① 圆轴扭转破坏时,为什么低碳钢研截面而铸铁沿45度螺旋面断裂
答:根据材料力学知识,铸铁属典型的脆性材料,其抗拉性能较差,破坏符合最大拉内应力理论.铸铁容受扭时横截面边缘处剪应力最大,取单元体进行应力分析可得到主应力方向与断裂面方向垂直且与圆轴表面相切,由于圆轴表面是曲面,各点主应力的主平面沿方向连起来就形成一个螺旋线,从外向内应力状态相似,故形成螺旋面而不是平面.
满意了吧
② 为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成45度螺旋断
低碳钢的扭转角远大于铸铁,因为低碳钢是塑性材料,而铸铁是脆性的,低碳钢断版面是沿横截面被权剪破坏的,然而铸铁是沿着45到55度不等的截面破坏的,说明低碳钢是因为横截面的剪切应力而破坏的,铸铁是因为斜截面的拉应力而破坏的。
③ 为什么铸铁压缩时沿轴线大致成45度方向的斜截面破坏
斜45度方向是剪切力最大方向,
先在铸铁的一个截面上上取一个无限小的一个立方体做受力分析,因为压缩就受两个方向的力,所以直接看成正方形也未尝不可,然后就是受力分析。
假设这个截面的角度为a,然后把应力按照这个界面分解为正应力和剪切应力,之后就能得到一个正应力(剪切应力)以及a的方程 这个方程解完之后结果就是剪切应力的极大值是a=45度是出现的。
断裂面的方向是剪切应力最大的方向,所以铸铁是45度断的。
还有要说明的一点是铸铁是断裂,低碳钢的话是塑性变形,这主要是因为材料不同对剪切应力的应变形式不一样,这个要做实验才能知道某种材料具体的破坏形式。
(3)低碳钢断裂为什么呈45扩展阅读:
工业用铸铁一般含碳量为2.5%~3.5%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。
灰铸铁的热处理仅能改变其基体组织,改变不了石墨形态,因此,热处理不能明显改变灰铸铁的力学性能,并且灰铸铁的低塑性又使快速冷却的热处理方法难以实施,所以灰铸铁的热处理受大一定的局限性。其热处理主要用于消除应力和改善切削加工性能等。
1、消除内应力退火(时效处理)——低温退火。将铸件置于100~200℃的炉中,缓慢升温至500~600℃,保温4~8h缓冷。
2、改善切削性能的退火——高温退火,降低硬度将铸件加热至850~900℃,保温2~5h,缓冷至400~500℃出炉空冷。
3、表面淬火——提高硬度和耐磨性。
为了适当降低淬火后的残余应力,一般淬火后应进行回火,低温回火组织为回火马氏作加残留贝氏体再加球状石墨。这种组织耐磨性好 ,用于要求高耐磨性,高强度的零件。
④ 为什么拉伸试验时断口成45度角
因为低碳钢的抗剪强度比其抗拉的强度低,在低碳钢的横截面上的应力达到一定时,未达到其抗拉强度,但是他的45度切应力已经足以让他破坏,所以他会沿45度的截面破坏。
⑤ 低碳钢与铸铁在扭转破坏时断口不同,为什么
低碳钢拉伸和铸铁在扭转破坏时断裂方式不一样,拉伸的断裂方式是拉断,试件受正应力,表现为断裂截面收缩、断裂后试件总长大于原试件长度。
铸铁在扭转破坏使的断裂方式是剪断,试件受切应力,表现为试样表面的横向与纵向出现滑移线,最后沿横截面被剪断,断裂截面面积不变。
铸铁压缩破坏时,断口方位角约为55°-60°,在该截面上存在较大的切应力,所以,其破坏方式是剪断。扭转时,所受的外力也是剪力,所以,破坏方式与压缩时相同,为剪断。
低碳钢是韧性材料,铸铁是脆性材料
铸铁:
扭转试验——断口与轴线成45度,属于拉伸破坏
拉伸试验——断口是平面,属于拉伸破坏
压缩试验——45度碎裂,只能剪切破坏
脆性材料的抗剪切强度大于抗拉伸强度。弹性变形很小,基本无塑性变形,屈服强度与抗拉强度基本相同。
低碳钢:
扭转试验——变形很大,旋转很多圈,断口是平面,属于剪切破坏
拉伸试验——变形很大,断口缩颈后,端口有45度茬口,属于剪切破坏
压缩试验——呈腰鼓形塑性变形
韧性材料的抗剪切强度小于抗拉伸强度。弹性变形和塑性变形都很大。
(5)低碳钢断裂为什么呈45扩展阅读
低碳钢与铸铁的比较
1、低碳钢
低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,故又称软钢。
低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。
因此,低碳钢在拉断时会表现出断裂截面收缩,断裂后试件的总长也会大于原试件的长度。
2、铸铁
含碳量在2%以上的铁碳合金为铸铁。工业用铸铁一般含碳量为2.5%~3.5%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。
除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。铸铁可分为:灰口铸铁。含碳量较高(2.7%~4.0%),白口铸铁,可锻铸铁,蠕墨铸铁等。
由于铸铁具有较强的耐磨性和柔韧性,在做扭转试验时或压缩试验时,属于拉伸破坏或剪切破坏。
⑥ 低碳钢和铸铁在扭转破坏时有什么不同的现象
1,骨折的形状不同:
当铸铁断裂时,断裂面呈45o螺旋形;当低碳钢断裂时,断裂面为垂直于垂直方向的近似平面。
2,破解的过程是不同的:
当低碳钢扭曲时,会发生屈服,加工硬化并最终断裂。塑性变形量被破坏。铸铁扭曲时,几乎不会发生塑性变形并直接破裂。
原因:铸铁在45o方向上的主应力破坏了,这是由斜截面上的拉应力引起的,这表明铸铁的抗拉强度很差。低碳钢是由较高的剪切应力引起的,说明低碳钢的剪切强度较差。
(6)低碳钢断裂为什么呈45扩展阅读:
脆性和塑性材料的强度和可塑性可以通过反向测试确定,该测试通常用于需要频繁烧结的材料(例如轴,弹簧等)上。
扭转试验在扭转试验机上进行,材料特性和应力条件可以反映在扭转尖端的断裂形状中。
例如,剪切应力的结果显示为裂缝的截面和垂直线,并且材料是塑性的。如果法向应力作用,则断裂部分的壁厚约为45°,材料易碎。
⑦ 低碳钢和铸铁扭转时变形和破坏情况有何不同试分析其破坏原因。
1、断口的形状不同:
铸铁破坏时断口呈45º螺旋曲面,而低碳钢破坏时断口是与轴线垂直的近似平面。
2、断裂的过程不同:
低碳钢扭转时发生屈服,加工硬化,最后断裂。塑性变形量较大。铸铁扭转时几乎不发生塑性变形,直接断裂。
原因:铸铁是被45º方向上主应力所拉断,是由斜截面上的拉应力造成的,说明铸铁的抗拉强度较差;低碳钢是由横截面上的切应力造成的,说明低碳钢的抗剪强度较差。
(7)低碳钢断裂为什么呈45扩展阅读:
低碳钢和铸铁在拉伸试验中的性能和特点
低碳钢属于塑性材料,拉伸过程中有明显的屈服阶段,有明显的颈缩间断(又称断裂阶段)。(白口)铸铁属于脆性材料,拉伸过程中没有明显的屈服阶段,没有明显的颈缩间断。
低碳钢是典型的塑性材料,拉伸时会发生屈服,会产生很大的塑性变形,断裂前有明显的颈缩现象,拉断后断口呈凸凹状,而铸铁拉伸时没有屈服现象,变形也不明显,拉断后断口基本沿横截面,较粗糙。
⑧ 低碳钢在轴向拉伸时为什么沿横截面破坏
这个是材料力学第三强度理论的知识,轴受到拉伸时最终会沿45度截面方向断裂,也就是受到剪切应力的作用。
⑨ 低碳钢扭转多少度断裂
扭转为45度断裂。 拉伸时的破坏原因是拉应力扭转时,故破坏原因是最大剪应力。
低碳钢拉伸和扭转时断裂方式不一样。拉伸的断裂方式是拉断,试件受正应力。表现为断裂截面收缩、断裂后试件总长大于原试件长度。
扭转的断裂方式是剪断,试件受切应力。表现为试样表面的横向与纵向出现滑移线,最后沿横截面被剪断,断裂截面面积不变,试件总长不变。
拉伸为平断口,扭转为45度的螺旋断口。拉伸时的破坏原因是拉应力扭转时,由于低碳钢抗拉能力大于抗剪能力,所以剪应力先于拉应力达到最大值;故破坏原因是最大剪应力。
低碳钢断口具有明显的塑性破坏引起的明亮的倾斜表面。斜面的倾斜角近似等于试样的轴线(称为杯状断裂)。中间部分是一个粗糙的平面。塑性越大,杯状断裂越大,中心粗糙面面积越小。而铸铁是典型的脆性断口,没有任何倾斜边,断口呈扁平状,垂直于拉应力。
⑩ 为什么低碳钢拉伸变形处于屈服阶段时试样表面会产生与轴线成45度角的滑移线
变形过程中,同时受到拉应力和剪切应力,而剪切应力延与工件轴线成45度方向最内大,所以低碳钢拉容伸变形处于屈服阶段时试样表面会产生与轴线成45度角的滑移线。
试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹。
(10)低碳钢断裂为什么呈45扩展阅读:
颈缩阶段和断裂Bef试样伸长到一定程度后,荷载读数反而逐渐降低。此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断。
在计算机上输入已测平均直径中最小值等参数,并勾选所需测定的参数FeH值、下屈服点力FeL值和最大力Fm值,上屈服强度Reh,下屈服强度Rel抗拉强度Rm。将进油阀关闭,按试验机上启动键。同时,操作计算机软件使之开始绘制曲线图。