⑴ 為什麼低碳鋼試樣扭轉破壞斷面與橫截面重合,而鑄鐵試樣是與試樣軸線成45度螺旋斷
這是因為抄在拉伸實驗中襲引起低碳鋼屈服的主要原因是切應力。而引起鑄鐵斷裂的主要原因是拉應力,因為低碳鋼的抗拉能力大於抗剪能力。而鑄鐵的抗剪能力大於抗拉能力。
對於鑄鐵試樣,拉伸破壞發生在橫截面上,是由拉應力造成的。壓縮破壞發生在斜截面上,是由切應力造成的。扭轉破壞發生在45度螺旋面上,是由最大拉應力造成的。
低碳鋼試樣和鑄鐵試樣的扭轉破壞斷口形貌有很大的差別。低碳鋼試樣的斷面與橫截面重合,斷面是最大切應力作用面,斷口較為齊平,可知為剪切破壞;鑄鐵試樣的斷面是與試樣的軸線成45度的螺旋面,斷面是最大拉應力作用面,斷口較為粗糙,因而是最大拉應力造成的拉伸斷裂破壞。
⑵ 低碳鋼扭轉屈服階段如何變化
當應力低於σe 時,線彈性變形階段.應力與試樣的應變成正比,應力去除,變形消失。回
σe和σs之間,非線彈性變形答階段,仍屬於彈性變形,但應力與試樣的應變不是正比關系。
σs時,屈服階段(其實存在上下屈服極限的)應變變大,但是應力幾乎沒有變化。
當應力超過σs後,強化階段,試樣發生明顯而均勻的塑性變形,若使試樣的應變增大,則必須增加應力值。
在σb值之後,斷裂階段,試樣開始發生不均勻塑性變形並形成縮頸,應力下降,最後應力達到σk時試樣斷裂。
指標:σe彈性極限
σs屈服強度
σb抗拉強度
σk斷裂強度
⑶ 低碳鋼拉伸和扭轉的斷口形狀是否一樣分析其破壞原因。
伸為平斷口,所以剪應力先於拉應力達到最大值,由於低碳鋼抗拉能力大於抗剪能力,扭轉為45度的螺旋斷口。
拉伸時的破壞原因是拉應力
扭轉時;故破壞原因是最大剪應力
⑷ 低碳鋼的屈服點和抗扭強度時,為什麼公式中有3/4的系數
圓軸扭轉在彈性變形范圍內剪應力分布對於塑性材料, 當扭矩增大到一定數值後,試件表面應力首先達到流動極限,並逐漸向內擴展,形成環形塑性區。若扭矩逐漸增大,塑性區也不斷擴大。
低碳鋼(low carbon steel)為碳含量低於0.25%的碳素鋼,因其強度低、硬度低而軟,故又稱軟鋼。它包括大部分普通碳素結構鋼和一部分優質碳素結構鋼,大多不經熱處理用於工程結構件,有的經滲碳和其他熱處理用於要求耐磨的機械零件。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。
因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。這種鋼還具有良好的焊接性。含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造,焊接和切削, 常用於製造鏈條, 鉚釘, 螺栓, 軸等。
(4)低碳鋼扭轉什麼應力擴展閱讀:
屈服強度含義:
屈服強度主要是指金屬材料發生屈服現象時的屈服極限,也就是抵抗微量塑性變形的應力。對於無明顯屈服的金屬材料,規定以產生0.2%殘余變形的應力值為其屈服極限,稱為條件屈服極限或屈服強度。
大於此極限的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
1、對於屈服現象明顯的材料,屈服強度就是屈服點的應力(屈服值)。
2、對於屈服現象不明顯的材料,與應力-應變的直線關系的極限偏差達到規定值(通常為0.2%的原始標距)時的應力。
通常用作固體材料力學機械性質的評價指標,是材料的實際使用極限。因為在應力超過材料屈服極限後產生頸縮,應變增大,使材料破壞,不能正常使用。
當應力超過彈性極限後,進入屈服階段後,變形增加較快,此時除了產生彈性變形外,還產生部分塑性變形。當應力達到B點後,塑性應變急劇增加,應力應變出現微小波動,這種現象稱為屈服。這一階段的最大、最小應力分別稱為上屈服點和下屈服點。
由於下屈服點的數值較為穩定,因此以它作為材料抗力的指標,稱為屈服點或屈服強度(ReL或Rp0.2)。
有些鋼材(如高碳鋼)無明顯的屈服現象,通常以發生微量的塑性變形(0.2%)時的應力作為該鋼材的屈服強度,稱為條件屈服強度(yield strength)。
影響因素:
內在因素有:結合鍵、組織、結構、原子本性。
例如將金屬的屈服強度與陶瓷、高分子材料比較可看出結合鍵的影響是根本性的。從組織結構的影響來看,可以有四種強化機制影響金屬材料的屈服強度,這就是:(1)固溶強化;(2)形變強化;(3)沉澱強化和彌散強化;(4)晶界和亞晶強化。
沉澱強化和細晶強化是工業合金中提高材料屈服強度的最常用的手段。在這幾種強化機制中,前三種機制在提高材料強度的同時,也降低了塑性,只有細化晶粒和亞晶,既能提高強度又能增加塑性。
外在因素有:溫度、應變速率、應力狀態。
隨著溫度的降低與應變速率的增高,材料的屈服強度升高,尤其是體心立方金屬對溫度和應變速率特別敏感,這導致了鋼的低溫脆化。
應力狀態的影響也很重要。雖然屈服強度是反映材料的內在性能的一個本質指標,但應力狀態不同,屈服強度值也不同。我們通常所說的材料的屈服強度一般是指在單向拉伸時的屈服強度。
⑸ 低碳鋼扭轉試驗中公式為什麼有3/4系數
圓軸扭轉在彈性變形范圍內剪應力分布如參考圖(a)所示, 對於塑性材料, 當扭內矩增大到一容定數值後, 試件表面應力首先達到流動極限 , 並逐漸向內擴展, 形成環形塑性區,如參考圖(b)所示。若扭矩逐漸增大,塑性區也不斷擴大。當 扭矩達到 時,橫截面上的剪應力大小近似為 ,如參考圖(c)所示,在這種剪 應力分布形式下,剪應力公式為http://wenku..com/view/9f016183ec3a87c24028
⑹ 低碳鋼和鑄鐵在扭轉破壞時有什麼不同的現象
1,骨折的形狀不同:
當鑄鐵斷裂時,斷裂面呈45o螺旋形;當低碳鋼斷裂時,斷裂面為垂直內於垂容直方向的近似平面。
2,破解的過程是不同的:
當低碳鋼扭曲時,會發生屈服,加工硬化並最終斷裂。塑性變形量被破壞。鑄鐵扭曲時,幾乎不會發生塑性變形並直接破裂。
原因:鑄鐵在45o方向上的主應力破壞了,這是由斜截面上的拉應力引起的,這表明鑄鐵的抗拉強度很差。低碳鋼是由較高的剪切應力引起的,說明低碳鋼的剪切強度較差。
(6)低碳鋼扭轉什麼應力擴展閱讀:
脆性和塑性材料的強度和可塑性可以通過反向測試確定,該測試通常用於需要頻繁燒結的材料(例如軸,彈簧等)上。
扭轉試驗在扭轉試驗機上進行,材料特性和應力條件可以反映在扭轉尖端的斷裂形狀中。
例如,剪切應力的結果顯示為裂縫的截面和垂直線,並且材料是塑性的。如果法向應力作用,則斷裂部分的壁厚約為45°,材料易碎。
⑺ 低碳鋼和鑄鐵試件扭轉時沿著什麼方位破壞各是什麼應力引起的
鑄鐵為脆性材料,其壓縮圖在開始時接近於直線,與縱軸之夾角很回小,以後曲率逐答漸增大,最後至破壞,因此只確定其強度極限。
σbc=fbc/s
鑄鐵試件受壓力作用而縮短,表明有很少的塑性變形的存在。當載荷達到最大值時,試件即破壞,並在其表面上出現了傾斜的裂縫(裂縫一般大致在與橫截面成45°的平面上發生)鑄鐵受壓後的破壞是突然發生的,這是脆性材料的特徵。
從試驗結果與以前的拉伸試驗結果作一比較,可以看出,鑄鐵承受壓縮的能力遠遠大於承受拉伸的能力。抗壓強度遠遠超過抗拉強度,這是脆性材料的一般屬性。
⑻ 低碳鋼和鑄鐵式樣扭轉破壞情況有何不同試分析其破壞原因
低碳鋼和鑄鐵在受到一致外力的扭轉破壞下鑄鐵產生斷裂低碳鋼則可能產生變形版。原因是低碳鋼內含有少量權的碳其韌性比較好而鑄鐵內含有大年夜量的碳其機能脆硬。金屬材料的成分不合機能也不合。
低碳鋼:低碳鋼(lowcarbonsteel)又稱軟鋼,含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造、焊接、切削等。常用於製造鏈條、鉚釘、螺栓、軸等。碳含量低於0.25%的碳素鋼,因其強度低、硬度低而軟,故又稱軟鋼。它包括大部分普通碳素結構鋼和一部分優質碳素結構鋼,大多不經熱處理用於工程結構件,有的經滲碳和其他熱處理用於要求耐磨的機械零件。低碳鋼退火組織為鐵素體和少量珠光體,因此具有強度和硬度較低,塑性和韌性較好的特點。
⑼ 低碳鋼和鑄鐵在扭轉破壞時有什麼不同的現象
低碳鋼拉伸和扭轉時斷裂方式不一樣.拉伸的斷裂方式是拉斷,試件受正應力內.表現為斷容裂截面收縮、斷裂後試件總長大於原試件長度.扭轉的斷裂方式是剪斷,試件受切應力.表現為試樣表面的橫向與縱向出現滑移線,最後沿橫截面被剪斷,斷裂截面面積不變.
鑄鐵壓縮破壞時,斷口方位角約為55°-60°,在該截面上存在較大的切應力,所以,其破壞方式是剪斷.扭轉時,所受的外力也是剪力,所以,破壞方式與壓縮時相同,為剪斷.
⑽ 低碳鋼拉伸曲線與扭轉曲線的相似處和不同點
一、不抄同點:
低碳襲鋼的韌性比鑄鐵強,鑄鐵比低碳鋼脆性高。低碳鋼的屈服強度高於鑄鐵。(鑄鐵很脆,幾乎不存在屈服強度),但是鑄鐵的拉伸強度大於低碳鋼,因為鑄鐵含碳量高於低碳鋼。 沖擊強度低碳鋼明顯要優於鑄鐵。
二、相同點:
仍屬於彈性變形,但應力與試樣的變形不是正比關系。應力達到屈服極限,試樣的位移增大,但是應力幾乎沒有變化。試樣發生明顯而均勻的塑性變形,若使試樣的變形增大,則必須增加應力值。
(10)低碳鋼扭轉什麼應力擴展閱讀
一、低碳鋼拉伸程經歷彈性、屈服、強化緊縮四階段,各階段特點:
1、彈性階段:應力與應變比鋼材產彈性變形;應指標彈性模量E;
2、屈服階段:應力與應變再比產塑性變形;即使應力減應變迅速增加;應指標屈服強度σs;
3、強化階段:鋼材外力抵抗能力重新增;應指標抗拉強度σb;
4、緊縮階段:鋼材某截面始產收縮並終細處斷裂;應指標伸率δ斷面收縮率Ψ屈服極限σs及強度極限σb測定。
二、特點:
1、線性彈性變形階段:.當應力低於彈性極限 時,應力與試樣的變形成正比,應力去除,變形消失。
2、非線彈性變形階段:仍屬於彈性變形,但應力與試樣的變形不是正比關系。