1. 电缆的化学腐蚀,电化腐蚀,晶间腐蚀有什么区别
电缆的化学腐蚀,电化腐蚀,晶间腐蚀的区别如下:
化学腐蚀指金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程。这类腐蚀不普遍、只有在特殊条件下发生,例如,化工厂里的氯气与铁反应生成氯化铁:3Cl2+2Fe=2FeCl3。它通常分为铁的高温氧化、钢的脱碳与氢脆等化学腐蚀原理比较简单,属于一般的氧化还原反应。
电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。例如铁和氧气,因为铁的电极电位总比氧的电极电位低,所以铁是负极,遭到腐蚀。特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末状溃疡腐蚀坑陷。
晶间腐蚀主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝合金和一些不锈钢、镍基合金中。不锈钢焊缝的晶间腐蚀是化学工业的一个重大问题。
2. 焊缝泄漏是化学腐蚀还是电化学腐蚀
两者的区别是(1)化学腐蚀是金属与氧化剂直接得失电子,电化学腐蚀利用原电池原理得失电子;(2)化学腐蚀反应中不伴随电流的产生,电化学腐蚀反应中伴随电流的产生;(3)化学腐蚀金属被氧化,电化学腐蚀活泼金属被氧化。
根据腐蚀的作用原理,可分为化学腐蚀和电化学腐蚀。
化学腐蚀原理比较简单,属于一般的氧化还原反应。
金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。
在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。
高温气体腐蚀(如高温氧化)属于化学腐蚀,但近代概念指出在高温腐蚀中也存在隔离的阳极和阴极区,也有电子和离子的流动,据此,出现了另一种分类:干腐蚀和湿腐蚀。湿腐蚀是指金属在水溶液中的腐蚀,是典型的电化学腐蚀;干腐蚀则是指在干气体(通常是在高温)或非水溶液中的腐蚀。单纯的物理腐蚀,对于金属很少见,对于非金属,则多半产生单纯的化学或物理腐蚀,有时两种作用同时发生。
3. 为什么草酸会腐蚀304不锈钢焊缝
Cr元素在高温的情况下会与C结合成高碳高铬化合物----碳化铬(Cr23C6),从而形成富版铬区权和贫铬区。这就是为什么不锈钢在焊接后,焊缝会发生刀口腐蚀的内在原因,就是因为出现了贫铬区后,在局部不锈钢与普通碳钢没有差别,也就不防腐了,解决的办法就是对不锈钢焊缝进行焊后回火,打碎高碳高铬化合物,使铬分布均匀。
-----------------------
转自 pijon 前辈的回答
http://..com/question/73551220.html
4. 在生活中的金属腐蚀情况都属于哪几类腐蚀,都进行了怎样的防护
浓硫酸、三氯化铁、双氧水是利用氧化性腐蚀,盐酸用还原性腐蚀。具体情况具体分析。
吸氧腐蚀 金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化腐蚀,叫吸氧腐蚀. 例如钢铁在接近中性的潮湿的空气中腐蚀属于吸氧腐蚀,其电极反应如下:
负极(Fe):Fe - 2e = Fe2+
正极(C):2H2O + O2 + 4e = 4OH-
钢铁等金属的电化腐蚀主要是吸氧腐蚀.
在酸性较强的溶液中发生电化腐蚀时放出氢气,这种腐蚀叫做析氢腐蚀。在钢铁制品中一般都含有碳。在潮湿空气中,钢铁表面会吸附水汽而形成一层薄薄的水膜。水膜中溶有二氧化碳后就变成一种电解质溶液,使水里的H+增多。是就构成无数个以铁为负极、碳为正极、酸性水膜为电解质溶液的微小原电池。这些原电池里发生的氧化还原反应是
负极(铁):铁被氧化Fe-2e=Fe2+;正极(碳):溶液中的H+被还原2H++2e=H2↑
这样就形成无数的微小原电池。最后氢气在碳的表面放出,铁被腐蚀,所以叫析氢腐蚀。
阴极保护是一种用于防止金属在电介质(海水、淡水及土壤等介质)中腐蚀的电化学保护技术,该技术的基本原理是使金属构件作为阴极,对其施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,该金属表面的电化学不均匀性得到消除,腐蚀的阴极溶解过程得到有效抑制,达到保护的目的。下面用极化曲线来说明阴极保护原理。为了说明问题,把阴极,阳极极化曲线简化成直线,如下图(1)所示。
在金属表面上的阳极反应和阴极反应都有自己的平衡点,为了达到完全的阴极保护,必须使整个金属的电位降低到最活泼点的平衡电位。设金属表面阳极电位和阴极电位分别为Ea和Ec,金属腐蚀过程由于极化作用,阳极和阴极的电位都接近于交点S所对应的电位Ecorr(自然腐蚀电位),这时的腐蚀电流为Icorr。
图(1)
如果进行阴极极化,电位将从向更负的方向移动,阳极反应曲线EcS从S向C 点方向延长,当电位极化到E1时,所需的极化电流为I1,相当于AC线段,其中BC线段这部分是外加的,AB线段这部分电流是阳极反应所提供的电流,此时金属尚未腐蚀。如果使金属阴极极化到更负的电位,例如达到Ea,这时由于金属表面各个区域的电位都等于Ea,腐蚀电流为零,金属达到了完全保护,此时外加电流Iapp1即为完全保护所需电流。
根据提供阴极极化电流的方式不同,阴极保护又分为牺牲阳极阴极保护法和外加电流阴极保护法两种。
图贴不上来,呵呵
在众多的工业用途中,不锈钢都能提供今人满意的耐蚀性能。根据使用的经验来看,除机械失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理的选材而予以避免的。
应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性环境中由于烈纹的扩展而互生失效的一种通用术语。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。型纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩图的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。
点腐蚀:是一种导致腐蚀的局部腐蚀形式。
晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物(如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。
缝隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的接合处形成,例如,在与铆钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物相接烛之处形成。
v全面腐蚀:是用来描述在整个合金表面上以比较均勺的方式所发生的腐蚀现象的术语。当发生全面腐蚀时,村料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。
2.各种不锈钢的耐腐蚀性能
304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。
301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。
302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。
302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。
303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。
304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。
304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。
305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。
308 不锈钢用于制作焊条。
309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性.
316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。
321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。
5. 腐蚀的种类有哪些
一、孔蚀
在某些条件下,如氧气浓度较低或者能够形成阴离子的物质的浓度较高的情况下,合金形成钝化保护膜的能力可能会受到影响。在最坏的情况下,尽管几乎所有的表面仍然被保护膜覆盖,但是这层保护膜仍然会存在一些有问题的点。
在这些点,腐蚀的作用会被严重的放大,从而依据所处环境的不同而形成数种类型的腐蚀孔洞。由于腐蚀孔洞在特别极端的条件会成为腐蚀的中心核,即使环境转为正常情况了,腐蚀空洞仍然会发生扩张,这是由于孔洞的内部处于无氧环境,局部的pH值也非常低,因此腐蚀的速度因自催化过程而加快了。
二、焊接与割缝的腐蚀
对于不锈钢存在这一种特殊的腐蚀方式,这是由于不锈钢的钝化保护模的形成依赖于其中的一种合金元素铬,含量通常是18%。由于在进行焊接或者其它热加工的时候需要使温度升高,不锈钢材料中的碳和铬会发生反应,在晶粒边界处形成碳化铬。
这种化学反应使得材料中晶粒边界处的铬的含量减少,从而这些区域抗腐蚀的能力下降,同时这些区域还会与附近受到保护的合金形成原电池,从而高腐蚀性的环境中会产生焊缝腐蚀(焊接处晶粒边界的腐蚀)。
三、缝隙腐蚀
环境中的腐蚀性液体通常可以进入材料的狭缝中,而又无法自由流动,这样会造成狭缝内外存在着氧气浓度差,而材料在狭缝处的腐蚀速度将会大大加快,这种现象就称为缝隙腐蚀。例如零件之间连接的空隙处、垫圈和密封圈的下部、裂缝的内部以及填满污泥和沉淀的空间,都是容易发生缝隙腐蚀的地方。
四、高温腐蚀
高温腐蚀是指材料在非常高的温度条件下因化学变化而产生的恶化。这种腐蚀不是通过原电池的形式进行,它可以在金属处于含有氧气、硫或其他氧化性成分的高温氛围中产生。例如,用于宇航、产生动力的材料,甚至是汽车发动机里的材料都必须能够在高温环境中暴露在可能含有大量能够腐蚀材料的物质中,因此这些材料必须拥有抗高温腐蚀的能力。
五、微生物腐蚀
微生物腐蚀也叫做细菌腐蚀,是指由微生物(通常是化能生物)导致的腐蚀。这种腐蚀既可以发生在金属上,也可以发生在非金属材料上,不论是否有氧气。硫酸盐还原菌通常在无氧环境中出现,他们产生硫化氢,会引起硫化物应力破裂现象。
在氧气环境中,某些细菌会直接将铁氧化成铁的氧化物和氢氧化物,而其他的一些细菌会氧化硫从而产生硫酸,导致生源硫化物腐蚀。在腐蚀产物中,通常还会形成浓度差电池,会引起甚至加速电化学腐蚀的过程。
6. 金属在一般情况下发生的电化学腐蚀主要是什么腐蚀
1,金属一般情况下发生的电化学腐蚀主要是锈蚀,属于一 种湿腐蚀。
2,电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。
3,例如:钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。这是因为,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因。
4,对于不锈钢还有另一种特别的局部电化学腐蚀叫晶间腐蚀,腐蚀沿着金属或合金的晶粒边界或它的邻近区域发展,晶粒本身腐蚀很轻微,这种腐蚀便称为晶间腐蚀。对于奥氏体不锈钢来说,铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上。
7. 焊接的电化学腐蚀是阳极腐蚀还是阴极腐蚀
阴极+阳极(个人理解)以下是网络的答案,
浸在电解质海水中的金属由于电极电位的不同,形成同时进行的阳极反应和阴极反应的腐蚀过程.
电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池.因为铁的电极电位总比氧的电极电位低,所以铁是阳极,遭到腐蚀.特征是在发生氧腐蚀的表面会形成许多直径不等的小鼓包,次层是黑色粉末状溃疡腐蚀坑陷
不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀.钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子.
我们知道,钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀.原来,在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层 电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池.在这些原电池里,铁是负极,碳是正极.铁失去电子而被氧化.电化学腐蚀是造成钢铁腐蚀的主要原因.
金属材料与电解质溶液接触 ,通过电极反应产生的腐蚀.电化学腐蚀反应是一种氧化还原反应.在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程.在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂.
在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动.如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池.直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上.
金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种.当金属被放置在水溶液中或潮湿的大气 电化学腐蚀中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极).阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用.腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼.这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行.
8. 硫酸罐焊缝腐蚀了,怎么办
目前国内大多数的化工企业、热电厂等均有大量的反应釜、化学药剂罐体、化学介质输送管道等。大部分的罐体、管道材质为碳钢材质,并且是由卷板焊接而成。长期的盛放强化学腐蚀的介质难免会对罐体本身,尤其是焊缝部位造成严重的化学腐蚀,进而导致化学介质的渗漏,有毒物质外泄,给生产带来较大的安全隐患,同时也会导致企业停机停产,造成巨大的经济损失。
对于化学反应釜、化学药剂罐体的保护长期困扰着企业,尤其是焊缝部位的防腐保护。对于金属材质的罐体来说,化学介质对于焊缝的腐蚀最为严重,因为焊接部位由于受到强热作用,材质本身结晶发生变化,且焊接过程中难以避免沙眼、热应力等焊接缺陷的产生,所以焊缝部位最容易被腐蚀,出现渗漏。因此对于焊缝部位的保护也显得尤为重要。
企业一旦发现罐体渗漏,唯一的方法就是停机焊接处理。焊接工艺本身就存在很大缺陷,很难从根本上治理腐蚀问题。且焊接工作中需要停机停产,甚至需要将化学介质完全排出。对于一些可燃性较强的化学介质,无法现场动火焊接。所以一旦罐体发生泄漏事故,给企业生产及安全带来相当大的影响。
美_嘉_华——高分_子材料具有良好的抗各种化学腐_蚀性能,且可以现场直接对漏点进行修复,修复效果良好,可长期抵抗强化学腐蚀,从根本上解决化学腐蚀问题。由于现场修复过程中在常温状态下进行,所以施工过程更为安全。
9. 管板日常腐蚀防护
管板 :首先我们来认识一下管板。管板,就是在圆形钢板上钻出比管子外径一样略大一些的孔,是换热器中起到固定管子以及密封介质作用的圆钢。将管子穿入焊住固定,起这样作用的一种配件。管板加工的精度,特别是管孔间距和管径公差、垂直度、光洁度都极大地影响着以上所列化工设备的组装和使用性能。
管板的材质 根据需要使用环境的不同,使用不同的材质,一般使用Q345R的容器板,诸如一二级压力容器,无腐蚀介质流通,使用碳钢复合板即可。遇到强酸,高压高温,核能等环境就需要不锈钢,16锰,钛合金等耐腐蚀的材质,新型合成材料的应用,给管板制品带来新的生机。
列管式换热器在制作时,管板与列管的焊接一般采用手工电弧焊,焊缝形状存在不同程度的缺陷,如凹陷、气孔、夹渣等,焊缝应力的分布也不均匀。使用时管板部分一般与工业冷却水接触,而工业冷却水中的杂质、盐类、气体、微生物都会构成对管板和焊缝的腐蚀。这就是我们常说的电化学腐蚀。研究表明,工业水无论是淡水还是海水,都会有各种离子和溶解的氧气,其中氯离子和氧的浓度变化,对金属的腐蚀形状起重要作用。另外,金属结构的复杂程度也会影响腐蚀形态。因此,管板与列管焊缝的腐蚀以孔蚀和缝隙腐蚀为主。从外观看,管板表面会有许多腐蚀产物和积沉物,分布着大小不等的凹坑。以海水为介质时,还会产生电偶腐蚀。化学腐蚀就是介质的腐蚀,换热器管板接触各种各样的化学介质,就会受到化学介质的腐蚀。另外,换热器管板还会与换热管之间产生一定的双金属腐蚀。一些管板还长期处于腐蚀介质的冲蚀中。尤其是固定管板换热器, 还有温差应力, 管板与换热管联接处极易泄漏,导致换热器失效。
综上所述,影响管板腐蚀的主要因素有:
(1)介质成分和浓度:浓度的影响不一,例如在盐酸中,一般浓度越大腐蚀越严重。碳钢和不锈钢在浓度为50%左右的硫酸中腐蚀最严重,而当浓度增加到60%以上时,腐蚀反而急剧下降;
(2)杂质:有害杂质包括氯离子、硫离子、氰离子、氨离子等,这些杂质在某些情况下会引起严重腐蚀;
(3)温度:腐蚀是一种化学反应,温度每提升 10℃,腐蚀速度约增加1~3倍,但也有例外;
(4)ph值:一般ph值越小,金属的腐蚀越大;
(5)流速:多数情况下流速越大,腐蚀也越大。
目前可采用高分子复合材料对管板进行防腐保护,其具有优异的粘着性能及抗温、抗化学腐蚀性能,材料为100%固体,没有可挥发性物质,在封闭的环境里可以安全使用而不会收缩,特别是材料良好的隔离双金属腐蚀和出色的耐冲刷性能,优异的防腐性能,从根本上杜绝了修复部位的腐蚀渗漏,可以为部件提供一个长久的保护涂层。
管板保护操作工艺:
1、工具及设备:喷砂设备、保护用的帆布或塑料布、软木塞、酒精或丙酮、刮刀 、 螺旋器、垃圾袋、手电钻、工作电源、橡胶手套、安全帽、防护眼镜、擦布、毛刷。
2、步骤
第一步:打开冷凝器端盖
用吹风机和鼓风机吹干管子表面和里面的水,然后用软木塞塞住管口并遮挡住翻边,以确保喷砂处理时不损伤管口。
第二步:喷砂处理:在喷砂处理时用帆布和其它等遮挡一下,以免喷出的砂粒弄脏其它设备。喷砂时使用石英砂或金刚砂,它可以产生4密耳的表面而不会产生更多的灰尘,要一直打出基材金属本色。喷砂完毕后将软木塞取出。
第三步:溶液清洗:用丙酮把金属表面的杂质及油污清洗干净。
第四步:涂抹材料:先用高分子修复材料金属修复材料把冷凝器管板内壁有坑的部位进行填平,以免在工作时水产生涡流,直至达到要求平面为准。然后把高分子流体保护材料均匀涂至整个被修复面。尤其注意面板与管子的接合处,以达到密封、堵漏的目的。
第五步:固化:按照材料的固化要求进行固化,固化完毕后即可投入生产运行