⑴ 镀锌、喷漆、烤漆、喷塑、浸塑有什么区别
一、原理不同
1、镀锌:热镀锌是使熔融金属与铁基体反应而产生合金层,从而使基体和镀层二者相结合。
2、喷漆:喷涂通过喷枪或碟式雾化器,借助于压力或离心力,分散成均匀而微细的雾滴,施涂于被涂物表面的涂装方法。3、烤漆:在打磨到一定粗糙程度的基底上(通常是高密度板材),喷上若干层油漆。并经高温烘烤定型。
4、喷塑:其工作原理在于将塑料粉末通过高压静电设备充电,在电场的作用下,将涂料喷涂到工件的表面,粉末会被均匀地吸附在工件表面,形成粉状的涂层;而粉状涂层经过高温烘烤后流平固化,塑料颗粒会融化成一层致密的效果各异的最终保护涂层;牢牢附着在工件表面。
5、浸塑:液体浸塑工艺中绝大部分采用热塑性浸塑液,热塑性塑料涂膜具有预热软化,冷却后又能固化成膜的特性,主要物理性熔融塑化成膜过程,加工和生产比较简单。
二、应用不同
1、镀锌:广泛应用于汽车、建筑、家电、化工、机械、石油、冶金、轻工、交通、电力、航空和海洋工程等领域。
2、喷漆:应用范围非常广泛,涉及到国民经济各个部门 以及包括尖端技术在内的各个领域。
3、烤漆:主要应用于实木家具行业、工业等方面。
4、喷塑:常常被应用于轻工、家用装修领域。
5、浸塑:浸塑产品已在国内外生产和生活的各个方面得到广泛应用,如我们日常用的晾衣服的衣架,钳子,剪刀上的胶套,水阀的扳手等等。
三、优点不同
1、镀锌:镀锌层的硬度值比钢材还大;整个钢材表面均受到保护,无论在凹陷处管件内部,或任何其它涂层很难进入的角落,溶化锌均很容易均匀的覆盖上。
2、喷漆:喷涂作业生产效率高,是现今应用最普遍的一种涂装方式。
3、烤漆:油漆要求较高,显色性好。
4、喷塑:不需稀料,施工对环境无污染,对人体无毒害;涂层外观质量优异,附着力及机械强度强;喷涂施工固化时间短;涂层耐腐耐磨能力高出很多;不需底漆;施工简便,对工人技术要求低;成本低于喷漆工艺。
5、浸塑:材料来源丰富,价格便宜,无毒;颜色配置范围宽;涂膜的附着性强、耐低温、耐冲击、耐磨、耐湿热、耐盐雾、耐拉、耐酸碱、耐老化、耐高压、耐化学品、耐候性优良,露天使用不会产生裂纹等性能。
⑵ 涂层是什么纳米涂层又是什么
RJ纳米耐磨涂层属于功能涂料领域,是一种新型的水性无机涂层。它是以纳米无机化合物为主要成分,并且以水为分散质,涂装后通常经过低温加热方式固化,形成性能和陶瓷相似的涂膜。其原料蕴藏丰富便于开采且价格低廉,进而使其成本也相对传统涂料较低。其中一些采用了硅烷偶联剂,氢氧化铝胶体制备的陶瓷涂料,具有耐高温、高硬度、不燃无烟、超耐候、环保无毒、色彩丰富、涂装简便等诸多优势。
经过各种新型的改良和增进后其各种优越性能和廉价的成本也将逐渐取代传统涂料。传统的有机涂料对环境的影响颇为巨大,不仅经常排放温室气体导致气候变暖,而且释放有毒物质于空气中,导致人或动植物的疾病和死亡,其在生产的过程中耗能大, 不能满足我国低碳的理念,并产生了各种工业污水或有毒气体。
耐磨陶瓷涂料的原材料来自于极普通的、储量极为丰富的天然矿石和金属氧化物(如:石灰石、粘石英砂),而且生产 工艺也不 复杂,能耗相对 较低。因而原材料资源十分丰富,这与完全依赖石油化学工业、并以石油为主要原料的有机涂料相比较,不仅具有很大的资源优势,而且更加符合低碳要求。一般由多种纳米级氧化物,通过改进的溶胶-凝胶等反应,并且在低温下,以水为分散介质,水解固化行成类似陶瓷和玻璃的漆膜。
特性:
1. 耐磨防腐性能优异
2. 与金属类基材具有很高的结合强度
3. 立面不流淌,施工方便,对施工人员无很高技术要求
4. 适用于多种磨损、腐蚀工况的修复和防护
⑶ 什么是纳米喷涂
纳米喷涂是纳米技术在工程中的应用,
他是物体表面形成一层致密的纳米涂层的新型喷涂技
术。涂层内含有高硬度、高耐腐蚀性纳米材料,可以
提供多种颜色和光泽,是一种环保、经济、耐用的表
面处理。
纳米涂层不是牺牲涂层,不提供牺牲保护、表面
划痕可能引起原材料的侵蚀,但其卓越的耐酸、耐盐
碱性以及高硬度,高稳定性,在一定程度上可取代电镀处理。
比普通表面处理有更优异的性能,根据需求,在有一定数量的情况下,可喷涂各种颜色。
⑷ 纳米是什么意思
纳米(Nanometer,符号:nm),即为毫微米,是长度的度量单位。1纳米=10的负9次方米。1纳米相当于4倍原子大小,比单个细菌的长度还要小的多。
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。假设一根头发的直径是0.05毫米,把它轴向平均剖成5万根,每根的厚度大约就是1纳米。也就是说,1纳米就是0.000001毫米。
相关信息:
把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度。
这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
⑸ 喷塑和镀锌有何不同
你好!不太清楚他们之间有什么区别,找了些资料是关于他们的说明的,希望对你有用!
喷塑也就是我们常讲的静电粉末喷涂,它是利用静电发生器使塑料粉末带电,吸附在铁板表面,然后经过180~220℃的烘烤,使粉末熔化黏附在金属表面,喷塑产品多用于户内使用的箱体,漆膜呈现平光或哑光效果。喷塑粉主要有丙烯酸粉末、聚酯粉末等。
镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。
现在主要采用的方法是热镀锌。
热镀锌是由较古老的热镀方法发展而来的,自从1836年法国把热镀锌应用于工业以来,已经有一百四十年的历史了。然而,热镀锌工业是近三十年来伴随冷轧带钢的飞速发展而得到了大规模发展。
热镀锌板的生产工序主要包括:原板准备→镀前处理→热浸镀→镀后处理→成品检验等。按照习惯往往根据镀前处理方法的
不同把热镀锌工艺分为线外退火和线内退火两大类,即湿法 (单张钢板热镀锌法)、线外退火(单张钢板热镀锌法)、热镀锌 惠林(Wheeling)法(带钢连续热镀锌法) 、线内退火 森吉米尔(Sendzimir)法(保护气体法)、 改良森吉米尔法、美钢联法(同日本川崎法)、赛拉斯(Selas)法和莎伦(Sharon)法。
1. 线外退火:就是热轧或冷轧钢板进入热镀锌作业线之前,首先在抽底式退火炉或罩式退火炉中进行再结晶退火,这样,镀锌线就不存在退火工序了。钢板在热镀锌之前必须保持一个无氧化物和其他脏物存在的洁净的纯铁活性表面。这种方法是先由酸洗的方法把经退火的表面氧化铁皮清除,然后涂上一层由氯化锌或由氯化铵和氯化锌混合组成的溶剂进行保护,从而防止钢板再被氧化。
(1)湿法热镀锌:钢板表面的溶剂不经烘干(即表面还是湿的)就进入起表面覆盖有熔融态溶剂的锌液进行热镀锌。此方法的缺点是:
a.只能在无铅状态下镀锌,镀层的合金层很厚且粘附性很坏。
b.生成的锌渣都积存在锌液和铅液的界面处而不能沉积锅底(因为锌渣的比重大于锌液而小于铅液),这样钢板因穿过锌层污染了表面。因此,该方法已基本被淘汰。
(2)单张钢板:这种方法一般是采用热轧叠轧板作为原料,首先把经过退火的钢板送入酸洗车间,用硫酸或盐酸清除钢板表面的氧热镀锌法化铁皮。酸洗之后的钢板立即进入水箱中浸泡等待镀锌,这样可以防止钢板再氧化。后经过酸洗、水清洗、挤干、烘干、进入锌锅(温度一直保持在445—465℃)热镀锌,再进行涂油和铬化处理。这种方法生产的热镀锌板比湿法镀锌成品质量有显著提高,只对小规模生产有一定价值。
(3)惠林法热:该连续镀锌生产线包括碱液脱脂、盐酸酸洗、水冲洗、涂溶剂、烘干等一系列前处理工序,而且原板进入镀锌线镀锌前还需要进行罩式炉退火。这种方法生产工艺复杂,生产成本高,更为主要的是此方法生产的产品常常带有溶剂缺陷,影响镀层的耐蚀性。并且锌锅中的AL常常和钢板表面的溶剂发生作用生成三氯化铝而耗掉,镀层的粘附性变坏。因而此方法虽然已问世近三十年,但在世界热镀锌行业中并未得到发展。
2.线内退火:就是由冷轧或热轧车间直接提供带卷作为热镀锌的原板,在热镀锌作业线内进行气体保护再结晶退火。属于这个类行业的热镀锌方法包括:森吉米尔法、改良森吉米尔法、美钢联法(同日本川崎法);赛拉斯法;莎伦法。
森吉米尔法:它是把退火工艺和热镀锌工艺联合起来,其线内退火主要包括氧化炉,还原炉两部份组成。带钢在氧化炉中煤气火焰直接加热到450度左右,把带钢表面残存的轧制油烧掉,净化表面。后再把带钢加热到700-800度完成再结晶退火,经冷却段控制进锌锅前温度在480度左右,最后在不接触空气的情况下进入锌锅镀锌,因此,森吉米尔法产量高、镀锌质量较好,此法曾得到广泛应用。
美钢联法: 它是森吉米尔法的一个变种,它仅仅是利用一个碱性电解脱脂槽取代了氧化炉的脱脂作用,其余工序与森吉米尔法基本相同。在原板进入作业线后,首先进行电解脱脂,而后水洗、烘干,再通过有保护气体的还原炉进行再结晶退火,最后在密封情况下进入锌锅热镀锌。这种方法因带钢不经过氧化炉加热,所以表面的氧化膜较薄,可适当降低还原炉中保护气体的氢含量。这样,对炉安全和降低生产成本有利。但是,由于带钢得不到预加热就进入还原炉中,这样无疑提高了还原炉的热负荷,影响炉子的寿命。因此这种方法并未得广泛应用。
赛拉斯法: 又称火焰直接加热法;首先带钢经碱洗脱脂,而后用盐酸清除表面的氧化皮,并经水洗、烘干后再进入由煤气火焰直接加热的立式线内退火炉,通过严格控制炉内煤气和空气的焰烧比例,使之在煤气过剩和氧气不足的情况下进行不完全焰烧,从而使炉内造成还原气氛。使其快速加热达到再结晶温度并在低氢保护气氛下冷却带钢,最后在密闭情况下浸入锌液,进行热镀锌。该法设备紧凑,投资费用低,产量高(最高可达50/小时)。但生产工艺复杂,特别是在机组停止运转时,为了避免烧断带钢,需要采用炉子横移离开钢带的方法,这样操作问题很多,所以,热镀锌工业采用此法很少。
莎伦法:1939年美国莎伦公司投产一台新型的热镀锌机组,所以也叫莎伦法。该法是在退火炉内向带钢喷射氯化氢气体并使带钢达到再结晶温度,所以也称为气体酸洗法。采用氯化氢气体酸洗,不但能去除带钢表面的氧化皮,而且同时去除了带钢表面的油脂,由于带钢表面被氧化气体腐蚀,形成麻面,所以使用莎伦法所得到的镀层粘附性特别好。但是由于设备腐蚀严重,由此造成很高的设备维修和更新费用。因而此种方法很少被采用。
改良森吉米:它是一种更优越的热镀锌工艺方法;它把森吉米尔法中各自独立的氧化炉和还原炉由一个截面积较小的过道连接起来,这样包括预热炉、还原炉和冷却段在内的整个退火炉构成一个有机整体。实践证明,该法具有许多优点:优质、高产、低耗、安全等优点已逐渐被人们所认识。其发展速度非常快,1965年以来新建的作业线几乎全部采用了这种方法,近年来老的森吉米尔机组也大都按照此方法进行了改造。
⑹ 纳米涂层是什么意思
纳米涂层指纳米无毒涂层的先进工艺,科技含量高的纳米涂层技术。这种高科技纳米涂层不仅无毒无害,还可以缓慢释放出一种物质,降解室内甲醛、二甲苯等有害物质。
凡是传统表面涂层技术,都可以用来或者稍加改造,实现纳米材料复合涂层。
根据纳米涂层的组成将其分为三类:完全为一种纳米材料体系、两种(或以上)纳米材料构成的复合体系,称0—0复合;添加纳米材料的复合体系,称为O—2复合。
完全的纳米材料涂层离商业化尚有相当一段距离,只有在军事上有所应用。但借助于传统的涂层技术,添加纳米材料,可使传统涂层的功能得到飞跃提高,技术上勿需增加太大的成本。这种纳米添加的复合体系涂层很快就可走向市场展示出强劲的应用势头。
利用现有的涂层技术,针对涂层的性能,添加纳米材料,都可以获得纳米复合体系涂层。纳米涂层的实施对象既可以是传统材料基体,也可以是粉末颗粒或是纤维,用于表面修饰、包覆、改性或增添新的特性。
产生与功用
在硬度高的,耐磨涂层中添加纳米相,可进一步提高涂层的硬度和耐磨性能,并保持较高的韧性。
将纳米颗粒加入到表面涂层中,可以达到减小摩擦系数的效果,形成自润滑材料,甚至获得超润滑功能。在一些涂层中复合C60,巴基管等,制备出超级润滑新材料。涂层中引入纳米材料,可显著地提高材料的耐高温、抗氧化性。如:在Ni的表面沉积纳米Ni-La203涂层,由于纳米颗粒的作用,阻止了镍离子的短路扩散,改善了氧化层的生长机制和力学性质。
纳米材料涂层可以提高基体的腐蚀防护能力,达到表面修饰、装饰目的。在油漆或涂料中加入纳米颗粒,可进一步提高其防护能力,能够耐大气,紫外线侵害,从而实现防降解,防变色等功效;另外,还可以在建材产品,如卫生洁具、室内空间、用具等中运用纳米材料涂层,产生杀菌、保洁效果。
纳米材料涂层具有广泛变化的光学性能。它的光学透射谱可从紫外波段一直延伸到远红外波段。纳米多层组合涂层经过处理后在可见光范围内出现荧光,用于多种光学应用需要,如传感器等器件。在各种标牌表面施以纳米材料涂层,成为发光、反光标牌;改变纳米涂层的组成和特性,得到光致变色,温致变色,电致变色等效应,产生特殊的防伪,识别手段。80nm的氧化钇可作为红外屏蔽涂层,反射热的效率很高。在诸如玻璃等产品表面上涂纳米材料涂层,可以达到减少光的透射和热传递效果,产生隔热作用;在涂料中加入纳米材料,能够起到阻燃,隔热,起到防火作用。
经过纳米复合的涂层,具有优异的电磁性能,利用纳米粒子涂料形成的涂层具有良好的吸波能力,能用于隐身涂层。纳米氧化钛、氧化铬、氧化铁和氧化锌等具有半导体性质的粒子,加入到树脂中形成涂层,有很好的静电屏蔽性能;80nm的钛酸钡可作为高介电绝缘涂层,40nm的四氧化三铁能用于磁性涂层;纳米结构的多层膜系统产生巨磁阻效应,可望作为应用于存储系统中的读出磁头。
⑺ 纳米到底是什么意思
纳米是长度单位,是毫微米,国际单位制符号为nm。1纳米=10的负9次方米。1纳米相当于4倍原子大小,比单个细菌的长度还要小的多。
以纳米为基础发展起来的技术制造的电子器件,其性能大大优于传统的电子器件,功耗可以大幅降低。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。
(7)镀锌喷塑纳米是什么意思扩展阅读
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。假设一根头发的直径是0.05毫米,把它轴向平均剖成5万根,每根的厚度大约就是1纳米。1纳米就是0.000001毫米。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。
纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。
全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。中国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。
⑻ 纳米电镀是什么意思
纳米电镀工艺是科益纳米公司研发的新一代电镀工艺。它以纳米浓缩液去激活电镀镍基础液及铬基础液,使基础液里所含的金属离子细小化,从而使金属沉积晶核粒
度在18~25 nm之间的纳米电镀高科技工艺。
纳米电镀生产线是基于传统的电镀生产线进行纳米技术处理,主要针对整个电镀生产工艺中的镀镍、镀铬工艺进行纳米化处理。
1.传统的镀镍有三个镀镍工艺分别为:半光镍、光镍、镍封。而纳米技术处理后只需要一个镀纳米镍工艺就可以满足客户的性能要求,从而简化了电镀生产线的镀镍工艺。而镀层的沉积速度也有所提升,由传统的平均0.5μm/min提高到平均0.57μm/min
2.纳米镀铬是一种混合酸型铬电镀液,应用于装饰性光亮铬镀层。在很宽的电流密度范围内仍具有极佳的覆盖能力。尤其对于产品的深镀铬,有极强的走位优势。
科益纳米电镀的产品经清华大学研究院检测结果表明,镀层的金属所沉积的粒度80%呈非晶状,20%小于25 nm。
本
产品适用于钢铁件、铜和铜合金、电器接插件、锌合金、铝合金及塑料件电镀工艺。该工艺走位能力非常优异,具有深镀能力并得到的光亮镍层应力小,延伸性强,
耐磨性强,及高抗腐蚀能力。
⑼ 纳米是什么意思
纳米(nm),是nanometer译名即为毫微米,是长度的度量单位,国际单位制符号为nm。1纳米=10^-9米,长度单位如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小的多。国际通用名称为nanometer,简写nm。
基本含义:
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。假设一根头发的直径是0.05毫米,把它轴向平均剖成5万根,每根的厚度大约就是1纳米。
也就是说,1纳米就是0.000001毫米。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。
纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。
我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。
纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。
这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60㎡/g时,其直径将小于100nm,达到纳米尺寸。
现时很多材料的微观尺度多以纳米为单位,如大部份半导体制程标准皆是以纳米表示。直至2017年2月,最新的中央处理器,也叫做(CPU,Central Processing Unit)的制程是14nm。纳米别名:毫微米。
纳米发展历程:
纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。
人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。
其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意识直接操纵单个原子、分子,制造出具有特定功能的产品。
纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高了前所未有的高度。有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。
医学运用:
英国伦敦纳米技术中心的研究人员研制出一种新型纳米探针,利用该纳米探针可以检测出某种抗生素药物是否能够与细菌结合,从而减弱或破坏细菌对人体的破坏能力,达到治疗疾病的目的。
这是科学家第一次将纳米探针运用于药物筛选,相关试验的初步结果已经刊登在最新一期的《自然?纳米技术》杂志上。
人们在用抗生素治病的过程中,引起疾病的细菌很容易产生抗药性,从而使得抗生素失去药效。抗生素的作用原理是与致病细菌的细胞壁结合后破坏细胞壁的结构,使得致病细菌死亡,一旦产生抗药性,细菌的细胞壁结构发生改变,细胞壁变厚,抗生素无法与细胞壁结合。
研究人员在一排纳米探针上覆盖组成细菌细胞壁的蛋白质,一旦抗生素与细胞壁结合,探针的表面重量就会增加,这一表面压力会导致纳米探针发生弯曲。
通过对万古霉素药物的研究发现,抗药性细菌的细胞壁硬度是非抗药性细菌的1000倍。所以通过纳米探针探测出各种药物对细菌细胞壁的结构改变,筛选出对致病细菌破坏力最大的抗生素。
网络-纳米 (长度单位)