Ⅰ 鈦及鈦合金精密鑄造工藝
鈦合金是以鈦為基加入其他元素組成的合金。鈦有兩種同質異晶體:鈦是同素異構體,熔點為1720℃,在低於882℃時呈密排六方晶格結構,稱為α鈦;在882℃以上呈體心立方品格結構,稱為β鈦。利用鈦的上述兩種結構的不同特點,添加適當的合金元素,使其相變溫度及相分含量逐漸改變而得到不同組織的鈦合金(itaniumalloys)。20世紀50~60年代,主要是發展航空發動機用的高溫鈦合金和機體用的結構鈦合金,70年代開發出一批耐蝕鈦合金,80年代以來,耐蝕鈦合金和高強鈦合金得到進一步發展。鈦合金主要用於製作飛機發動機壓氣機部件,其次為火箭、導彈和高速飛機的結構件
Ⅱ 鈦合金及鈦目前最常用的一種熔煉方法是哪種
真空自耗電弧爐熔煉法(簡稱VAR法)
隨著真空技術的發展和計算機的應用,VAR法很快成為鈦的成熟的工業生產技術,今天的鈦及其合金鑄錠絕大部分是使用此方法生產的。VAR法顯著特點是功率消耗低、熔化速度高和良 好的質量重現性,VAR法熔煉的鑄錠具有良好的結晶組織和均勻的化學成分。通常,成品鑄錠應由VAR法熔煉製得. 至少要經過兩次重熔。用VAR法生產鈦鑄錠,世界各國生產廠家使用的工藝基本相似,差別在於使用不同的電極制備方式和設備.電極制備可分為三大類,一是採用按份加料連續壓制的整體電極,排除了電 極焊接工序:二是單塊電極壓制,拼焊成自耗電極。並通過等離子氬弧焊或真空焊焊接成一體;三是利用其它熔煉法制備鑄造電極。
現代先進的VAR爐的技術特點和優勢:
(1)全同軸功率輸入,也就是說整個爐體高度上的完全同軸性,稱 同軸供電』,減少偏析現象的產生;
(2)坩堝內電校可在X 軸向/Y軸向上微調;
(3)具有精確的電極稱重系統,熔煉速率得到自動控制,實現了恆速熔煉』。保證了熔煉質量;
(4)保證每次熔煉的重復性和一致性;
(5)靈活性,即一台爐子能夠生產多種錠型以及鑄錠的 大型化,可大幅度提高生產率;
(6)具有良好的經濟性。「同軸供電」方式可以避免因坩堝供給電流不平衡所造成的磁偏漏.減弱或消除感應磁場對熔煉產品的不利影響.並且提高了電效率,從而獲得質量穩定的鑄錠。「恆速熔煉」的目的是為了提高鑄錠質量,通過先進的電控系統和重量感測器來確保熔煉過程中電弧的長度和熔化速率的恆定,從而控制了凝同過程。可以有效的防止偏析現象,保障 了鑄錠的內在質量。現代鈦熔煉用VAR爐除具有以上兩大特點外,還實現了VAR爐的大型化,現代VAR爐可熔煉直徑為1.5m,重32t的大型鑄錠.vAR法是現代鈦及鈦合金標準的工業熔煉法.還有以下技術需 要解決.第一,電極制備方法.制備電極工藝非常繁瑣.需要用昂貴的壓力機將海綿鈦、中間合金和返回殘料壓製成整體電極或單塊小電扳.單塊電極還需要焊接成自耗電極.同時為了保 證自耗電極成分的均勻性,還需要配置布料、稱料、混料等相應的設施。第二,偶爾存在的偏析等冶金缺陷.如成分偏析和凝固偏析。介紹前者是由於雜質元素或合金元素在電極中分布不均勻 .熔煉時來不及平衡分布就凝固所產生;後者是由於原料或工藝過程偶爾帶入了 高密度夾雜物(HDI) 和低密度夾雜物(LDI),這些夾雜物質在熔煉過程中無法徹底溶解,從而導致產生危 害極大的夾雜等冶金缺陷。
Ⅲ 鈦合金材料加工方法
(1) 採用正角型幾何來形狀的刀片,以源減少切削力、切削熱和工件的變形。
(2) 保持恆定的進給以避免工件的硬化,在切削過程中刀具要始終處於進給狀態,銑削時徑向吃刀量a e應為半徑的30%。
(3) 採用高壓大流量切削液,以保證加工過程的熱穩定性,防止因溫度過高導致工件表面變性和刀具損壞。
(4) 保持刀片刃口鋒利,鈍的刀具是熱集結和磨損的原因,容易導致刀具失效。
(5) 盡可能在鈦合金最軟的狀態加工,因為淬硬後材料變得更難加工,熱處理提高了材料的強度並增加刀片的磨損。
(6) 使用大的刀尖圓弧半徑或倒角切入,盡可能把更多的刀刃進入切削。這可以減少每一點的切削力和熱量,防止局部破損。 在銑削鈦合金時,各切削參數中切削速度對刀具壽命vc的影響最大,徑向吃刀量(銑削深度)ae次之。
Ⅳ 鈦合金材料適合金屬注射成型工藝嗎
可以,注射成型這類工藝適用大部分金屬材料,根據不同情況選擇熔融方式就可以了。對於鈦合金這類熔點較高的金屬,可以用激光熔融注射的工藝
Ⅳ 鈦合金切削工藝的工藝措施有哪些內容
鈦合金以其比強度高、機械性能及抗蝕性良好而成為飛機及發動機理想的製造材料,但由於其切削性差,長期以來在很大程度上制約了它的使用。隨著工藝技術的發展,鈦合金已廣泛用於飛機發動機的壓氣機段、發動機罩、排氣裝置等零件的製造以及飛機的大梁隔框等結構框架件的製造。但是鈦合金導熱性差致使切削溫度很高,在切削過程中的這些特點使其變得十分困難。
一、鈦合金工藝的特性分析
(1)鈦合金導熱系數低
因切削區散熱慢不利於熱平衡,在切削過程中散熱和冷卻效果很差,易於在切削區形成高溫,零件變形回彈大,造成切削刀具扭矩增大、刃口磨損快耐用度降低。
(2)鈦合金的導熱系數低
使切削熱積於切削刀附近的小面積區域內不易散發,前刀面摩擦力加大,不易排屑,切削熱不易散發,加速刀具磨損。
(3)鈦合金化學活性高
在高溫下易與刀具材料起反應,形成溶敷、擴散,造成粘刀、燒刀、斷刀等現象。
二、鈦合金切削的工藝措施
(1)鈦合金車削工藝
鈦合金車削易獲得較好的表面粗糙度,硬化不嚴重,但切削溫度高刀具磨損快。針對這些特點主要在刀具、切削參數方面採取合適的刀具前後角、刀尖磨圓;較低的切削速度;適中的進給量;較深的切削深度;較大的刀具主偏角等。
(2)鈦合金銑削工藝
鈦合金銑削比車削困難,因為銑削是斷續切削,並且切屑易與刀刃發生粘結形成崩刃,極大地降低了刀具的耐用度。因此對鈦合金銑削一般採用高速高刀具順銑;刀具前角應減小,後角應加大;銑削速度宜低;從工件裝夾及設備方面提高工藝系統剛性。
(3)鈦合金磨削工藝
磨削鈦合金零件常見的問題是粘屑造成砂輪堵塞以及零件表面燒傷。其原因是鈦合金的導熱性差,使磨削區產生高溫,從而使鈦合金與磨料發生粘結以及強烈的化學反應。為解決磨削鈦合金採取的措施是選用合適的砂輪材料;稍低的砂輪硬度;較粗的砂輪粒度;稍低的砂輪速度;稍小的進給量。
(4)鈦合金鑽削工藝
鈦合金鑽削比較困難,常在過程中出現燒刀和斷鑽現象。這主要是由於鑽頭刃磨不良、排屑不及時、冷卻不佳以及工藝剛性差等幾方面原因造成的。因此在鈦合金鑽削時選用硬質合金刀具;加大刀具頂角、減少外緣前角、增大外緣後角;勤退刀並及時清除切屑。
(5)鈦合金鉸削工藝
鈦合金鉸削時刀具磨損不嚴重,使用硬質合金和高速鋼鉸刀均可。使用硬質合金鉸刀時,要採取類似鑽削的工藝系統剛度防止鉸刀崩刃。鈦合金鉸孔時出現的主要問題是鉸孔不光,可採用油石修窄鉸刀刃帶寬度,以免刃帶與孔壁粘結;切削刃與校準部分轉接處應為光滑圓弧,磨損後要及時修磨,並要求各齒圓弧大小一致。
(6)鈦合金攻絲工藝
鈦合金攻絲因為切屑細小,易與刀刃及工件粘結,造成表面粗糙度值大,扭矩大。攻絲時絲錐選用不當及操作不當極易造成硬化,效率極低並時有絲錐折斷現象。因此要優先選用跳牙絲錐;切削錐角宜大;為便於排屑還可在切削錐部分磨出負傾角;盡量選用短絲錐以增加絲錐剛性。
三、鈦合金切削油的選用
(1)如果使用含氫的切削油,切削過程中在高溫下將分解釋放出氫氣,被鈦吸收引起氫脆;也可能引起鈦合金高溫應力腐蝕開裂。
(2)部分以氯系添加劑為主要成分的切削油中在使用時還可能分解或揮發有毒氣體,使用時宜採取安全防護措施;切削後應及時用清洗劑徹底清洗零件,清除含氯殘留物。
(3)使用以硫化脂肪酸酯為主劑的鈦合金切削油能很好的解決刀具磨損的問題,同時有利於排屑,避免積屑瘤的產生。
Ⅵ 鈦合金(TA、TC、TB)闡述熱處理工藝
鈦的熱處理方法
一.鈦的基本熱處理:
工業純鈦是單相α 型組織,雖然在890℃以上有α-β 的多型體轉變,但由於
相變特點決定了它的強化效應比較弱,所以不能用調質等熱處理提高工業純鈦的
機械強度。工業純鈦唯一的熱處理就是退火。它的主要退火方法有三種:1 再結
晶退火 2 消應力退火 3 真空退火。前兩種的目的都是消除應力和加工硬化效應,
以恢復塑性和成型能力。
工業純鈦在材料生產過程中加工硬度效應很大。圖2-26 所示為經不同冷加
工後,TA2 屈服強度的升高,因此在鈦材生產過程中,經冷、熱加工後,為了恢
復塑性,得到穩定的細晶粒組織和均勻的機械性能,應進行再結晶退火。工業純
鈦的再結晶溫度為550-650℃,因此再結晶退火溫度應高於再結晶溫度,但低於
α-β 相的轉變溫度。在650-700℃退火可獲得最高的綜合機械性能(因高於700℃
的退火將引起晶粒粗大,導致機械性能下降)。退火材料的冷加工硬化一般經
10-20 分鍾退火就能消除。這種熱處理一般在鈦材生產單位進行。為了減少高溫
熱處理的氣體污染並進一步脫除鈦材在熱加工過程中所吸收的氫氣,目前一般鈦
材生產廠家都要求真空氣氛下的退火處理。
為了消除鈦材在加工過程(如焊接、爆炸復合、製造過程中的輕度冷變形)
中的殘余應力,應進行消應力熱處理。
消應力退火一般不需要在真空或氬氣氣氛中進行,只要保持爐內氣氛為微氧
化性即可。
二.鈦及鈦合金的熱處理:
為了便於進行機械工業加並得到具有一定性能的鈦和鈦合金,以滿足各種
產品對材料性能的要求,需要對鈦及鈦合金進行熱處理。
1.工業純鈦(TA1、TA2、TA3)的熱處理
α-鈦合金從高溫冷卻到室溫時,金相組織幾乎全是α 相,不能起強化作用,
因此,目前對α-鈦只需要進行消應力退火、再結晶退火和真空退火處理。前
兩種是在微氧化爐中進行,而後者則應在真空爐中進行。
(一)消應力退火
為了消除鈦和鈦合金在熔鑄、冷加工、機械加工及焊接等工藝過程中所產生
的內應力,以便於以後加工,並避免在使用過程中由於內應力存在而引起開裂破
壞,對α-鈦應進行消除應力退火處理。消除應力退火溫度不能過高、過低,因為
過高引起晶粒粗化,產生不必要的相變而影響機械性能,過低又會使應力得不到
消除,所以,一般是選在再結晶溫度以下。對於工業純鈦來說,消除應力退火的
加熱溫度為500-600℃。加熱時間應根據工件的厚度及保溫時間來確定。為了提
高經濟效果並防止不必要的氧化,應選擇能消除大部分內應力的最短時間。工業
純鈦消除應力退火的保溫時間為15-60 分鍾,冷卻方式一般採用空冷。
(二)再結晶退火(完全退火)
α-鈦大部分在退火狀態下使用,退火可降低強度、提高塑性,得到較好的綜
合性能。為了盡可能減少在熱處理過程中氣體對鈦材表面污染,熱處理溫度盡可
能選得低些。工業純鈦的退火溫度高於再結晶溫度,但低於α 向β 相轉變的溫度
120-200℃,這時所得到的是細晶粒組織。加熱時間視工件厚度而定,冷卻方式
一般採用空冷。對於工業純鈦來說,再結晶退火的加熱溫度為680-700℃,保溫
時間為30-120 分鍾。規范的選取要根據實際情況來定,通常加熱溫度高時,保
溫時間要短些。
需要指出的是,退火溫度高於700℃時,而且保溫時間長時,將引起晶粒粗
化,導致機械性能下降,同時,晶粒一旦粗化,用現有的任何熱處理方法都難以
使之細化。為了避免晶粒粗化,可採取下列兩種措施:
1)盡可能將退火溫度選在700℃以下。
2) 退火溫度如果在700℃以上時,保溫時間盡可能短些,但在一般情況下,
每mm 厚度不得少於3 分鍾,對於所有工件來講,不能小於15 分鍾。
(三)真空退火
鈦中的氫雖無強化作用,但危害性很大,能引起氫脆。氫在α-鈦中的溶解
度很小,主要呈TiH2 化合物狀態存在,而TiH2 只在300℃以下才穩定。如將α-
鈦在真空中進行加熱,就能將氫降低至0.1%以下。當鈦中含氫量過多時需要除
氫,為了除氫或防止氧化,必須進行真空退火。真空退火的加熱溫度與保溫時間,
與再結晶退火基本相同。冷卻方式為在爐中緩冷卻到適當的溫度,然後才能開爐,
真空度不能低於5×10-4mmHg。
二.TC4(Ti-6Al-4V)的熱處理
在鈦合金中,TC4 是應用比較廣泛的一種鈦合金,通常它是在退火狀態下
使用。對TC4 可進行消除應力退火、再結晶退火和固溶時效處理,退火後的組織
是α 和β 兩相共存,但β 相含量較少,約佔有10%。TC4 再結晶溫度為750℃。
再結晶退火溫度一般選在再結晶溫度以上80~100℃(但在實際應用中,可視具
體情況而定,如表5-26),再結晶退火後TC4 的組織是等軸α 相+β 相,綜合性
能良好。但對TC4 的退火處理只是一種相穩定化處理,為了充分民掘其優良性
能的潛力,則應進行強化處理。TC4 合金的α+β/β 相轉變溫度為980~990℃,固
溶處理溫度一般選在α+β/β 轉變溫度以下40~100℃(視具體情況而定,如表5-26
所示),因為在β 相區固溶處理所得到的粗大魏氏體組織雖具有持久強度高和斷
裂韌性高的優點,但拉伸塑性和疲勞強度均很低,而在α+β 相區固溶處理則無此
缺點。
規 范
類 型
溫 度(℃) 時間(min) 冷 卻 方 式
消除應力退火 550~650 30~240 空 冷
再結晶退火 750~800 60~120 空冷或隨爐冷卻至590℃後空冷
真空退火 790~815
固溶處理 850~950 30~60 水 淬
時效處理 480~560 4~8h 空 冷
時效處理是將固溶處理後的TC4 加熱到中等溫度,保持一定時間,隨後空冷。
時效處理的目的是消除固溶處理所產生的對綜合性能不利的α』相。固溶處理所產
生的淬火馬氏體α』,在時效過程中發生迅速分解(相變相當復雜),使強度升高,
對此有兩種看法:
1。認為由於α』分解出α+β,分解產物的彌散強化作用使TC4 強度升高。
2.認為在時效過程中,β 相分解形成ω 相,造成TC4 強化。
隨著時效的進行,強度降低,對此現象也有兩種不同的觀點:
1.β 相的聚集使強度降低(與上述1 對應)。
2.ω 相的分解為一軟化過程(與上述2 對應)。
時效溫度和時間的選擇要以獲得最好的綜合性能為准。在推薦的固溶及時效
范圍內,最好通過時效硬化曲線來確定最佳工藝(如圖5-28 所示。此曲線為TC4
經850℃固溶處理後,在不同溫度下的時效硬化曲線)。低溫時效(480-560℃)
要比大於700℃的高溫時效好。因為在高溫時的拉伸強度、持久和蠕變強度、斷
裂韌性以及缺口拉伸性能等各方面,低溫時效都比高溫時效的好。
經固溶處理的TC4 綜合性能比750-800℃ 退火處理後的綜合性能要好。
需要指出的是,TC4 合金的加工態原始組織對熱處理後的顯微組織和力學性
能有較大的影響。對於高於相變溫度,經過不同變形而形成的網蘭狀組織來說,
是不能被熱處理所改變,在750~800℃退火後,基本保持原來的組織狀態;對於
在相變溫度以下進行加工而得到的α 及β 相組織,在750-800℃退火後,則能得
到等軸初生α相及轉變的β相。前者的拉伸延性和斷面收縮率都較後者低;但耐
高溫性能和斷裂韌性、抗熱鹽應力腐蝕都較高。
四.Ti-32Mo-2.5Nb 的熱處理
Ti-32Mo-2.5Nb 是穩定β 型單相固溶合金,只需進行消除應力退火處理,
退火溫度為750~800℃,保溫一小時,冷卻方式採用空冷、爐冷均可。
五.熱處理中的幾個問題
(一)污染問題
鈦有極高的化學活性,幾乎能與所有的元素作用。在室溫下能與空氣中的氧
起反應,生成一層極薄的氧化膜,氧化速率很小。但在高的溫度下,除了氧化速
率加快並向金屬晶格內擴散外,鈦還與空氣中的氫、氮、碳等起激烈的反應,也
能與氣體化合物CO、CO2、H2O、NH4 及許多揮發性有機物反應。熱處理金屬元
素與工件表面的鈦發生反應,使鈦表面的化學成分發生變化,其中一些間隙元素
還能透過金屬點陣,形成間隙固溶體。況且除氫以外,其他元素與鈦的反應是不
可逆的。即使是氫,也不允許在最終熱處理後,進行高溫去除。間隙元素不僅影
響鈦和鈦合金的力學性能,而且還影響α+β/β 轉變溫度和一些相變過程,因此,
對於間隙元素,尤其是氣體雜質元素對鈦和鈦合金的污染問題,在熱處理中必須
引起重視。
(二)加熱爐的選擇
為在加熱過程中防止污染,必須對不同要求的工件採取不同的措施。若在最
後經磨削或其他機械加工能將工件表面的污染層去除時,可在任何類型的加熱爐
中進行加熱,爐內氣氛呈中性或微氧化性。為防止吸氫,爐內應絕對避免呈還原
性氣氛。當工件的最後加工工序為熱處理時,一定要採用真空爐(真空度要求在
1×10-4mmHg)或氬氣氣氛(氬氣純度在99.99%以上並且乾燥)的加熱爐中進行
加熱。熱處理完畢後,必要時用30%的硝酸加3%的氫氟酸其餘為水,在50℃溫
度下對工件進行酸洗,或輕微磨削,以除去表面污染層。
(四)加熱方法
在熱處理進行以前,首先要對加熱爐爐膛進行清理,爐內不應有其他金屬或
氧化皮;對於工件,則要求表面沒有油污、水和氧化皮。
用真空爐對鈦工件進行加熱是防止污染的一種有效方法,但由於目前條件所
限,許多工廠還是採用一般加熱爐。在一般加熱爐中加熱,根據需求的不同採用
不同的措施防止污染,比如:
1.根據工件的大小,可裝在封閉的低碳鋼容器中,抽真空後進行加熱。若無真
空泵可通入惰性氣體(氬氣或氦氣)進行保護,保護氣體要多次反復通入、
排出,把空氣完全排凈。
2.使用塗層也是熱處理中保護鈦免遭污染的措施之一,在國外已取得一定的經
驗。國內一些工廠也在採用高溫漆和玻璃塗料作塗層。有人認為,目前對鈦
所用的各種保護塗層,只能減少污染的深度,並不能完全免除污染。對每種
熱處理,必須考慮允許的污染深度,選擇合適有效的塗層,其中也包括熱處
理後的剝離。
3.若用火焰加熱,在加熱過程中切忌火焰直接噴射在鈦工件上,煤氣火焰是鈦
吸氫的主要根源之一。而用燃油加熱,如若不慎將會引起鈦工件過分氧化或
增碳。
(五) 冷卻
鈦和鈦合金熱處理的冷卻方式主要是空冷或爐冷,也有採用油冷或風扇冷卻
的。淬火介質可用低粘度油或含3%NaOH 的水溶液,但通常使用最廣泛的淬火
介質是水。
只要能滿足鈦和鈦合金對冷卻速度的要求。一般鋼的熱處理所採用的冷卻裝
置對鈦都適用。
Ⅶ 鈦合金的表面處理一般用什麼方法
深圳實鈦科技:鈦合金的表面處理,一般是指處理鈦合金的表面反映回層,因為表面反應答層是影響鈦鑄件理化性能的主要因素,在鈦鑄件研磨拋光前,必須達到完全去除表面污染層,才能達到滿意的拋光效果。通過噴砂後酸洗的方法可完全去除鈦的表面反應層。
1. 噴砂:
鈦鑄件的噴砂處理一般選用白剛玉粗噴較好,噴砂的壓力要比非貴金屬者較小,一般控制在0.45Mpa以下。因為,噴射壓力過大時, 砂粒沖擊鈦表面產生激烈火花,溫度升高可與鈦表面發生反應,形成二次污染,影響表面質量。時間為15~30秒,僅去除鑄件表面的粘砂、表面燒結層和部分和氧化層即可。其餘的表面反應層結構宜採用化學酸洗的方法快速去除。
2. 酸洗:
酸洗能夠快速完全去除表面反應層,而表面不會產生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用於鈦的酸洗,但 HF—HCl系酸洗液吸氫量較大,而HF—HNO3系酸洗液吸氫量小,可控制HNO3的濃度減少吸氫,並可對表面進行光亮處理,一般HF的濃度在3%~5 %左右,HNO3的濃度在15%~30%左右為宜。
Ⅷ 鈦合金的加工方式是什麼你知道嗎
鈦合金的硬度大於HB350時切削加工特別困難,小於HB300時則容易出現粘刀現象,也難於切削。但鈦合金的硬度只是難於切削加工的一個方面,關鍵在於鈦合金本身化學、物理、力學性能間的綜合對其切削加工性的影響。鈦合金有如下切削特點:變形系數小:這是鈦合金切削加工的顯著特點,變形系數小於或接近於1。切屑在前刀面上滑動摩擦的路程大大增大,加速刀具磨損。切削溫度高:由於鈦合金的導熱系數很小(只相當於45號鋼的1/5~1/7),切屑與前刀面的接觸長度極短,切削時產生的熱不易傳出,集中在切削區和切削刃附近的較小范圍內,切削溫度很高。在相同的切削條件下,切削溫度可比切削45號鋼時高出一倍以上。單位面積上的切削力大:主切削力比切鋼時約小20%,由於切屑與前刀面的接觸長度極短,單位接觸面積上的切削力大大增加,容易造成崩刃。同時,由於鈦合金的彈性模量小,加工時在徑向力作用下容易產生彎曲變形,引起振動,加大刀具磨損並影響零件的精度。因此,要求工藝系統應具有較好的剛性。
冷硬現象嚴重:由於鈦的化學活性大,在高的切削溫度下,很容易吸收空氣中的氧和氮形成硬而脆的外皮;同時切削過程中的塑性變形也會造成表面硬化。冷硬現象不僅會降低零件的疲勞強度,而且能加劇刀具磨損,是切削鈦合金時的一個很重要特點。刀具易磨損:毛坯經過沖壓、鍛造、熱軋等方法加工後,形成硬而脆的不均勻外皮,極易造成崩刃現象,使得切除硬皮成為鈦合金加工中最困難的工序。
Ⅸ 鈦合金用途和生產工藝
鈦合金具有強度高而密度又小,機械性能好,韌性和抗蝕性能很好。另外,鈦合金的工藝性能差,切削加工困難,在熱加工中,非常容易吸收氫氧氮碳等雜質。還有抗磨性差,生產工藝復雜。現在主要用於人造地球衛星、登月艙、載人飛船和太空梭
,生產工藝不大知道