Ⅰ 鋼材的屈服平台結束時的應變一般為多少謝謝!
一般在0.02左右
Ⅱ 什麼是鋼材的屈服值
所謂屈服,是指達到一定的變形應力之後,金屬開始從彈性狀態非均勻的向彈-塑性狀態過渡,它標志著宏觀塑性變形的開始。
又稱為屈服極限 ,常用符號δs,是材料屈服的臨界應力值。 (1)對於屈服現象明顯的材料,屈服強度就是屈服點的應力(屈服值);(2)對於屈服現象不明顯的材料,與應力-應變的直線關系的極限偏差達到規定值(通常為0.2%的原始標距)時的應力。通常用作固體材料力學機械性質的評價指標,是材料的實際使用極限。因為在應力超過材料屈服極限後產生頸縮,應變增大,使材料破壞,不能正常使用。 當應力超過彈性極限後,進入屈服階段後,變形增加較快,此時除了產生彈性變形外,還產生部分塑性變形。當應力達到B點後,塑性應變急劇增加,應力應變出現微小波動,這種現象稱為屈服。這一階段的最大、最小應力分別稱為上屈服點和下屈服點。由於下屈服點的數值較為穩定,因此以它作為材料抗力的指標,稱為屈服點或屈服強度(ReL或Rp0.2)。 有些鋼材(如高碳鋼)無明顯的屈服現象,通常以發生微量的塑性變形(0.2%)時的應力作為該鋼材的屈服強度,稱為條件屈服強度(yield strength)。 首先解釋一下材料受力變形。材料的變形分為彈性變形(外力撤銷後可以恢復原來形狀)和塑性變形(外力撤銷後不能恢復原來形狀,形狀發生變化,伸長或縮短)
Ⅲ 鋼材在復雜應力狀態下的屈服條件是
鋼材在復雜應力狀態下的屈服條件是由單向拉伸時的屈服點決定的。
單向應力狀態的屈服條件由屈服極限表示,可由實驗定出。對於屈服不明顯的材料,在工程中將殘余應變為0.2%的應力值定義為條件屈服極限σ0.2。
這種定義方法比測定殘余應變數更簡便。對於一般鋼材,σ0.2和σY很接近。某些金屬材料在外力作用下產生塑性變形,卸載後再載入,屈服應力會有所提高。
選擇適宜的場地和庫房。
保管鋼材的場地或倉庫,應選擇在清潔干凈、排水通暢的地方,遠離產生有害氣體或粉塵的廠礦。在場地上要清除雜草及一切的雜物,保持鋼材的干凈。
在倉庫里不得與酸、鹼、鹽、水泥等對鋼材有侵蝕性的材料堆放在一起。不同品種的鋼材應分別堆放,防止混淆,防止接觸腐蝕,大型型鋼、鋼軌、辱鋼板、大口徑鋼管、鍛件等可以露天堆放。
Ⅳ 新規范的鋼材屈服強度、抗拉強度標准值是多少
普通鋼筋抗拉強抄度標准值,取自現行襲國家標準的鋼筋屈服點,具有不小於95%保證率的抗拉強度。R235鋼筋的抗拉強度標准值是235MPa,HRB335鋼筋為335MPa,HRB400鋼筋為400MPa。
對於鋼筋(砼結構):抗拉強度實測值/屈服強度實測值≥1.25
對於鋼材(鋼結構):抗拉強度實測值/屈服強度實測值≥1.176
(4)鋼材一般達到多少微應變會屈服擴展閱讀
關於屈服強度和抗拉強度還有一個參數,這個參數就是屈強比!屈強比就是屈服強度和抗拉強度的比值。范圍是0~1之間。屈強比是衡量鋼材脆性的指標之一。屈強比越大,表明鋼材屈服強度和抗拉強度的差值越小,鋼材的塑性越差,脆性就越大!
材料的破壞是從屈服點開始的。屈強比越低,那麼材料從開始破壞到斷裂的時間越長,屈強比越高,材料從開始破壞到斷裂的時間越短。能量在屈服點到斷裂點之間被大量轉化為熱能。
Ⅳ 鋼筋受拉時,拉應變大概到多少微應變進入強化階段
看鋼筋的種類了。一般的鋼筋,0.002的微應變就屈服了。
Ⅵ 普通鋼筋(HPB235,HRB335)屈服應變是多少
鋼筋的屈服強度與抗拉強度和鋼筋的直徑大小無關,只與鋼筋的等級有專關。(按等級分為Ⅰ屬、Ⅱ、Ⅲ級,分別由ф或圓圈中兩豎的ф、ф加一橫和中間兩豎、下加一橫的ф表示)
屈服強度<Mpa> 抗拉強度<Mpa> 斷後伸長率
HRB335 335 445 ≥17%
HRB400 400 540 ≥16%
HRB500 500 630 ≥15%
HPB 就是圓鋼的代表符號
HRB就是螺紋鋼
235 335代表的是型號 屬於二級鋼筋
屈服應變:物件受外力作用,當其內部的應力超過物件材料的屈服點後所產生的應變稱為屈服應變。物件發生屈服應變時,即使在外力不增加的情況下,其應變也將持續增加。一般情況下,物體在受力過程中,將開始產生顯著的塑性應變。
Ⅶ 鋼材的屈服強度和抗拉強度相關資料,越詳細越好。
又稱為屈服極限 ,常用符號δs,是材料屈服的臨界應力值。 (1)對於屈服現象明顯的材料,屈服強度就是屈服點的應力(屈服值);(2)對於屈服現象不明顯的材料,與應力-應變的直線關系的極限偏差達到規定值(通常為0.2%的永久形變)時的應力。通常用作固體材料力學機械性質的評價指標,是材料的實際使用極限。因為在應力超過材料屈服極限後產生頸縮,應變增大,使材料破壞,不能正常使用。 當應力超過彈性極限後,進入屈服階段後,變形增加較快,此時除了產生彈性變形外,還產生部分塑性變形。當應力達到B點後,塑性應變急劇增加,應力應變出現微小波動,這種現象稱為屈服。這一階段的最大、最小應力分別稱為上屈服點和下屈服點。由於下屈服點的數值較為穩定,因此以它作為材料抗力的指標,稱為屈服點或屈服強度(ReL或Rp0.2)。 有些鋼材(如高碳鋼)無明顯的屈服現象,通常以發生微量的塑性變形(0.2%)時的應力作為該鋼材的屈服強度,稱為條件屈服強度(yield strength)。
抗拉強度(tensile strength)
試樣拉斷前承受的最大標稱拉應力。對於塑性材料,它表徵材料最大均勻塑性變形的抗力;對於沒有(或很小)均勻塑性變形的脆性材料,它反映了材料的斷裂抗力。符號為RM,單位為MPA。
抗拉強度的定義及符號表示:
試樣在拉伸過程中,材料經過屈服階段後進入強化階段後隨著橫向截面尺寸明顯縮小在拉斷時所承受的最大力(Fb),除以試樣原橫截面積(So)所得的應力(σ),稱為抗拉強度或者強度極限(σb),單位為N/mm2(MPa)。它表示金屬材料在拉力作用下抵抗破壞的最大能力。計算公式為: σ=Fb/So 式中:Fb--試樣拉斷時所承受的最大力,N(牛頓); So--試樣原始橫截面積,mm2。 抗拉強度( Rm)指材料在拉斷前承受最大應力值。 萬能材料試驗機
當鋼材屈服到一定程度後,由於內部晶粒重新排列,其抵抗變形能力又重新提高,此時變形雖然發展很快,但卻只能隨著應力的提高而提高,直至應力達最大值。此後,鋼材抵抗變形的能力明顯降低,並在最薄弱處發生較大的塑性變形,此處試件截面迅速縮小,出現頸縮現象,直至斷裂破壞。鋼材受拉斷裂前的最大應力值稱為強度極限或抗拉強度。 單位:kn/mm2(單位面積承受的公斤力) 抗拉強度:extensional rigidity. 抗拉強度=Eh,其中E為楊氏模量,h為材料厚度 目前國內測量抗拉強度比較普遍的方法是採用萬能材料試驗機等來進行材料抗拉/壓強度的測定!
Ⅷ Q235鋼的斷裂應變(失效應變)是多少
鋼的斷裂應變(失效應變)也就是抗拉強度,其值為(σb/MPa):375-500
Q235普通碳素結構鋼又稱在A3板。
Q代表的是這種材質的屈服極限,後面的235,就是指這種材質的屈服值,在235MPa左右。並會隨著材質的厚度的增加而使其屈服值減小(板厚/直徑≤16mm,屈服強度為235MPa;16mm<板厚/直徑≤40mm,屈服強度為225MPa;40mm<板厚/直徑≤60mm,屈服強度為215MPa;60mm<板厚/直徑≤100mm,屈服強度為205MPa;100mm<板厚/直徑≤150mm,屈服強度為195MPa;150mm<板厚/直徑≤200mm,屈服強度為185MPa)。由於含碳適中,綜合性能較好,強度、塑性和焊接等性能得到較好配合,用途最廣泛。
由Q+數字+質量等級符號+脫氧方法符號組成。它的鋼號冠以」Q「,代表鋼材的屈服點,後面的數字表示屈服點數值,單位是MPa例如Q235表示屈服應力(σs)為235 MPa的碳素結構鋼。
必要時鋼號後面可標出表示質量等級和脫氧方法的符號。質量等級符號分別為A、B、C、D。脫氧方法符號:F表示沸騰鋼;b表示半鎮靜鋼:Z表示鎮靜鋼;TZ表示特殊鎮靜鋼,鎮靜鋼可不標符號,即Z和TZ都可不標。例如Q235-AF表示A級沸騰鋼。
化學成份
Q235分A、B、C、D四級(GB/T 700-2006)
Q235A級含 C ≤0.22% Mn ≤1.4% Si ≤0.35% S ≤0.050 P ≤0.045
Q235B級含 C ≤0.20% Mn ≤1.4% Si ≤0.35% S ≤0.045 P ≤0.045
Q235C級含 C ≤0.17% Mn ≤1.4% Si ≤0.35% S ≤0.040 P ≤0.040
Q235D級含 C ≤0.17% Mn ≤1.4% Si ≤0.35% S ≤0.035 P ≤0.035
機械性能
密度:7.85g/cm^3
彈性模量(E/Gpa):200~210
泊松比(ν):0.25~0.33
抗拉強度(σb/MPa):375-500
伸長率(δ5/%):
≥26(a≤16mm)
≥25(a>16-40mm)
≥24(a>40-60mm)
≥23(a>60-100mm)
≥22(a>100-150mm)
≥21(a>150mm)
其中 a 為鋼材厚度或直徑。
Ⅸ 鋼筋屈服強度是多少
根據屈服平台恆定的力除以s,就能夠得到屈服極限值是多少,一般會用re來表示。鋼筋的屈服強度,也就是說在發生屈服現象的時候,它的一個極限值,所能夠產生的應力到底是多少,比如選擇HPB235的鋼筋,它的區服強度就是235MPA。
大於屈服強度的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
(9)鋼材一般達到多少微應變會屈服擴展閱讀:
當應力超過彈性極限後,進入屈服階段後,變形增加較快,此時除了產生彈性變形外,還產生部分塑性變形。當應力達到B點後,塑性應變急劇增加,應力應變出現微小波動,這種現象稱為屈服。這一階段的最大、最小應力分別稱為上屈服點和下屈服點。
由於下屈服點的數值較為穩定,因此以它作為材料抗力的指標,稱為屈服點或屈服強度。
有些鋼材(如高碳鋼)無明顯的屈服現象,通常以發生微量的塑性變形(0.2%)時的應力作為該鋼材的屈服強度,稱為條件屈服強度。