㈠ 怎么区分NPN型三极管和PNP型三极管
从结构上看,PNP型三极管的集电区和发射区是P型半导体,中间的基区是N型半导体,而NPN管的集电区和发射区是N型半导体,中间的基区是P型半导体。
从使用上看,PNP关工作时,发射极接高电压,集电极接低电压,而NPN管工作时,发射极接低电压,集电极接高电压。
㈡ 晶体三极管的原理
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件·其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
理论原理
晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。
放大原理
1、发射区向基区发射电子
电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
2、基区中电子的扩散与复合
电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。
3、集电区收集电子
由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。
㈢ 晶体三极管的主要特性是具有什么作用
晶体三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的 晶体三极管变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。IC 的变化量与IB变化量之比叫做三极管的放大倍数β(β=ΔIC/ΔIB, Δ表示变化量。),三极管的放大倍数β一般在几十到几百倍。 三极管在放大信
号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置 ,否则会放大失真。 在
三极管的集电极与电源之间接一个电阻,可将电流放大转换成电压放大:当基极电压UB升高时,IB变大,
IC也变大,IC 在集电极电阻RC的压降也越大,所以三极管集电极电压UC会降低,且UB越高,UC就越低,
ΔUC=ΔUB。
㈣ 晶体三极管主要性能是电流和电压放大作用
三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
VMOS是在 MOS的基础上改进的一种大电流,高放大倍数(跨道)新型功率晶体管,区别就是使用了V型槽,使MOS管的放大系数和工作电流大幅提升,但是同时也大幅增加了MOS的输入电容,是MOS管的一种大功率改进型产品,但是结构上已经与传统的MOS发生了巨大的差异。VMOS只有增强型的而没有MOS所特有的耗尽型的MOS管。
电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
㈤ 晶体三极管比场效应管的制造工艺为什么简单场效应管可以代替三极管使用吗
场效应管的原件要比晶体管小得多。晶体管就是一个小硅片。但是场效应管的结构要比晶体管的要复杂。场效应管的沟道一般是几个纳米,也就是说场效应管的“硅片”的制作更加复杂而且体积要比晶体管小的多。但是话又说回来。工业制造场效应管的集成电路要比晶体管的要简单得多。而且集成密度要比晶体管的要大得多。场效应管是电压控制电流的晶体管是电流控制电流型的。一般不可以直接代换的。除非稍微改变一下电路结构。谢谢。至于结构可以找图片在网络上。哦还有MOSFET就是场效应管的意思,简称MOS。而双结型晶体管简称为BJT。结型场效应管简称为JFET。希望你可以用上。呵呵
㈥ 晶体三极管的特性
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。
晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。
一、晶体管的种类
晶体管有多种分类方法。
(一)按半导体材料和极性分类
按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
(二)按结构及制造工艺分类
晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
(三)按电流容量分类
晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。
(四)按工作频率分类
晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
(五)按封装结构分类
晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
(六)按功能和用途分类
晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。
二、晶体管的主要参数
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
(一)电流放大系数
电流放大系数也称电流放大倍数,用来表示晶体管放大能力。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
(二)耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
(三)频率特性
晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
(四)集电极最大电流ICM
集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
(五)最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
1.集电极—发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
2.集电极—基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
3.发射极—基极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
(六)反向电流
晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。
1.集电极—基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
2.集电极—发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。
晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。
三极管详解半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。
㈦ 三极管的主要参数
三极管的主要参数:
特征频率:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作。
fT称作增益带宽积,即fT=βfo。若已知当前三极管的工作频率fo以及高频电流放大倍数,便可得出特征频率fT。随着工作频率的升高,放大倍数会下降.fT也可以定义为β=1时的频率。
电压/电流:用这个参数可以指定该管的电压电流使用范围。
hFE:电流放大倍数。
VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压。
PCM:最大允许耗散功率。
封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。
(7)晶体三极管超声印波压焊台扩展阅读:
电流放大的结构及原理:
1、电路结构
电流放大器电路拓扑结构可以为电压、电流在第一象限的Buck 电路,也可以采用电流单向流动、电压双象限的H 桥式电路,也可以采用四象限H 桥式电路,其拓扑电路结构如图2(a)~图2(c)所示。这三种电路结构针对不同应用场合灵活选取。
2、基本原理
电流放大器采用输出电流闭环控制,影响电流输出响应速度的主要因素是阻感性负载的时间常数Te= L/RL,当此时间常数较大时,输出电流响应难以提高。因此,提高电流放大器响应速度的主要措施就是减小被控对象的等效时间常数。
㈧ 什么是电子三极管电子三极管与晶体三极管又有什么区别
电子三极管是一种电子管,是“第一代三极管”。电子三极管是真空器件,有阴极、阳极、栅极三种电极,具有放大作用,栅极电压的微小变化可以引发阳极电压的巨大变化。在晶体三极管普及之前,电子三极管作为几乎唯一一种功率放大器件,得到了非常广泛的应用。
晶体三极管是一种半导体元件,现在所说的“三极管”就是指晶体三极管。晶体三极管具有放大作用,拥有基极、集电极、发射极三个电极,基极电流的变化会引发集电极电流更大的变化。与真空的电子三极管不同的是,晶体三极管是纯固态元件,体积、成本、机械强度远远超过电子三极管。
电子管最早由爱迪生发明(但最终是由英国电气工程师弗莱明于1905年开发成功),年代比较久远。而晶体管则在1947年才诞生。在晶体管普及之前,电子管几乎是放大电路和整流电路的唯一选择,电子管的体积很大(一般和手的拇指差不多大),耗电很厉害(因为阴极需要维持一定的温度,因此其耗散功率通常会大于1W),机械强度低(大部分电子管采用玻璃封装,内抽真空,强烈振动会导致内部电极变形,甚至玻璃壳破裂),使用寿命短(一般在1000小时左右,使用条件较好可以获得更长的寿命,但通常不会超过10000小时)。所有这些缺点恰恰就是晶体管的优点,很多晶体管的体积只有黄豆粒那么大,随着微电子技术的发展,现在晶体管的尺寸可以小于10nm(单位换算:1m=1000000000nm);晶体管的功率可以低至μW级别(单位换算:1W=1000000μW);晶体管没有易碎或者可以变形的组件,可以承受很强的震动和冲击;晶体管的使用寿命很长,通常大于20年,在正常工作情况下几乎拥有无限寿命;成本低廉,大约只有电子管的千分之一。正是由于这些原因,三极管被推向市场后得到了非常广泛的应用,并且很快成为了主流器件。上世纪70年代以后,晶体管铺天盖地的广泛应用几乎完全将电子管挤出市场,现在,除了少数特殊应用电路外,电子管已经完全淘汰,很难再寻觅它的痕迹。
下图是几种电子管:
㈨ 晶体三极管工作原理
三极管的电流放大原理
晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。 而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的 PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)及基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得: Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即: β1=Ic/Ib 式中:β--称为直流放大倍数, 集电极电流的变化量△Ic与基极电流的变化量△Ib之比为: β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。