㈠ 氩弧焊焊不锈钢如何拉焊
将焊机与氩气瓶,压力表接好,三相电接好,水箱接好
将气管,氩气瓶,压力表接好待用
将不专锈钢管打好坡属口,取出毛刺待用
打开氩气瓶,将气管一端插入不锈钢管中,利用氩气排除管中空气
调节好电流大小,下坡时间,上坡时间,气流速度,放好焊接件
工作人员穿好防护服,带好防护帽子,打开眼镜
将焊枪调节好钨极长度,接好焊机地线,将焊枪对准焊件,然后关闭眼镜
左手拿住焊丝,右手启动开关,待火焰熔化焊件放入焊丝
重复8,至焊接完毕
㈡ 钨极氩弧焊的工艺参数不包括
钨极氩弧焊工艺参数
(一)焊接电流和钨棒直径
焊接电流是决定钨极氩弧焊焊缝成形的关键参数,通常是根据焊件材质、板厚及坡口形状来选择,并通过试验来确定。钨棒直径则应按焊接电流大小决定其它条件不变时,焊接电流增加,导致因电弧压力、热输入及弧柱直径的增加,故焊缝熔深、熔宽也将增加。TIG焊时获得1mm熔深一般所需电流为60-80A。但是由于前已指出的微量元素对钨极电弧及熔池流动形态的显著影响,同样电流下的焊缝熔深还与母材成分,以及保护气体成分、焊材表面状况等因素有关。
产地或炉号不同而牌号相同的焊件对接时,上述原因还会引起熔池的不对称现象。当两种成分略有差异的不锈钢对接时,电弧和熔池明显地偏向低硫含量炉号钢板一侧,并发现这一侧电弧中含有蓝色的锰离子(Mn2+ )等蒸气,其结果会造成焊缝根部的未熔合,这种并非由于钨棒未对准焊缝中心而产生的熔池偏离现象是个很有趣的研究课题。若用Ar+O20.1%代替纯氩保护,则这种影响就会完全消除。可见这一熔池现象是与电弧现象密切相关的。因为O、S电子亲和能较高,当它们的含量增加时,由它们形成的负离子数量会增加,因此电弧电压增加,阳极斑点缩小。焊缝两侧钢板中O、S含氧不同时,含O、S量低的一侧阳极斑点容易扩大,Mn2+容易蒸发,而另一侧则相反,于是熔池和焊缝偏离中心就不可避免了。
(二)弧长和电弧电压
TIG焊弧长实用范围约为0.5~3mm,对应的电弧电压为8~20V。在自动焊,不加填充丝,小电流,工件变形量小时,弧长可取下限;手工焊、加填充丝、大电流,工件变形量大时,则取弧长之上限,以防止短路而影响焊接过程及焊缝质量稳定性。弧长提高时,焊缝熔深减小。
(三)焊速
焊速是另一个常用来调节钨极氩弧焊热输入和焊缝形状的重要参数。其选择应考虑以下因素:1)焊接电流确定以后焊速有一个上限。超过这一上限时焊缝中心结晶速度过快,易出现裂纹、咬边,焊缝熔深也明显减小;2)焊件材质的热敏感性,有些材料对热输入有限制时只能采用快速多道焊; 3)焊接位置及操作方式,立、横、仰焊位置只能采用较低焊速;手工操作也只能用低速,自动焊则应尽可能采用高速。
(四)保护气体流量、喷嘴孔径与高度
焊接电流增大时,保护气体所列数值可
希望对你有帮助,望采纳,谢谢!
㈢ 氩弧焊焊接技巧
焊丝、焊枪与焊件之间的角度:用手工钨极氩弧焊焊接时,焊枪、焊丝与焊件之间必须保持正确的相对位置,这由焊件形状等情况来决定。平焊位置手工钨极氩弧焊焊枪、焊丝与焊件的角度如下图所示。
(3)钨极氩弧焊电弧电压增大时会使单道焊缝什么扩展阅读:
氩弧焊的优点:
1、氩气保护可隔绝空气中氧气、氮气、氢气等对电弧和熔池产生的不良影响,减少合金元素的烧损,以得到致密、无飞溅、质量高的焊接接头;
2、氩弧焊的电弧燃烧稳定,热量集中,弧柱温度高,焊接生产效率高,热影响区窄,所焊的焊件应力、变形、裂纹倾向小;
3、氩弧焊为明弧施焊,操作、观察方便;
4、电极损耗小,弧长容易保持,焊接时无熔剂、涂药层,所以容易实现机械化和自动化;
5、氩弧焊几乎能焊接所有金属,特别是一些难熔金属、易氧化金属,如镁、钛、钼、锆、铝等及其合金;
6、不受焊件位置限制,可进行全位置焊接。
㈣ 氩弧焊手法有几种
1、非熔化极
工作原理及特点:非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流过一种不和金属起化学反应的惰性气体(常用氩气),形成一个保护气罩。
使钨极端部、电弧和熔池及邻近热影响区的高温金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好。
2、熔化极
工作原理及特点 :焊丝通过丝轮送进,导电嘴导电,在母材与焊丝之间产生电弧,使焊丝和母材熔化,并用惰性气体氩气保护电弧和熔融金属来进行焊接的。
(4)钨极氩弧焊电弧电压增大时会使单道焊缝什么扩展阅读
相关参数:
1、焊接电流
钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。
2、电弧电压
钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。
但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。
3、焊接速度
焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。
㈤ 氩弧焊焊接电流电压参数
氩弧焊焊接工艺参数的选择:
钨极氩弧焊的工艺参数主要有焊接电流种类及极性、焊接电流、钨极直径及端部形状、保护气体流量等,对于自动钨极氩弧焊还包括焊接速度和送丝速度。
脉冲钨极氩弧焊主要参数有
ip
、
tp
、
ib
、
tb
、
fa
脉幅比
ra
=
ip
/
ib
、 脉冲电流占空比
rw
=
tp
/
tb+
tp
(1)
钨极氩弧焊工艺参数
1)
焊接电流种类及大小
一般根据工件材料选择电流种类,焊接电流大小是决定焊缝熔深的最主要参数,它主要根据工件材料、厚度、接头形式、焊接位置,有时还考虑焊工技术水平
(
钨极氩弧时
)
等因素选择。
2)
钨极直径及端部形状,钨极直径根据焊接电流大小、电流种类选择
。
钨极端部形状是一个重要工艺参数。根据所用焊接电流种类,选用不同的端部形状。尖端角度
α
的大小会影响钨极的许用电流、引弧及稳弧性能。表1列出了钨极不同尖端尺寸推荐的电流范围。小电流焊接时,选用小直径钨极和小的锥角,可使电弧容易引燃和稳定;在大电流焊接时,增大锥角可避免尖端过热熔化,减少损耗,并防止电弧往上扩展而影响阴极斑点的稳定性。
表1
钨极尖端形状和电流范围(直流正接)
向左转|向右转
钨极尖端角度对焊缝熔深和熔宽也有一定影响。减小锥角,焊缝熔深减小,熔宽增
大,反之则熔深增大,熔宽减小。
3)
气体流量和喷嘴直径
在一定条件下,气体流量和喷嘴直径有一个最佳范围,此时,气体保护效果最佳,有效保护区最大。如气体流量过低,气流挺度差,排除周围空气的能力弱,保护效果不佳:流量太大,容易变成紊流,使空气卷入,也会降低保护效果。同样,在流量子定时,喷嘴直径过小,保护范围小,且因气流速度过高而形成紊流;喷嘴过大,不仅妨碍焊工观察,而且气流流速过低,挺度小,保护效果也不好。所以,气体流量和喷嘴直径要有一定配合。一般手工氩弧焊喷嘴孔径和保护气流量的选用见表2。
表
2
喷嘴孔径与保护气流量选用范围
向左转|向右转
4)
焊接速度焊接速度的选择主要根据工件厚度决定并和焊接电流、预热温度等配合
以保证获得所需的熔深和熔宽。在高速自动焊时。还要考虑焊接速度对气体、保护效果的影响。焊接速度过大,保护气流严重偏后,可能使钨极端部、弧柱、熔池暴露在空气中。因此必须采用相应措施如加大保护气体流量或将焊炬前倾一定角度,以保持良好的保护作用。
5)
喷嘴与工件的距离距离越大,气体保护效果越差,但距离太近会影响焊工视线,且容易使钨极与熔池接触而短路,产生夹钨,一般喷嘴端部与工件的距离在
8
~
14mm
之间。
㈥ 钨极氩弧焊怎么调气,电流电压,,电流电压有什么作用,,
氩弧焊分直流交直流两种,空载电压是不能调的。焊接时才能形成电流,他得负载电压跟电流成正比。电流大负载电压也会变大。直流较简单一般焊不锈钢等。交流氩弧焊比较调节比较复杂。一般焊铝,占空比,清洁度等都能调节。
㈦ 氩弧焊焊接工艺参数选择
氩弧焊焊接工艺参数
一、电特性参数
1.焊接电流 钨极氩弧焊的焊接电流通常是根据回工件的材质、厚度答和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。
2.电弧电压 钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。
3.焊接速度 焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。
㈧ 氩弧焊接技术
推荐网址:焊接资源网 http://www.weldr.net/ 氩弧焊 氩弧焊是利用氩气作为保护介质的一种电弧焊方法。氩气是一种惰性气体,它既不与金属起化学反应使被焊金属氧化,亦不溶解于液态金属。因此,可以避免焊接缺陷,获得高质量的焊缝。 氩弧焊时,由于氩气的电离势较高,故引弧较困难,为此常借用高频振荡器产生高频高压电来引弧。由于氩气的散热能力较低,因而一旦引燃后,就能较稳定地燃烧。 氩弧焊按所用的电极不同分为两种:非熔化极氩弧焊和熔化极氩弧焊。 (一)非熔化极氩弧焊(TIG焊) 非熔化极氩弧焊时,电极只起发射电子、产生电弧的作用,电极本身不熔化,常采用熔点较高的钍钨棒或铈钨棒作为电极,所以又叫钨极氩弧焊。焊接过程可以用手工进行,也可以自动进行。其过程如图2-13(a)所示。 焊接时,在钨极与工件间产生电弧,填充金属从一侧送入,在电弧热的作用下,填充金属与工件熔融在一起形成焊缝。为了防止电极的熔化和烧损,焊接电流不能过大,因此,钨极氩弧焊通常适用于焊接4mm以下的薄板,如管子对接、管子与管板的连接。 (二)熔化极氩弧焊(MIG焊) 熔化极氩弧焊是利用金属焊丝作为电极,电弧产生在焊丝和工件之间,焊丝不断送进并熔化过渡到焊缝中去。因此熔化极氩弧焊所用焊接电流可大大提高,适用于中、厚板的焊接,如化工容器筒体的焊接。焊接过程可采用自动或半自动方式,如图2-13(b)所示。 熔化极氩弧焊时的金属熔滴过渡,主要是喷射过渡的形式。喷射过渡的特点是在焊接电压较高、焊接电流超过某临界值时,熔滴呈雾状的细滴沿焊丝轴向高速射入溶池。喷射过渡时不发生短路现象,电弧燃烧非常稳定,飞溅现象消失,焊缝成形好,熔透深度增加,所以溶化极氩弧焊主要用于焊接厚度为3mm以上的金属。 由于氩气比较稀缺,使得氩弧焊的焊接成本较高。故目前主要用来焊接易氧化的有色金属(如铝、镁及其合金)、稀有金属(如钼、钛及其合金)、高强度合金钢及一些特殊用途的高合金钢(如不锈钢、耐热钢)。 近三十年来,发展了钨极、熔化极脉冲氩弧焊,使之扩大了氩弧焊的应用范围。脉冲氩弧焊是采用可控的脉冲电流代替连续电流,通过调节规范参数能控制电弧能量,便于精确控制熔池体积、焊缝熔深及溶滴过渡等,因而可以焊接薄板或超薄板构件。如直流脉冲TIG焊可焊小至0.1mm的薄板。
㈨ 跪求钨极氩弧焊基础理论智识
学习单元一 认知钨极氩弧焊
一、TIG焊的原理
TIG焊是在惰性气体的保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可以不加填充焊丝),形成焊缝的焊接方法,如图6-1所示。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成保护层隔绝空气,保护电极和焊接熔池以及临近热影响区,以形成优质的焊接接头。
TIG焊分为手工和自动两种。焊接时,用难熔金属钨或钨合金制成的电极基本上不熔化,故容易维持电弧长度的恒定。填充焊丝在电弧前方添加,当焊接薄焊件时,一般不需开坡口和填充焊丝;还可采用脉冲电流以防止烧穿焊件。焊接厚大焊件时,也可以将焊丝预热后,再添加到熔池中去,以提高熔敷速度。
TIG焊一般采用氩气作保护气体,称为钨极氩弧焊。在焊接厚板、高导热率或高熔点金属等情况下,也可采用氦气或氦氩混合气作保护气体。在焊接不锈钢、镍基合金和镍铜合金时可采用氩一氢混合气作保护气体。
二、TIG焊的特点
TIG焊与其他焊接方法相比有如下特点:
(1)可焊金属多 氩气能有效隔绝焊接区域周围的空气,它本身又不溶于金属,不和金属反应;TIG焊过程中电弧还有自动清除焊件表面氧化膜的作用。因此,可成功地焊接其他焊接方法不易焊接的易氧化、氮化、化学活泼性强的有色金属、不锈钢和各种合金。
(2)适应能力强 钨极电弧稳定,即使在很小的焊接电流下也能稳定燃烧;不会产生飞溅,焊缝成形美观;热源和焊丝可分别控制,因而热输入量容易调节,特别适合于薄件、超薄件的焊接;可进行各种位置的焊接,易于实现机械化和自动化焊接。
(3)焊接生产率低 钨极承载电流能力较差,过大的电流会引起钨极熔化和蒸发,其颗粒可能进入熔池,造成夹钨。因而TIG焊使用的电流小,焊缝熔深浅,熔敷速度小,生产率低。
(4)生产成本较高 由于惰性气体较贵,与其他焊接方法相比生产成本高,故主要用于要求较高产品的焊接。
三、TIG焊的应用
TIG焊几乎可用于所有钢材、有色金属及其合金的焊接,特别适合于化学性质活泼的金属及其合金。常用于不锈钢、高温合金、铝、镁、钛及其合金以及难熔的活泼金属(如锆、钽、钼铌等)和异种金属的焊接。
TIG焊容易控制焊缝成形,容易实现单面焊双面成形,主要用于薄件焊接或厚件的打底焊。脉冲TIG焊特别适宜于焊接薄板和全位置管道对接焊。但是,由于钨极的载流能力有限,电弧功率受到限制,致使焊缝熔深浅,焊接速度低,TIG焊一般只用于焊接厚度在6mm以下的焊件。
学习单元二 TIG焊的电流种类和极性
TIG焊时,焊接电弧正、负极的导电和产热机构与电极材料的热物理性能有密切关系、从而对焊接工艺有显著影响。下面分别讨论采用不同电流种类和极性进行TIG焊的情况。
一、直流TIG焊
直流TIG焊时,电流极性没有变化,电弧连续而稳定,按电源极性的不同接法,又可将直流TIG焊分为直流正极性法和直流反极性法两种方法。
1.直流正极性法
直流正极性法焊接时,焊件接电源正极,钨极接电源负极。由于钨极熔点很高,热发射能力强,电弧中带电粒子绝大多数是从钨极上以热发射形式产生的电子。这些电子撞击焊件(负极),释放出全部动能和位能(逸出功),产生大量热能加热焊件,从而形成深而窄的焊缝,见图5-2a。该法生产率高,焊件收缩应力和变形小。另一方面,由于钨极上接受正离子撞击时放出的能量比较小,而且由于钨极在发射电子时需要付出大量的逸出功,所以钨极上总的产热量比较小,因而钨极不易过热,烧损少;对于同一焊接电流可以采用直径较小的钨极。再者,由于钨极热发射能力强,采用小直径钨棒时,电流密度大,有利于电弧稳定。
综上所述,直流正极性有如下特点:
1)熔池深而窄,焊接生产率高,焊件的收缩应力和变形都小。
2)钨极许用电流大,寿命长。
3)电弧引燃容易,燃烧稳定。
总之,直流正极性优点较多,所以除铝、镁及其合金的焊接以外,TIG焊一般都采用直流正极性焊接。
2.直流反极性法
直流反极性时焊件接电源负极,钨极接正极。这时焊件和钨极的导电和产热情况与直流正极性时相反。由于焊件一般熔点较低,电子发射比较困难,往往只能在焊件表面温度较高的阴极斑点处发射电子,而阴极斑点总是出现在电子逸出功较低的氧化膜处。当阴极斑点受到弧柱中来的正离子流的强烈撞击时,温度很高,氧化膜很快被汽化破碎,显露出纯洁的焊件金属表面,电子发射条件也由此变差。这时阴极斑点就会自动转移到附近有氧化膜存在的地方,如此下去,就会把焊件焊接区表面的氧化膜清除掉,这种现象称为阴极破碎(或称阴极雾化)现象。
阴极破碎现象对于焊接工件表面存在难熔氧化物的金属有特殊的意义,如铝是易氧化的金属,它的表面有一层致密的A12O3附着层,它的熔点为2050℃,比铝的熔点(657℃)高很多,用一般的方法很难去除铝的表面氧化层,使焊接过程难以顺利。若用直流反极性TIG焊则可获得弧到膜除的显著效果,使焊缝表面光亮美观,成形良好。
但是直流反极性时钨极处于正极,TIG焊阳极产热量多于阴极(有关资料指出:2/3的热量产生于阳极,1/3的热量产生于阴极),大量电子撞击钨极,放出大量热量,很容易使钨极过热熔化而烧损,使用同样直径的电极时,就必须减小许用电流或者为了满足焊接电流的要求,就必须使用更大直径的电极;另一方面,由于在焊件上放出的热量不多,使焊缝熔深浅,生产率低。所以TIG焊中,除了铝、镁及其合金的薄件焊接外,很少采用直流反极性法。
二、交流TIG焊
交流TIG焊时,电流极性每半个周期交换一次,因而兼备了直流正极性法和直流反极性法两者的优点。在交流负极性半周里,焊件金属表面氧化膜会因“阴极破碎”作用而被清除;在交流正极性半周里,钨极又可以得到一定程度的冷却,可减轻钨极烧损,且此时发射电子容易,有利于电弧的稳定燃烧。交流TIG焊时,焊缝形状也介于直流正极性与直流反极性之间。实践证明,用交流TIG焊焊接铝、镁及其合金能获得满意的焊接质量。
但是,由于交流电弧每秒钟要100次过零点,加上交流电弧在正负半周里导电情况的差别,又出现了交流电弧过零点后复燃困难和焊接回路中产生直流分量的问题。必须采取适当的措施才能保证焊接过程的稳定进行。
综上所述,TIG焊既可以使用交流电流也可以使用直流电流进行焊接,对于直流电流还有极性选择的问题。焊接时应根据被焊材料来选择适当的电流和极性。
学习单元三 TIG焊工艺
TIG焊工艺主要包括焊前清理、工艺参数的选择和操作技术等几个方面。
一、焊前清理
氩气是惰性气体,在焊接过程中,既不与金属起化学作用,也不溶解于金属中,为获得高质量焊缝提供了良好条件。但是氩气不像还原性气体或氧化性气体那样,它没有脱氧去氢的能力。为了确保焊接质量,焊前对焊件及焊丝必须清理干净TIG焊常用的清理方法有:
1.清除油污、灰尘
常用汽油、丙酮等有机溶剂清洗焊件与焊丝表面。也可按焊接生产说明书规定的其他方法进行。
2.清除氧化膜
常用的方法有机械清理和化学清理两种,或两者联合进行。
TIG焊的焊接工艺参数有:焊接电流、电弧电压(电弧长度)、焊接速度、填丝速度、保护气体流量与喷嘴孔径、钨极直径与形状等。合理的焊接工艺参数是获得优质焊接接头的重要保证。
1.焊接工艺参数对焊缝成形和焊接过程的影响
TIG焊时,可采用填充焊丝或不填充的方法形成焊缝。不填充焊丝法,主要用于薄板焊接。如厚度在3mm以下的不锈钢板,可采用不留间隙的卷边对接,焊接时不加填充焊丝,而且可实现单面焊双面成形。填充或不填充焊丝焊接时,焊缝成形的差异如图5-3所示。
(1)焊接电流 焊接电流是TIG焊的主要参数。在其他条件不变的情况下,电弧能量与焊接电流成正比;焊接电流越大,可焊接的材料厚度越大。
(2)电弧电压(或电弧长度) 当弧长增加时,电弧电压即增加,焊缝熔宽c和加热面积都略有增大。但弧长超过一定范围后,会因电弧热量的分散使热效率下降,电弧力对熔池的作用减小,熔宽c和母材熔化面积均减小。
(3)焊接速度 焊接时,焊缝获得的热输入反比于焊接速度。在其他条件不变的情况下,焊接速度越小,热输入越大,则焊接凹陷深度a1、熔透深度s、熔宽c都相应增大。反之上述参数减小。
当焊接速度过快时,焊缝易产生未焊透、气孔、夹渣和裂纹等缺陷。反之,焊接速度过慢时,焊缝又易产生焊穿和咬边现象。
(4)填丝速度与焊丝直径 焊丝的填送速度与焊丝的直径、焊接电流、焊接速度、接头间隙等因素有关。一般焊丝直径大时送丝速度慢,焊接电流、焊接速度、接头间隙大时,送丝速度快。送丝速度选择不当,可能造成焊缝出现未焊透、烧穿、焊缝凹陷、焊缝堆高太高、成形不光滑等缺陷。
(5)保护气体流量和喷嘴直径 保护气流量和喷嘴孔径的选择是影响气保护效果的重要因素。为了获得良好的保护效果,必须使保护气体流量与喷嘴直径匹配,也就是说,对于一定直径的喷嘴,有一个获得最佳保护效果的气体流量,此时保护区范围最大,保护效果最好。如果喷嘴直径增大,气体流量也应随之增加才可得到良好的保护效果。
(6)电极直径和端部形状 钨极直径的选择取决于焊件厚度、焊接电流的大小、电流种类和极性。
2.焊接参数的选择
在焊接过程中,每一项参数都直接影响焊接质量,而且各参数之间又相互影响,相互制约。为了获得优质的焊缝,除注意各焊接参数对焊缝成形和焊接过程的影响外,还必须考虑各参数的综合影响,即应使各项参数合理匹配。
三、TIG焊操作技术
TIG焊可分为手工TIG焊和自动TIG焊两种,其操作技术的正确与熟练是保证焊接质量的重要前提。由于焊件厚度,施焊姿式,接头形式等条件不同,操作技术也不尽相同。下面主要介绍手工TIG焊基本操作技术。
1.引弧
引弧前应提前5~10s送气。引弧有两种方法:高频振荡引弧(或脉冲引弧)和接触引弧,最好是采用非接触引弧。采用非接触引弧时,应先使钨极端头与焊件之间保持较短距离,然后接通引弧器电路,在高频电流或高压脉冲电流的作用下引燃电弧。这种引弧方法可靠性高,且由于钨极不与焊件接触,因而钨极不致因短路而烧损,同时还防止焊缝因电极材料落入熔池而形成夹钨等缺陷。
2.焊接
焊接时,为了得到良好的气保护效果,在不妨碍视线的情况下,应尽量缩短喷嘴到焊件的距离,采用短弧焊接,一般弧长4~7mm。焊枪与焊件角度的选择也应以获得好的保护效果,便于填充焊丝为准。平焊、横焊或仰焊时,多采用左焊法。厚度小于4mm的薄板立焊时,采用向下焊或向上焊均可,板厚大于4mm的焊件,多采用向上焊。要注意保持电弧一定高度和焊枪移动速度的均匀性,以确保焊缝熔深、熔宽的均匀,防止产生气孔和夹杂等缺陷;为了获得必要的熔宽,焊枪除作匀速直线运动外,允许作适当的横向摆动。在需要填充焊丝时,焊丝直径一般不得大于4mm,因为焊丝太粗易产生夹渣和未焊透现象。焊枪和填充焊丝之间的相对位置如图5-7所示。填充焊丝在熔池前均匀地向熔池送入,切不可扰乱氩气气流。焊丝的端部应始终置于氩气保护区内,以免氧化。
焊接时,为了加强气保护效果,提高焊缝质量,还可采取如下措施:
(1)加挡板 接头形式不同,氩气流的保护效果也不相同。
(2)扩大正面保护区 焊接容易氧化的金属及其合金(如钛合金)时不仅要求保护焊接区,而且对处于高温的焊缝段及近缝区表面也需要进行保护。这时单靠焊枪喷嘴中喷出的气层保护是不够的。为了扩大保护区范围,常在焊枪喷嘴后面安装附加喷嘴,也称拖斗,如图5-9所示。附加喷嘴里可另供气也可不另供气。用于焊接较厚的不锈钢和耐热合金材料时,可不另供气,而利用延长喷嘴喷出的气体在焊缝上停留的时间,达到扩大保护范围的目的。这种拖斗耗气不大,比较经济。用于焊接钛合金时,则需另供气,且在拖斗里安装气筛,使氩气在焊接区缓慢平稳地流动,以利于提高保护效果。
(3)反面保护 对某些焊件,既要求焊缝均匀,同时又不允许焊缝反面氧化。
3.收弧
焊缝在收弧处要求不存在明显的下凹以及产生气孔与裂纹等缺陷。为此,在收弧处应添加填充焊丝多使弧坑填满,这对于焊接热裂纹倾向较大的材料时,尤为重要。
学习单元四 TIG焊的新技术
一、脉冲TIG焊
脉冲TIG焊与一般TIG焊的区别在于采用可控的脉冲电流来加热焊件,以较小的基值电流来维持电弧稳定燃烧。当每一次脉冲电流(也称峰值电流)通过时,焊件上就产生一个点状熔池,当脉冲电流停歇时,点状熔池冷却结晶。因此,只要合理地调节脉冲间歇时间,保证焊点间有一定的重叠量,就可获得一条连续气密的焊缝。
脉冲TIG焊有交流、直流之分,而根据波形不同又有矩形波、正弦波,三角波(图5-12)三种基本波形。无论哪种波形,脉冲TIG焊都具有以下的基本特点:
(1)电弧压力大、挺度好,可明显地改善电弧的稳定性。薄件焊接要求较小的焊接电流,但此时电弧不稳定,甚至很难正常焊接。而在脉冲焊的脉冲电流Ip期间,电弧稳定、电弧压力大,指向性好,易使母材熔化。在较低的基值电流Ib期间可维持电弧不灭,使熔池凝固结晶。这样,大、小电流不断地交替,被焊件焊缝处相应地熔化、凝固,既可避免大电流烧穿的现象,又能克服小电流电弧不稳的问题,这样便能保证焊接过程的顺利进行。
(2)可控制对母材的热输入及控制焊缝成形
通过脉冲焊接参数(脉冲电流Ip、基值电流Ib、脉冲频率f等)的调节可精确地控制电弧能量及其分布,从而控制母材的线能量,获得均匀的熔深和焊缝根部均匀熔透,能很好地实现全位置焊接和单面焊双面成形。
(3)脉冲电流对熔池的搅拌作用可改善焊缝组织及外观成形 脉冲TIG焊时,电流的变化造成电弧压力的变化,对熔池的搅拌作用增强,使焊缝金属组织细密并有利于消除气孔、咬肉等缺陷。
(4)裂纹倾向小 焊接过程熔池金属冷却快,高温停留时间短,可减少热敏感材料焊接时产生裂纹的倾向。
(5)电弧热输入低 采用脉冲电流可减小焊接电流的平均值,获得较低的热输入。因此利用脉冲TIG焊,可焊接薄板或超薄件。用它焊接厚度小于0.1 mm的薄钢板仍能获得满意的效果。
由于上述特点,使脉冲TIG焊特别适于焊接热敏感性强的金属材料或薄件、超薄件、全位置、窄间隙以及中厚板开坡口多层焊的第一层打底焊。
二、TIG点焊
1.TIG点焊的特点
焊枪端部的喷嘴将被焊的两块金属压紧,保证连接面密合,然后靠钨极与母材之间的电弧使钨极下方的金属局部熔化形成焊点。TIG点焊适用于焊接各种薄板结构以及薄板与较厚材料的焊接,所焊材料目前主要是不锈钢、低合金钢等。
和电阻点焊相比,TIG点焊有如下优点:
1)可从一面进行焊接,方便灵活。对无法从两面焊接的构件尤其适合。
2)更易于焊接厚度相差悬殊的焊件。
3)需施加的压力小,无需加压装置。
4)设备费用低,耗电少。
缺点是:
1)焊接速度不如电阻点焊高。
2)焊接费用(人工费、氩气消耗等)较高。
2.TIG点焊的焊接工艺
焊前清理的要求和一般的TIG焊一样。焊接电流既可以采用直流正接,也可用交流(但应该辅加稳弧装置)。通常都采用直流正接,因为它可以比交流获得更大的熔深,可以采用较小的焊接电流(或者较短的时间),从而减少热变形和其他的热影响。
引弧有两种方法:
(1)高频引弧 依靠高频电压击穿钨极和焊件之间的气隙而引弧。
(2)诱导电弧引弧 先在钨极和喷嘴之间引燃一小电流(约5A)的诱导电弧,然后再接通焊接电源,引燃焊接电弧。
目前最常用的是高频引弧。
焊接时主要通过调节焊接电流值和电流持续时间控制焊点尺寸。增大焊接电流值和电流持续时间会增加熔深和焊点直径,反之则减小熔深和焊点直径。电弧长度也是一个重要的参数,电弧过长,熔池会过热并可能产生咬边缺陷;电弧太短,母材膨胀后会接触钨极,造成污染。
为了防止点焊表面过度凹陷和产生弧坑裂纹,点焊结束前应使电流自动衰减或者进行二次脉冲加热。当焊点加强高要求严格时可往熔池输送适量的填充焊丝。
㈩ 氩弧焊焊接技术参数
氩弧焊焊接工艺参数
一、特性参数
1、焊接电流
钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。
2、电弧电压
钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。
3、焊接速度
焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。
二、其他参数
1、喷嘴直径
喷嘴直径(指内径)增大,应增加保护气体流量,此时保护区范围大,保护效果好。但喷嘴过大时,不仅使氩气的消耗增加,而且不便于观察焊接电弧及焊接操作。因此,通常使用的喷嘴直径一般取8mm~20mm为宜。
2、喷嘴与焊件的距离
喷嘴与焊件的距离是指喷嘴端面和工件间的距离,这个距离越小,保护效果越好。所以,喷嘴与焊件间的距离应尽可能小些,但过小将不便于观察熔池,因此通常取喷嘴至焊件间的距离为7mm~15mm。
3、钨极伸出长度
为防止电弧过热烧坏喷嘴,通常钨极端部应伸出喷嘴以外。钨极端头至喷嘴端面的距离为钨极伸出长度,钨极伸出长度越小,喷嘴与工件间距离越近,保护效果越好,但过小会妨碍观察熔池。通常焊对接缝时,钨极伸出长度为5mm~6mm较好;焊角焊缝时,钨极伸出长度为7mm~8mm较好。
4、气体保护方式及流量
钨极氩弧焊除采用圆形喷嘴对焊接区进行保护外,还可以根据施焊空间将喷嘴制成扁状(如窄间隙钨极氩弧焊)或其他形状。 焊接根部焊缝时,焊件背部焊缝会受空气污染氧化,因此必须采用背部充气保护。
氩气和氦气是所有材料焊接时,背部充气最安全的气体。而氮气是不锈钢和铜合金焊接时,背部充气保护最安全的气体。
一般惰性气体背部充气保护的气体流量范围为0.5~42L/min。当喷嘴直径、钨极伸出长度增加时,气体流量也应相应增加。若气流量过小,保护气流软弱无力,保护效果不好,易产生气孔和焊缝被氧化等缺陷;若气流量过大,容易产生紊流,保护效果也不好,还会影响电弧的稳定燃烧。
对管件内充气时,应留适当的气体出口,防止焊接时管内气体压力过大。在根部焊道焊接结束前的25~50毫米时,要保证管内内充气体压力不能过大,以便防止焊接熔池吹出或根部内凹。当采用氩气进行管件焊接背面保护时,最好从下部进入,使空气向上排出,并且使气体出口远离焊缝。
(10)钨极氩弧焊电弧电压增大时会使单道焊缝什么扩展阅读
具体内容
1、作业前:
(1)检查焊机电源线、引出线及各接点接触是否牢固,二次接地线严禁接在焊机壳体上。
(2)焊机接地线及焊接工作回路线不准搭接在易燃易爆的物品上,不准搭接在管道和电力、仪表保护套以及设备上。
(3)移动式焊机拆接线均由电工进行。
2、选择适当的焊接方法,(T1G焊接方法和手工焊接方法)。
(1)T1G焊接操作
① 请将前面板上的焊接方法切换开关置于TIG侧。
② 选择并切换收弧控制“ON”、“OFF”开关。
③ 接通配电箱开关。
④ 请将后面板的电源开关设在“ON”侧。
⑤ 根据需要调节气体流量后开始作业。
(2)手工焊的操作
① 将前面上的焊接方法切换开关置于“手工焊”侧。
② 就近接配电箱开关。
③ 将后面板上的电源开关置于“ON”侧,然后开始作业。
(3)作业中
① 不准强制电源开关送电。
② 电门箱内禁止存放一切物件,焊机不准随意借他人使用。
③ 焊枪严禁敲击,枪带应架空的以防烫伤或挂破,严禁用枪带拖拉焊机以防以外发生。
(4)作业后
① 切断电源和气源,对焊机进行清洁后不可离开工作岗位。
② 焊机移动必须先停电、拆下电源线再移,严禁带电移动焊机。
③ 作业结束后应清扫场地,把焊机妥善保管。
应急处理
若运行中出现各种异常必须立即关闭电源和气源,报设备组,视情节处理。
参考资料来源:网络-氩弧焊