❶ 40Cr钢焊接采用什么焊条好,采用什么工艺保证不裂
根据《焊工手册》手工焊接与切割中关于40Cr万向轴的焊接:可以采用J857高强度碱性低氢型焊条。
采用工艺:焊条经350~400摄氏度烘干,预热300摄氏度,焊后置于石棉灰中缓冷,进行550~600摄氏度的消除应力回火处理。
40Cr是我国GB的标准钢号,40Cr钢是机械制造业使用最广泛的钢之一。调质处理后具有良好的综合力学性能,良好的低温冲击韧性和低的缺口敏感性。钢的淬透性良好,水淬时可淬透到Ф28~60mm,油淬时可淬透到Ф15~40mm。这种钢除调质处理外还适于氰化和高频淬火处理。切削性能较好,当硬度为HB174~229时,相对切削加工性为60%。该钢适于制作中型塑料模具。
❷ 40Cr钢焊接采用什么焊条好,采用什么工艺保证不裂
根据《焊工手册》手工焊接与切割中关于40Cr万向轴的焊接:可以采用J857高强度碱性低氢型焊条。
采用工艺:焊条经350~400摄氏度烘干,预热300摄氏度,焊后置于石棉灰中缓冷,进行550~600摄氏度的消除应力回火处理。
40Cr是我国GB的标准钢号,40Cr钢是机械制造业使用最广泛的钢之一。调质处理后具有良好的综合力学性能,良好的低温冲击韧性和低的缺口敏感性。钢的淬透性良好,水淬时可淬透到Ф28~60mm,油淬时可淬透到Ф15~40mm。这种钢除调质处理外还适于氰化和高频淬火处理。切削性能较好,当硬度为HB174~229时,相对切削加工性为60%。该钢适于制作中型塑料模具。
❸ Q460E低合金高强钢焊接时的注意事项有哪些
主要注意事项有:
1、焊接前将焊缝附近杂物、药皮等清理彻底后再进行焊接,以保证焊接质量。
在焊缝周围涂抹防飞溅液,不得在焊缝以外的其它任何部位点焊、引弧、试焊等。
2、所有焊缝均为满焊,焊缝高度要符合图纸设计要求,最小焊角尺寸不得低于
与相连的较薄板件的厚度。特别注意底法兰及牛腿处焊高。翼板对接焊口,要气刨清根彻底后焊接,焊接前必须加设引收弧板,焊缝不得低于母材,且余高不得大于2mm,余高过高或有焊瘤等要用磨光机打磨清除。焊后将引收弧板刨掉,用磨光机将边部打磨平整。
3、焊缝外观成形光滑美观,不得有任何焊接缺陷,如气孔、咬边、流淌、焊不
到头、包角不完整、未封口等现象。
注:系杆、柱撑、水平撑等其它构件焊接质量要求同上,角钢构件特别注意对接口焊缝质量,所有焊缝均不得出现咬边现象。
❹ 低温钢焊接注意事项
常用的焊接方法有焊条电弧焊、埋弧自动焊、钨极氩弧焊、熔化极气体保护焊。
低合金低温用钢焊接时,为避免焊缝金属及近缝区形成粗大组织而尽量不摆动,采用窄焊道、多道多层焊,焊接电流不宜过大,宜用快速多道焊以减轻焊道过热,并通过多层焊的重热作用细化晶粒。多道焊时,要控制道间温度,应采用小的热输入施焊,控制在20KJ/cm以下。如果需要预热,应严格控制预热温度及多层多道焊时的道间温度
❺ 试指出低碳钢和合金钢热影响区的组织有何异同,怎样才能防止合金钢的焊接裂纹
低碳钢的焊抄接结构,用手工电弧焊或埋弧焊自动焊时,热影响区尺寸较小,对焊接产品质量影响较小,焊后可不进行热处理;对于低合金钢焊接结构或用电渣焊焊接的结构,热影响区较小,焊后必须进行处理,通常可用正火的方法,细化颗粒,均匀组织,改善焊接接头的质量;对于焊后不能进行热处理的焊接结构,只能通过正确选择焊接方法,合理制定焊接工艺来减小焊接热影响区,一保证焊接质量。
怎样才能防止合金钢的焊接裂纹?焊前应将焊件加热到一定温度后才进行焊接。
❻ 焊接时低合金钢出现焊接问题应采取哪些措施,焊接方法,焊接工艺参数、焊接材料有哪些,是怎么焊前预热的
一、焊接时低合金钢出现焊接问题
强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是:
1、热影响区的淬硬倾向 含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。
2、冷裂纹 低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟的性质,危害性很大。例如,材料为18MnMoNb钢壁厚 115mm 的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。
低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。
3、热裂纹 一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。
强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。
4、粗晶区脆化 热影响区中被加热至 1100℃ 以上的粗晶区,当焊接线能量过大时,粗晶区的晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。
13 试述低合金高强钢焊接时的主要工艺措施。
⑴预热 预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。
⑵焊接线能量的选择 含碳低的热轧钢(09Mn2、09MnNb钢等)以及含碳量偏下限的16Mn钢焊接时,因为这些钢的冷裂淬硬、脆化等倾向小,所以对焊接线能量没有严格的限制。焊接含碳量偏高的16Mn钢时,为降低淬硬倾向,焊接线能量应偏大一点。对于含V、Nb、Ti的钢种,为降低热影响区粗晶脆化所造成的不利影响,应选择较小的焊接线能量。如15MnVN钢的焊接线能量应控制在40~45kJ/cm以下。
对于碳及合金元素含量较高而屈服点为490MPa的正火钢(如18MnMoNb钢等),因淬硬倾向大,应选择较大的焊接线能量,但当采用焊前预热时,为了避免过热倾向,可以适当地减少线能量。
⑶后热及焊后热处理 后热是指焊接结束或焊完一条焊缝后,将焊件立即加热至150~250℃范围内,并保温一段时间,使接头中的氢扩散逸出,防止延迟裂纹产生。
对于厚壁容器、高刚性的焊接结构以及一些在低温、耐蚀条件下工作的构件,焊后应及时进行消除应力的高温回火,其目的是消除焊接残余应力,改善组织。
焊后立即进行高温回火的焊件,无需再进行后热处理。
二、16Mn钢的焊接工艺
16Mn钢属于碳锰钢,碳当量为0.345%~0.491%,屈服点等于343MPa(强度级别属于343MPa级)。16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。不同板厚及不同环境温度下16Mn钢的预热温度,见表8。
16Mn钢手弧焊时应选用E50型焊条,如碱性焊条E5015、E5016,对于不重要的结构,也可选用酸性焊条E5003、E5001。对厚度小、坡口窄的焊件,可选用E4315、E4316焊条。
焊接16Mn钢的预热温度
焊件厚度 (mm) 不同气温下的预热温度计(℃)
16以上 不低于- 10℃ 不预热,- 10℃ 以下预热100~150℃
16~24 不低于- 5℃ 不预热,- 5℃ 以下预热100~150℃
25~40 不低于 0℃ 不预热, 0℃ 以下预热100~150℃
40以上 均预热100~150℃
16Mn钢埋弧焊时H08MnA焊丝配合焊剂HJ431(开I形坡口对接)或H10Mn2焊丝配合焊剂HJ431(中板开坡口对接),当需焊接厚板深坡口焊缝时,应选用H08MnMoA焊丝配合焊剂HJ431。
16Mn钢是目前我国应用最广的低合金钢,用于制造焊接结构的16Mn钢均为16MnR和16Mng钢。
三、18MnMoNb钢的焊接工艺
18MnMoNb钢的屈服点等于490MPa(属于490MPa级钢),由于碳及合金钢元素的含量都较高,所以淬火硬倾向及冷裂倾向均比16Mn钢大。焊接工艺要点:
1)除电渣焊外,焊前对焊件应采取预热措施,预热温度控制在150~ 180℃ 。对于刚度较大的接头,预热温度应提高至180~ 230℃ 。焊后或中断焊接时,应立即进行250~ 350℃ 的后热处理。
2)为保证接头性能和质量,应适当控制焊接线能量,如手弧焊时,焊接线能量应控制在24kJ/cm以下;埋弧焊时,焊接线能量应控制在35kJ/cm以下。但焊接线能量不能过小,否则焊接接头易出现淬硬组织和降低韧性。同时,层间温度应控制在预热温度和 300℃ 之间。
4)焊后应进行热处理。电渣焊接头热处理的方式是900~ 980℃ 正火加630~ 670℃ 回火。手弧焊及埋弧焊接头进行消除焊接残余应力的高温回火处理,回火温度比一般钢材回火温度低 30℃ 左右。
18MnMoNb钢手弧焊时应选用E60型焊条,如碱性焊条E6015、E6016,
18MnMoNb钢埋弧焊时H08Mn2MoA焊丝配合焊剂HJ431。
以上是两种典型的低合金钢的焊接方法,焊接工艺参数、焊接材料选择的焊接要点望阅读后能得到一些启发,以后在焊接低合金钢是能派上用处。希望你能早日掌握此技术,祝你成功。
❼ 对于焊缝裂纹,原则上要怎么做并作怎么处理
原则上方法:
①限制钢材及焊接材料中易偏析元素和有害杂质的含量。特别是减少硫、磷等杂质的含量及降低碳的含量。
②调节焊缝的化学成分,改善焊缝组织,细化焊缝晶粒,以提高其塑性,减少或分散偏析程度,控制低熔点共晶的影响。
③提高焊条的碱度,以降低焊缝中的杂质的含量。
④控制焊接规范,适当提高焊缝系数,用多层多道焊法,避免中心偏析,可防止中心线裂纹。
⑤采取降低焊接应力的措施,收弧时填满弧坑。
处理:收缩裂纹一般在收弧的时候产生,所以在收弧的时候有收弧动作(多点焊几次,填满弧坑)就可以避免。
(7)低合金钢焊怎么防裂扩展阅读:
焊接裂纹不仅发生于焊接过程中,有的还有一定潜伏期,有的则产生于焊后的再次加热过程中。焊接裂纹根据其部位、尺寸、形成原因和机理的不同,可以有不同的分类方法。按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。
按焊缝结合形式不同可分为对接焊缝、角焊缝、塞焊缝、槽焊缝和端接焊缝五种。
1)对接焊缝。在焊件的坡口面间或一零件的坡口面与另一零件表面间焊接的焊缝。
2)角焊缝。沿两直交或近直交零件的交线所焊接的焊缝。
3)端接焊缝。构成端接接头所形成的焊缝。
4)塞焊缝。两零件相叠,其中一块开圆孔,在圆孔中焊接两板所形成的焊缝,只在孔内焊角恒缝者不为塞焊。
5)槽焊缝。两板相叠,其中一块开长孔,在长孔中焊接两板的焊缝,只焊角焊缝者不为槽焊。
❽ Q460E低合金高强钢焊接时的注意事项有哪些
低合金高强钢的焊接性主要包括两个方面,其一是裂纹敏感性,其二是焊接 热影响区的力学性能。 众所周知,扩散氢、脆性组织和残余应力是冷裂纹产生的三要素,碳当量公式 (如 IIW 的 CEN 公式)热影响区最大硬度等都被用来评价钢材的冷裂敏感性。
(1)冷裂纹问题 对于现代低合金高强度钢, 由于热机械控制工艺技术和微合金化技术的广泛 应用,碳含量和碳当量都大幅度降低,因此,其冷裂敏感性不明显,除非在极端 情况下(很大的拘束度或扩散氢含量很高) ,一般不会遭遇冷裂纹。 值得注意的是焊缝金属冷裂纹问题。 冷裂纹倾向低合金高强钢随着强度等级的增高,焊接接头冷裂纹倾向增大。冷裂纹又叫氢致裂纹或延迟裂纹,是指焊接接头冷却到较低温度(Ms 温度以下)时产生的焊接 裂纹冷裂纹一般产生在热影响区,有时也产生在焊缝金属内。产生冷裂纹的三个 主要因素是:裂缝金属内残留的扩散氢、热影响区或焊缝金属硬组织、焊接残余 应力。 焊接低合金高强度钢时, 氢的主要来源是焊条药皮中的水分和破口表面的水 分、油污哪销等杂质。这些物质在电弧高温作用下分解出氢,溶解在熔池金属内,熔 池冷却凝时氢来不及逸出,残留在焊缝内。另外,李扮游焊接低合金高强度钢的一个重 要特点是热影响区有较大的淬硬倾向,随强度等级的提高、含碳元素或合金元素 含量增多,其淬硬性也增大。当焊接浮大焊件或冷却速度过快时,热影响区或焊 缝金属更容易产生淬硬组织。 焊接时由于不均匀的加热和冷却以及构件本身的拘 束作用,在焊缝内仍然会产生很大的残余应力。所以,低合金高强度钢焊接时有 较大的冷裂倾向。 为防止冷裂纹的产生,焊前应严标按照说明书的规定烘干焊条,将坡口清理 干净,并采取焊前预热、焊后保温缓冷及热处理等措施。 母材强度的提高和焊接性的改善, 促使冷裂纹发生的位置从热影响区转移到 焊缝。基于焊后随时间变化氢对局部临界开裂应力的影响,国际焊接联合会提出 了判别高强钢冷裂纹位置的基本方法,焊后焊缝中的氢含量随时间单调减少,而热影响区的氢含量先从母材基础值升高到峰值然后下降,整个过程只有几分钟, 恰好与残余应力发生的过程同步,通过计算残余应力值-时间的变化、以及热影 响区和焊缝受实时扩散氢含量影响的临界开裂应力, 即可预测冷裂纹发生的位置。 高强度焊缝金属对裂纹敏感性大,当然有利于焊缝冷裂纹。影响焊缝冷裂纹的还 有残余应力值及其产生的时间,如果较早地产生较大的残余应力,则有利于焊缝 冷裂纹值。相反,低强度焊缝金属、低残余应力或较晚产生残余应力有利于热影 响区冷裂纹的产生。
(2)热裂纹倾向 在焊接过程中, 焊缝和热影响区金属冷却到固相线附近的高温区产生的焊接 裂纹。 热裂纹都是沿着晶界开裂分布在焊缝中心或两侧, 表面是不规则的锯齿状。 产生热裂纹的主要原因是由于焊缝金属中碳、硫元素含量偏高,在焊接过程中形 成低熔点共晶物缺让,当液态金属冷却到结晶时聚集在晶界处,在焊接应力的作用下 沿晶界开裂,形成热裂纹。低合金钢焊接时,应考虑钢材和焊接材料的含碳量, 由于锰可以和硫形成硫化锰,硫化锰熔点高,会增加钢的抗裂纹性,同时还要减 小焊接结构的刚性,控制焊缝成形系数等,防止热裂纹倾向。
(3)热影响区的组织和韧性 热影响区由不同区域的组织构成,每一区域的组织都受加热速度、峰值温度 和冷却速度的影响。对于单道焊,根据峰值温度,热影响区可划分为粗晶区(GC 热影响区) 细晶区 , (GR 热影响区) 中间临界区 , (IC 热影响区) 和亚临界区 (SC 热影响区) ;对于双道焊或多层焊,第二道焊道的热影响区与第一道重叠,在第 一道的热影响区中形成被部分或完全再热区, 其中最引人注目的是亚临界再热粗 。 晶区(SCGC 热影响区)和中间临界再热粗晶区(ICGC 热影响区) 粗晶区的组织与韧性 粗晶区因为奥氏体长大和易形成脆性组织而倍受关注,在 1000°C 以上,奥 氏体长大迅速, 利用微合金元素形成微小的碳化物或氮化物粒子是限制奥氏体晶 粒长大的有效途径,Nb 和 Ti 是应用最多的微合金元素,在管线钢、船板和建筑 结构中均广泛使用, 然而, 必须严格控制其含量, 使得碳氮化物粒子即不会太粗, 也不会过分地细小。 粗晶区的相变组织是影响其韧性水平的主要因素。 粗晶区奥氏体在冷却过程中发生相变,相变组织主要取决于材料的淬透性和冷却速度,还取决于是否存在 抑制晶界铁素体的 B 以及晶内是否有促进铁素体形核的细小粒子如 TiO2,而这 一切均能够在相变温度范围中体现。 中间临界再热粗晶区往往是可能的低韧性区,尤其是形成 M-A 组元的情况 下。在再热粗晶区中,后续焊道将前边焊道的粗晶区再热到 Ac1~Ac3 的温度,使 其发生部分奥氏体化转变,部分奥氏体化转变导致局部富碳的奥氏体的形成,并 在冷却时转变为高碳孪晶马氏体。这些脆性的“小岛”尺寸可达 5mm,在再热粗 晶区中的相比例可达 5%,因此导致再热粗晶区的韧性大幅度下降。 局部脆性区一般发生在粗晶区和再热粗晶区,较少地发生在再热热影响区, 上世纪 80 年代以来,局部脆性区问题引起了广泛的关注和争议,一方面,裂纹 尖端张开位移试验发现局部脆性区的韧性很低,有时裂纹尖端张开位移值低到 0.05mm 以下, 另一方面, 尚没有关于局部脆性区导致焊接结构提早失效的案例。 有关局部脆性区的研究很多, 总的说来局部脆性区的韧性取决于局部脆性区的宽 度,局部脆性区越宽,裂纹尖端张开位移值就越低,而热影响区的韧性又是最低 的,所以,在多层焊时焊道的布置和焊接工艺的控制十分重要。
❾ 普通低合金钢焊接时,要注意什么
对应材料型号,注意焊材选择正确。焊前清理和预热,焊后的保温等等,这些依据材料特性选择适合的处理方法。
❿ 低合金高强钢的焊接经常会出现冷裂纹、热裂纹问题,有没有什么改善措施呢
钢结构焊接常出现的另一质量问题是产生焊接裂纹。分为热裂纹和冷裂纹两类。
热裂纹是指高温下所产生的裂纹,又称高温裂纹或结晶裂纹,通常产生在焊缝内部,有时也可能出现在热影响区,表现形式有:纵向裂纹、横向裂纹、根部裂纹弧坑裂纹和热影响区裂纹。其产生原因是由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层形式存在从而形成偏析,凝固以后强度也较低。当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开,形成裂纹。此外,如果母材的晶界上也存在有低熔点共晶和杂质,当焊接拉应力足够大时,也会被拉开。总之,热裂纹的产生是冶金因素和力学因素共同作用的结果。
针对其产生原因,其预防措施如下:
限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素和有害杂质的含量,特别应控制硫、磷的含量和降低含碳,一般用于焊接的钢材中硫的含量不应大于0.045%,磷的含量不应大于0.055%;另外钢材含碳量越离,焊接性能越差,一般焊缝中碳的含量控制在0.10%以下时,热裂纹敏感性可大大降低。二是调整焊缝金属的化学成分,改善焊缝组织,细化焊缝品粒,以提高其塑性,减少或分散偏析程度,控制低熔点共品的有害影响。三是采用碱性焊条或焊剂,以降低焊缝中的杂质含摄,改善结晶时的偏析程度。适当提高焊缝的形状系数,采用多层多道焊接方法,避免中心线偏析,也可防止中心线裂纹。另外在操作时采用合理的焊接顺序和方向,采用较小的焊接线能超,整体预热和锤击法,收弧时填满弧坑等工艺措施,也能预防热裂纹的产生。
冷裂纹一般是指焊缝在冷却过程中温度降到马氏体转变温度范围内(300~200℃以下)产生的裂纹。可以在焊接后立即出现,也可以在焊接以后的较长时间才发生,故也称为延迟裂纹。其形成的基本条件有3个:焊接接头形成淬硬组织;扩散氢的存在和浓集;存在着较大的焊接拉伸应力。
冷裂纹的预防措施主要有几方面:
一是选择合理的焊接规范和线能,改善焊缝及热影响区组织状态,如焊前预热、控制层间温度、焊后缓冷或后热等以加快氢分子逸出;
二是采用碱性焊条或焊剂,以降低焊缝中的扩散氧含量。
三是焊条和焊剂在使用前应严格按照规定的要求进行烘干(低氢焊条300℃~350℃保温lh;酸性焊条l00℃~l50℃保温lh;焊剂200℃~250°保温2h),认真清理坡口和焊丝,汰除油污、水分和锈斑等脏物,以减少氢的来源。
四是焊后及时进行热处理。一种是进行退火处理,以消除内应力,使淬火组织回火,改善其韧性;二是进行消氢处理,使氢从焊接接头中充分逸出。除此之外,选材上提高钢材质量,减少钢材中的层状夹杂物,工艺上采取可降低焊接应力的各种措施,也都是必要的。