系统具有较强的抗干扰能力、动态响应能力和自我调节能力。

9. 焊缝热裂纹产生的原因

问题一:简述焊接热裂纹和焊接冷裂纹的形成机理 并比较它们各自的特点。 1)热裂纹。在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接裂纹就是热裂纹。
?形成:由于被焊接的材料大多数都是合金,而合金凝固自开始到最终结束,是在一定的温度区间内进行的,这是热裂纹产生的基本原因。焊缝中的许多杂质的凝固温度都低于焊缝金属的凝固温度,这样首先凝固的焊缝金属把低熔点的杂质推挤到凝固结晶的晶粒边界,形成了一层液体薄膜,又因为焊接时熔池的冷却速度很大,焊缝金属在冷却的过程中发生收缩,使焊缝金属内部产生拉应力,拉应力把凝固的焊缝金属沿晶粒边界拉开,又没有足够的液体金属补充时,就会形成微小的裂纹,随着温度的继续下降,拉应力增大,裂纹不断扩大。当焊缝金属中含有较多的低熔点杂质时,焊缝金属极易产生裂纹。母材和焊接材料中含有的有害杂质,特别是硫元素,它是引起钢材焊缝金属中发生凝固裂纹的最主要元素。另外,钢材中含碳量较高时,有利于硫在晶界处富集,因而也是促进形成凝固裂纹的原因,所以采用含碳量低的焊接材料有利于防止凝固裂纹的产生。
?热裂纹的特征:断口呈蓝黑色,即金属在高温被氧化的颜色,有时在热裂纹里流入熔渣的迹象。再者,弧坑裂纹多为热裂纹。
2)冷裂纹。冷裂纹指焊接接头冷却到较低温度时产生的焊接裂纹。
?冷裂纹产生的原因:钢材的淬火倾向,残余应力,焊缝金属和热影响区的扩散氢含量。其中氢的作用是形成冷裂纹的重要因素。当焊缝和热影响区的含量较高时,焊缝中的氢在结晶过程中向热影响区扩散,当这些氢不能逸出时,就聚集在离熔合线不远的热影响区中;如果被焊材料的淬火倾向较大,焊后冷却下来,在热影响区可能形成马氏体组织,该种组织脆而硬;在加上焊后的焊接残余应力,在上述几种因素的作用下,导致了冷裂纹的产生。
?冷裂纹与热裂纹的主要区别就是:冷裂纹在较低的温度下形成,一般在200-300℃以下形成;冷裂纹不是在焊接过程中产生的,而是在焊后延续一定的时间后才产生,如果钢的焊接接头冷却到湿温后并在一定的时间(几小时、几天、甚至十几天以后)才出现的冷裂纹称为延迟裂纹;冷裂纹多在焊接热影响区内产生,如沿应力集中的焊缝根部形成的冷裂纹称为焊根裂纹。沿应力集中的焊趾处形成的冷裂纹称为焊趾裂纹。在靠近堆焊焊道的热影响区内所形成的裂纹称为焊道下裂纹。冷裂纹有时也在焊缝金属内发生。一般焊缝金属的横向裂纹多为冷裂纹。冷裂纹与热裂纹相比,冷裂纹的断口无氧化色。

问题二:焊接时冷裂纹和热裂纹的产生 1、冷裂纹
冷裂纹的特征
多出现在焊道与母材熔合线附近的热影响区中,多为穿晶裂纹。
冷裂纹无氧化色彩。
冷裂纹发生于碳钢或合金钢,高的含碳量和合金含量。
冷裂纹具有延迟性质,主要是延迟裂纹。
冷裂纹产生原因
焊接接头(焊缝和热影响区及熔合区)的淬火倾向严重,产生淬火组织,导致接头性能脆化。
焊接接头含氢量较高,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力,使接头脆化;磷含量过高同样产生冷裂纹。
存在较大的拉应力。因氢的扩散需要时间,所以冷裂纹在焊后需延迟一段时间才出现。由于是氢所诱发的,也叫氢致裂纹。
防止冷裂纹的措施
选用碱性焊条或焊剂,减少焊缝金属中氢的含量,提高焊缝金属塑性。
焊条焊剂要烘干,焊缝坡口及附近母材要去油、水、除锈,减少氢的来源。
工件焊前预热,焊后缓冷(大部分材料的温度可查表),可降低焊后冷却速度,避免产生淬硬组织,并可减少焊接残余应力。
采取减小焊接应力的工艺措施,如对称焊,小线能量的多层多道焊等,焊后进行清除应力的退火处理。
焊后立即进行去氢(后热)处理,加热到250℃,保温2~6h,使焊缝金属中的散氢逸出金属表面。
2、热裂纹(又称结晶裂纹)
热裂纹的特征
热裂纹可发生在焊缝区或热影响区,沿焊缝长度方向分布。
热裂纹的微观特征是沿晶界开裂,所以又称晶间裂纹。因热裂纹在高温下形成,
有氧化色彩。
焊后立即可见。
热裂纹产生原因。
焊缝金属的晶界上存在低熔点共晶体(含硫、磷、铜等杂质)。
接头中存在拉应力。
防止措施
选用适宜的焊接材料,严格控制有害杂质碳、硫、磷的含量。Fe和FeS易形成低熔点共晶,其熔点为988℃,很容易产生热裂纹。
严格控制焊缝截面形状,避免突高,扁平圆弧过渡。
缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性减少偏析。
确定合理的焊接工艺参数,减缓焊缝的冷却速度,以减小焊接应力。如采用小线能量,焊前预热,合理的焊缝布置等。

问题三:焊缝裂纹出现的主要原因有哪些 这个原因太多了,可以做好几个课题。
一般有冷裂纹,热裂纹,和延迟裂纹
普通结构钢,碳钢,一般是冷裂纹,结构原因,坡口设计太窄等都可能;
热裂纹一般不锈钢比较多,原因是低熔点共晶的存在,就是坡口没清理干净;
延迟裂纹在耐热钢中很常见,也很难处理,关键要做好焊前预热,控制层间温度,焊后保温缓冷;
这个是 *** 焊接10年的总结,细节上具体情况就需要具体分析了。

问题四:什么叫热裂纹,它是怎样产生的 焊接件中最常见的一种严重缺陷。金属的焊接性中包括了两大类的问题:一类是焊接引起的材料性能变坏,使焊件失掉了材料原来特有的性能,如不锈钢焊后失掉其耐蚀性等;另一类是在焊接接头或其附近的母材内产生裂纹和气孔等缺陷。裂纹影响焊接件的安全使用,是一种非常危险的工艺缺陷。焊接裂纹不仅发生于焊接过程中,有的还有一定潜伏期,有的则产生于焊后的再次加热过程中。焊接裂纹根据其部位、尺寸、形成原因和机理的不同,可以有不同的分类方法。按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。
热裂纹 多产生于接近固相线的高温下,有沿晶界(见界面)分布的特征;但有时也能在低于固相线的温度下,沿“多边形化边界”形成。热裂纹通常多产生于焊缝金属内,但也可能形成在焊接熔合线附近的被焊金属(母材)内。按其形成过程的特点,又可分为下述三种情况。
结晶裂纹 产生于焊缝金属结晶过程末期的“脆性温度”区间,此时晶粒间存在着薄的液相层,因而金属塑性极低,由冷却的不均匀收缩而产生的拉伸变形超过了允许值时,即沿晶界液层开裂。消除结晶裂纹的主要冶金措施为通过调整成分,细化晶粒,严格控制形成低熔点共晶的杂质元素等,以达到提高材料在脆性温度区间的塑性;此外,从设计和工艺上尽量减少在该温度区间的内部拉伸变形。
液化裂纹 主要产生于焊缝熔合线附近的母材中,有时也产生于多层焊的先施焊的焊道内。形成原因是由于在焊接热的作用下,焊缝熔合线外侧金属内产生沿晶界的局部熔化,以及在随后冷却收缩时引起的沿晶界液化层开裂。造成这种裂纹的情况有二:一是材料晶粒边界有较多的低熔点物质;另一种是由于迅速加热,使某些金属化合物分解而又来不及扩散,致局部晶界出现一些合金元素的富集甚至达到共晶成分。防止这类裂纹的原则为严格控制杂质含量,合理选用焊接材料,尽量减少焊接热的作用。
多边化裂纹 是在低于固相线温度下形成的。其特点是沿“多边形化边界”分布,与一次结晶晶界无明显关系;易产生于单相奥氏体金属中。这种现象可解释为由于焊接的高温过热和不平衡的结晶条件,使晶体内形成大量的空位和位错,在一定的温度、应力作用下排列成亚晶界(多边形化晶界),当此晶界与有害杂质富集区重合时,往往形成微裂纹。消除此种缺陷的方法是加入可以提高多边形化激活能的合金元素,如在Ni-Cr合金中加入W、Mo、Ta等;另一方面是减少焊接时过热和焊接应力。
冷裂纹 根据引起的主要原因可分为淬火裂纹、氢致延迟裂纹和变形裂纹。
淬火裂纹 产生在钢的马氏体转变点()附近(见过冷奥氏体转变图)或在200以下的裂纹,主要发生于中、高碳钢,低合金高强度钢以及钛合金等,主要产生部位在热影响区以及焊缝金属内。裂纹走向为沿晶或穿晶。形成冷裂纹的主要因素有:①金属的含氢量偏高;②脆性组织或对氢脆敏感的组织;③焊接拘束应力(或应变)。
氢致延迟裂纹 焊接过程中溶于焊缝金属内的氢向热影响区扩散、偏聚,特别是在容易启裂的三轴拉应力集中区富集,引起氢脆,即降低金属在启裂位置(或裂纹前端)的临界应力,当此处的局部应力超过此临界应力时,就造成开裂。这种裂纹的形成有明显的时间延迟的特征,其原因在于氢扩散富集需要时间(孕育期)。产生此种裂纹的条件是存在着氢和对氢敏感的组织,同时又有较大的拘束应力。因此,它常产生在严重应力集中的焊件根部和缝边,以及过热区。防止的措施包括:①降低焊缝中的含氢量,例如采用低氢焊条,严格烘干焊接材料等;②合理的预热及后热;③选用碳当量较低的原材料;④减小拘束应力,避免应力集中(见金属中氢)。
变形裂纹 这种裂纹的形成不一定是因为氢含量偏高......>>

问题五:热裂纹和冷裂纹产生的原因 1)热裂纹的特征
热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。
特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。
(2)热裂纹产生原因:
① 晶间存在液态间层
焊缝:存在低熔点杂质偏析 } 形成液态间层

热影响区:过热区晶界存在低熔点杂质
② 存在焊接拉应力
(3)热裂纹的防止措施:
冶金因素
} 热裂纹
拉应力
① 限制钢材和焊材的低熔点杂质,如S、P含量。
② 控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。
③ 调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。
④ 减少焊接拉应力
⑤ 操作上填满弧坑
4.3.2.2 冷裂纹
(1)冷裂纹的形态和特征
焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种,如图6-2-17
冷裂纹形态 { 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展
焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展
焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展
图5-2-17 焊接冷裂纹
a-焊道下裂纹; b-焊趾裂纹;c-焊根裂纹
特征:无分支、穿晶开裂、断口表面无氧化色。
最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹-------因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。
(2)延迟裂纹的产生原因
① 焊接接头存在淬硬组织,性能脆化。
② 扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹)
③ 存在较大的焊接拉应力
(3)防止延迟裂纹的措施
① 选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性
② 减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水)
③ 避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度)
④ 降低焊接应力枣采用合理的工艺规范,焊后热处理等
⑤ 焊后立即进行消氢处理(即加热到250℃,保温2~6左右,使焊缝金属中的扩散氢逸出金属表面)。

问题六:焊接缺陷(裂纹)概念 、形成缺陷原因、解决措施!!!(字越多越好、越详细越好!) 5分 1、产生裂纹的概念:
焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近的母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生的时间和温度的不同,可以把裂纹分为以下几类:
a.热裂纹(又称结晶裂纹):
产生于焊缝形成后的冷却结晶过程中,主要发生在晶界上,金相学中称为沿晶裂纹,其位置多在焊缝金属的中心和电弧焊的起弧与熄弧的弧坑处,呈纵向或横向辐射状,严重时能贯穿到表面和热影响区。热裂纹的成因与焊接时产生的偏析、冷热不均以及焊条(填充金属)或母材中的硫含量过高有关。
b.冷裂纹:
焊接完成后冷却到低温或室温时出现的裂纹,或者焊接完成后经过一段时间才出现的裂纹(这种冷裂纹称为延迟裂纹,特别是诸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金钢种容易产生此类延迟裂纹,也称之为延迟裂纹敏感性钢)。冷裂纹多出现在焊道与母材熔合线附近的热影响区中,其取向多与熔合线平行,但也有与焊道轴线呈纵向或横向的冷裂纹。冷裂纹多为穿晶裂纹(裂纹穿过晶界进入晶粒),其成因与焊道热影响区的低塑性组织承受不了冷却时体积变化及组织转变产生的应力而开裂,或者焊缝中的氢原子相互结合形成分子状态进入金属的细微孔隙中时将造成很大的压应力连同焊接应力的共同作用导致开裂(称为氢脆裂纹),以及焊条(填充金属)或母材中的磷含量过高等因素有关。
c.再热裂纹:
焊接完成后,如果在一定温度范围耿对焊件再次加热(例如为消除焊接应力而采取的热处理或者其他加热过程,以及返修补焊等)时有可能产生的裂纹,多发生在焊结过热区,属于沿晶裂纹,其成因与显微组织变化产生的应变有关。
2、产生裂纹的原因:
(1)焊件含有过高的碳、锰等合金元素。
(2)焊条品质不良或潮湿。
(3)焊缝拘束应力过大。
(4)母条材质含硫过高不适于焊接。
(5)施工准备不足。
(6)母材厚度较大,冷却过速。
(7)电流太强。
(8)首道焊道不足抵抗收缩应力。
3、解决措施:
(1)使用低氢系焊条。
(2)使用适宜焊条,并注意干燥。
(3)改良结构设计,注意焊接顺序,焊接后进行热处理。
(4)避免使用不良钢材。
(5)焊接时需考虑预热或后热。
(6)预热母材,焊后缓冷。
(7)使用适当电流。
(8)首道焊接之焊着金属须充分抵抗收缩应力。

问题七:高温合金产生焊接热裂纹的原因是什么 高温使合金偏析,结晶变大,使晶体结合力大幅下降。

问题八:焊接热、冷裂纹各有哪些基本特点? 热裂纹:沿晶开裂,一般发生在近焊缝或焊缝区。有氧化色彩,五金属光泽。主要分为结晶裂纹,高温液化裂纹和多变化裂纹三类。
冷裂纹:有时穿晶开裂有时沿晶开裂,一般发生在焊接热恭响区的熔合区或物理化学不均匀的氢聚集的局部地带。冷裂纹是具有金属光泽的脆性断口。主要分为延迟裂纹,淬硬脆化裂纹和低塑性脆化裂纹三类。

阅读全文

与焊缝金属的硫来源于什么相关的资料

热点内容
30壁厚的48钢管多少米一吨 浏览:448
不锈钢喷油漆多少钱一平方 浏览:936
手游合金弹头怎么存档 浏览:581
模具加热用什么材料 浏览:196
子弹头模具弧度如何标注 浏览:778
薄壁钢管采用什么焊接形式 浏览:640
焊接桩上的钢筋叫什么 浏览:739
铝方管重量计算公式表 浏览:128
遇到钢铁直女撩不动怎么办 浏览:176
xg是什么钢材 浏览:151
河北四方管业有限公司 浏览:642
为什么钢铁侠摘掉反应炉 浏览:487
天然气管道怎么焊接图片 浏览:721
钢铁侠讲述了什么名字 浏览:754
保险片是什么材质的能用锡焊焊接吗 浏览:94
2分之一钢管直径是多少 浏览:969
支架钢管柱套什么定额 浏览:140
不锈钢纱网生锈怎么办 浏览:40
不锈钢管焊口怎么样防止氧化 浏览:22
钢铁质量合格指标有哪些 浏览:326