导航:首页 > 合金材料 > 低合金钢有什么用

低合金钢有什么用

发布时间:2023-04-13 06:57:48

『壹』 合金钢的作用

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳含量超过0.23%时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。
8、 钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。 还可以抑制合金钢由于淬火而引起的脆性。在工具钢中可提高红性。
9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。
10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。
11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。
12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。
13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。
14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。
15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。
16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。
17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。
18、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土。钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能。在犁铧钢中加入稀土,可提高耐磨性。

『贰』 低合金钢都有哪些性能用途

低合金钢是指合金元素总量小于5%的合金钢。低合金钢是相对于碳钢而言的,是在碳钢的基础上,为了改善钢的性能,而有意向钢中加入一种或几种合金元素。加入的合金量超过碳钢正常生产方法所具有的一般含量时,称这种钢为合金钢。当合金总量低于5%时称为低合金钢,普通合金钢一般在3.5%以下,合金含量在5-10%之间称为中合金钢,大于10%的称为高合金钢。
低合金钢性能:
1、强度
钢结构件的屈服点决定了结构所能承受的不发生永久变形的应力。典型碳素结构钢的最小屈服点为235MPa。而典型低合金高强度钢的最小屈服点为345MPa。因此,根据其屈服点的比例关系,低合金高强度钢的使用允许应力比碳素结构钢高1.4倍。
与碳素结构钢相比,使用低合金高强度钢可以减小结构件的尺寸,使重量减轻。必须注意,对于可能出现弯曲的构件,其许用应力必须修正,以达到保证结构的坚固性。有时用低合金高强度钢取代碳素结构钢但不改变断面尺寸,其唯一的目的是在不增加重量的情况下而得到强度更高更耐久的结构。节约重量对运输车辆的结构是最重要的,这样就可以运输更重的重量和减少能量消耗。
最新的发展是采用通过临界退火和快速冷却得到马氏体和铁素体二相显微组织(或双相显微组织)的低合金高强度钢。这种钢的薄板产品有极好的成形性能,屈服点一般为310~345MPa,通过汽车部件压力成形产生的应变,屈服点可以提高到550MPa或更高。
2、成形性能
为了容易地和经济地进行热或冷加工以制成工程结构的各种部件,低合金高强度钢必需具有适当的成形性能。和碳素结构钢一样,低合金高强度钢一般可以进行这样的加工,以及如剪切、冲孔和机加工艺。虽然其屈服点高,即使成形操作变形相当剧烈也同样可以使用用于碳素结构钢成形的冷弯冲压机、拉拔机、压力机和其他设备,但是一些设备具需要修改。
低合金高强度钢和碳素结构钢的冷成形性能之间有固有的区别。首先,使低合金高强度钢产生一定量的永久变形比同样尺寸的碳素结构钢需要更大的力。第二,当低合金高强度钢成形时,对回弹应给出稍大些的允许量。
根据经验,除非对低合金高强度钢进行控制夹杂物形状的处理,否则在进行冷成形时必须使用比碳素结构钢更大的弯曲半径。
3、焊接性能
由于钢结构在制作加工过程中经常使用焊接工艺,因此对于这类用途的低合金高强度钢来说,能够采用在薄板和钢带这样的厚度情况下广泛使用的电弧焊工艺进行焊接是非常重要的,所制作的钢结构的焊缝应具有要求的强度和韧性也同样是非常重要的,这样才能经受住预定用途出现的最不利的条件。
目前低合金高强度钢的发展与各种焊接工艺的发展足同步进行的,要特别注意确保这些钢能够具有适当的焊接性能。如果焊接操作得当,大部分低合金高强度钢是可以很好地进行焊接的。对于大型型钢和较高碳和锰含量的牌号,需要预热或采用低氢焊条。对于某些低合金高强度钢无论厚度是多少,都应采用低氧焊条。
4、耐腐蚀性
当使用低合金高强度钢时,都是希望取其强度高的优点而用较薄的截面,这不仅仅是为了节省重量而且也是为了尽可能的经济。但是,必须要充分考虑腐蚀这一因素,钢材截面愈薄就愈应注意防腐。任何钢结构的防腐一般都是通过在适当准备的表面上涂防腐层并且对防腐层加以保护的方法来达到的。
一些低合金高强度钢具有良好的耐大气腐蚀性能,其不仅可以提高防腐涂层的效果,而且在某些情况下采取适当的预防措施甚至还可以在不涂层的状态下暴露在大气中使用。提高耐大气腐蚀性能的元素是铜、磷、硅、铬、镍和钼。一些低合金高强度钢的优良的耐大气腐蚀性能导致形成了建筑、桥梁等结构设计的新概念,即这些结构选用适当的低合金高强度钢的裸露构件来建造。
在正常暴露在大气中的情况下,裸露的钢在大气腐蚀的最初几个月形成一种紧密的保护性氧化膜。有时建筑师选用裸露的钢结构是因为希望得到钢表面均匀的大气氧化的外观,而有时则是为了节省涂保护层以达到经济的目的。在裸露状态下使用这些低合金高强度钢,设计上必须考虑钢的表面不能长期是潮湿的,而且还应特别注意特殊的大气环境,以保证在此条件下钢的腐蚀速率是允许的。
例如在强化学或工业烟气的条件下则显然是不适宜的。为了验证在某些环境下是否可以使用裸露的钢结构。需要对大气环境进行测定,甚至需要进行裸露试验。
5、缺口韧性
低合金高强度钢牌号在设计上具有对其预期的结构用途来说相当好的缺口韧性。具体牌号的低合金高强度钢其缺口韧性的适用性,或是只根据已有的使用经验,或是结合缺口试样的冲击试验结果综合考虑。为了满足某些用途的极严格的要求,生产的一些低合金高强度钢具有极好的缺口韧性。例如,通常采用控制热轧技术生产用于制造焊接管线钢管的低台金高强度钢钢板,这种钢管需要符合有关标准对缺口韧性规定的要求。
低合金钢用途和特性:
低合金钢焊接结构的零部件通常需要经过加工成形—焊接—焊后热处理等工序,这就要求钢材具有良好的工艺性能。工艺性能包括金属的焊接性,切削性能,冷、热加工性能,热处理性能,可锻性,组织均匀稳定性及大截面的淬透性等。在考虑材料成本的同时还应考虑材料加工、焊接难易程度不同对制造费用的影响。
低合金钢在工程机械、船舶、桥梁、高层建筑、锅炉及压力容器、电力、各种车辆的制造中得到了广泛的应用。这与它的特性(如:塑性、韧性、焊接性能)是分不开的。图集中展示了一些常见的低合金钢的用途和特性。

『叁』 钢一般分为哪些类他们有什么区别各有什么特性和用途.

一 钢材的种类
按用途可分为:结构钢、工具钢和特殊钢;
按冶炼方法可分为:转炉钢和平炉钢;
按脱氧方法可分为:沸腾钢(F)、半镇静钢(b)、镇静钢(Z)和特殊镇静钢(TZ),镇静钢和特殊镇静钢的代号可以省去;
按成型方法可分为:轧制钢(热轧、冷轧)、锻钢和铸钢;
按化学成分可分为:碳素钢和合金钢。
1.钢材的牌号
钢材的品种繁多,钢结构中采用的钢材主要有二类。
⑴碳素结构钢
根据现行的国家标准《碳素结构钢》(GB700)的规定,碳素结构钢的牌号由代表屈服点的字母Q、屈服点的数值(N/mm2)、质量等级符号和脱氧方法符号等四个部分按顺序组成。
碳素结构钢分为Q195、Q215、Q235、Q255和Q275等五种,屈服强度越大,其含碳量、强度和硬度越大,塑性越低。其中Q235在使用、加工和焊接方面的性能都比较好,是钢结构常用钢材之一。

质量等级分为A、B、C、D四级,由A到D表示质量由低到高。不同质量等级钢对化学成分和力学性能的要求不同。A级无冲击功规定,对冷弯试验只在需方有要求时才进行,其碳、锰、硅含量也可以不作为交货条件;B级、C级、D级分别要求保证20℃、0℃、-20℃时夏比V形缺口冲击功不小于27J(纵向),都要求提供冷弯试验的合格保证,以及碳、锰、硅、硫和磷等含量的质保。所有钢材交货时供方应提供屈服点、极限强度和伸长率等力学性能的质保。
沸腾钢、镇静钢、半镇静钢和特殊镇静钢分别用汉字拼音字首F、Z、b和TZ表示。对Q235,A、B级钢可以是Z、b或F,C级钢只能是Z,D级钢只能是TZ。Z和TZ可以省略不写。
如Q235-AF表示屈服强度为235N/mm2的A级沸腾钢;Q235-Bb表示屈服强度为235N/mm2的B级半镇静钢;Q235-C表示屈服强度为235N/mm2的C级镇静钢。
(2) 低合金高强度结构钢
低合金钢是指在炼钢过程中添加一种或几种少量合金元素,其总量低于5%的钢材。低合金钢因含有合金元素而具有较高的强度。根据现行国家标准《低合金高强度结构钢》(GBT/l591)的规定,其牌号与碳素结构钢牌号的表示方法相同,常用的低合金钢有Q345、Q390、Q420等。
低合金钢交货时供方应提供屈服强度、极限强度、伸长率和冷弯试验等力学性能质保;还要提供碳、锰、硅、硫、磷、钒、铝和铁等化学成分含量的质保。
低合金钢的质量等级除与碳素结构钢A、B、C、D四个等级相同外,增加E级,其要求提供-40℃时夏比V型缺口冲击功不小于27J(纵向)。不同质量等级对碳、硫、磷、铝的含量的要求也有区别。 低合金钢的脱氧方法为镇静钢或特殊镇静钢。 Q345-B表示屈服强度为345N/mm2的B级镇静钢;Q390-D表示屈服强度为390N/mm2的D级特殊镇静钢。
碳素结构钢和低合金钢都可以采取适当的热处理(如调质处理)进一步提高其强度。例如用于制造高强度螺栓的45号优质碳素钢以及40硼(40B)、20锰钛硼(20MnTiB)就是通过调质处理提高强度的。
注意:质量等级的划分与要求:碳素钢分(A、B、C、D) 四级,低合金钢分(A、B、C、D、E)五级。各级钢的保证条件为:
A级钢-抗拉强度、屈服点和伸长率,冷弯试验只在需方要求时进行,无冲击韧性要求;
B级钢-抗拉强度、屈服点和伸长率,冷弯试验合格,常温(20℃)冲击试验,要求冲击功不小于27 J;
C级钢-抗拉强度、屈服点和伸长率,冷弯试验合格,0℃冲击试验,要求冲击功不小于27 J;
D级钢-抗拉强度、屈服点和伸长率,冷弯试验合格,-20℃冲击试验,要求冲击功不小于27 J;
E级钢-抗拉强度、屈服点和伸长率,冷弯试验合格,-40℃冲击试验,要求冲击功不小于27 J.

二、钢材的规格
钢结构所用的钢材主要为热轧成型的钢板、型钢以及冷弯成型的薄壁型钢。
1.钢板
钢板有薄钢板(厚度0.35~4mm)、厚钢板(厚度4.5~60mm)、特厚板(板厚>60mm)和扁钢(厚度4~60mm,宽度为12~200mm)等。钢板用“—宽×厚×长”或“—宽×厚”表示,单位为mm,如—450×8×3100,—450×8。
2.型钢
钢结构常用的型钢是角钢、工字型钢、槽钢和H型钢、钢管等。除H型钢和钢管有热轧和焊接成型外,其余型钢均为热轧成型。
(1)角钢
角钢有等边角钢和不等边角钢两种。等边角钢以“L肢宽×肢厚”表示,不等边角钢以“L长肢宽×短肢宽×肢厚”表示,单位为mm,如L63×5,L100×80×8。
(2)工字钢
工字钢有普通工字钢和轻型工字钢两种。普通工字钢用“I截面高度的厘米数”表示,高度20mm以上的工字钢,同一高度有三种腹板厚度,分别记为a、b、c,a类腹板最薄、冀缘最窄,b类较厚较宽,c类最厚最宽,如I20a。同样高度的轻型工字钢的翼缘要比普通工字钢的冀缘宽而薄,腹板亦薄,轻型工字钢可用汉语拼音符号“Q”表示,如QI40等。
(3)槽钢
槽钢也分普通槽钢和轻型槽钢两种,以“[或Q[截面高度厘米数”表示,如[20 b, Q[22等。
(4)H型钢
H型钢分热轧和焊接二种。热轧H型钢有宽翼缘(H W)、中翼缘 (HM)、窄翼缘 (HN)和H型钢柱(HP)等四类。H型钢用“高度×宽度×腹板厚度×翼缘厚度”表示,单位为mm,如HW250×250×9×14、HM294×200×8×12。
焊接H型钢是由钢板用高频焊接组合而成,也用“高度×宽度×腹板厚度×翼缘厚度”表示,如H350×250×10×16。
(5)钢管
钢管有热轧无缝钢管和焊接钢管两种。无缝钢管的外径为32~630mm。钢管用“φ外径×壁厚”来表示,单位为mm,如φ273×5。
我国生产的各型钢规格和截面特性见附录三。对普通钢结构的受力构件不宜采用厚度小于5mm的钢板、壁厚小于3mm的钢管、截面小于L45×4或L56×36×4的角钢。
3.冷弯薄壁型钢
冷弯薄壁型钢采用薄钢板冷轧制成。其壁厚一般为1.5~12mm,但承重结构受力构件的壁厚不宜小于2mm。薄壁型钢能充分利用钢材的强度以节约钢材,在轻钢结构中得到广泛应用。常用冷弯薄壁型钢截面型式有等边角钢(a)、卷边等边角钢(b)、槽钢(c)、卷边槽钢(d)、 Z型钢、卷边Z型钢(C型钢) (e)、钢管[(f)、(g)、(h)]等。
表示方法为:按字母B、截面形状符号和长边宽度×短边宽度×卷边宽度×壁厚的顺序表示,单位为mm,长、短边相等时,只标一个边宽,无卷边时不标卷边宽度,如B[ 120×40×2.5、BC160×60×20×3。
压型钢板是冷弯薄壁型钢的另一种形式,它是用厚度为0.4~2mm的钢板、镀锌钢板或彩色涂层钢板经冷轧成的波形板。

『肆』 合金钢都有哪些主要元素,各有什么作用

合金钢的主要合金元素有硅、锰、铬、镍、钼、钨、钒、钛、铌、锆、钴、铝、铜、硼、稀土等。其中钒、钛、铌、锆等在钢中是强碳化物形成元素,只要有足够的碳,在适当条件下,就能形成各自的碳化物,当缺碳或在高温条件下,则以原子状态进入固溶体中;锰、铬、钨、钼为碳化物形成元素,其中一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体;铝、铜、镍、钴、硅等是不形成碳化物元素,一般以原子状态存在于固溶体中。
合金元素的作用:
1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳含量超过0.23%时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。
8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于淬火而引起的脆性。在工具钢中可提高红性。
9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。
10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。
11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。
12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。
13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。
14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。
15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。
16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。
17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。
18、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土。钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能。在犁铧钢中加入稀土,可提高耐磨性。

『伍』 35CrNiMo16是什么材料,有什么用途

1.2766合金冷作钢具有非常高的淬透性、延展性、抗压性、耐磨性和高冲击强度。该材料用于生产用于切割钢板和型材的剪板机、冲压模具、液压凿子、冷锻模具、硬化刀具、冲压机、冲头或塑料生产模具。该牌号的特点是强度高、耐负荷、回火和抗疲劳。

德国料号:1.2766

德国牌号:X35NiCrMo4 / 35CrNiMo16

化学成分:

C:0,32 - 0,38

Si:0,15 - 0,30

Mn:0,40 - 0,60

P:max. 0,035

S:max. 0,035

Cr:1,20 - 1,50

Mo:0,15 - 0,35

Ni:3,80 - 4,30

1.2766的机没派差械性能

R p0.2 (MPa) 436 (≥)

米(兆帕) 822(≥)

AKV(日) 44

一个(%) 13

Z (%) 23

硬度 HBW 123

这种合金通常在电弧炉 (EAF) 或 BEF + 电渣重熔 (ESR 或 VAR) 中熔炼。为提高质量,应采用真空羡空精炼和外精炼技术冶炼。枯皮

『陆』 碳素钢和合金钢在用途上的区别

一、用途不同

1、碳素钢

1)Q195 用于制造承载较小的零件、铁丝、铁圈、垫铁、开口销、拉杆、冲压件以及焊接件等。

2)Q215 A 用于制造拉杆、套圈、垫圈、渗圈、渗碳零件以及焊接件等。

3)Q235 A A、B级用于制造金属结构件、心部强度要求不高的渗碳件或碳氮共渗件、拉杆、连杆、吊钩、车钩、螺栓、螺母、套筒、轴以及接件;C、D级用于制造重要的焊接结构件。

4)Q255 A 用于制造转轴、心轴、吊钩、拉杆、摇杆、楔等强度要求不高的零件。此负焊接性尚可。

5)Q275 用于制造轴类、链轮、齿轮、吊钩等强度要求高的零件。

2、合金钢

合金钢是指钢中除含硅和锰作为合金元素或脱氧元素外,还含有其他合金元素(如铬、镍 、钼、钒、钛、铜、钨、铝、钴、铌、锆和其他元素等),有的还含有某些非金属元素(如硼、氮等)的钢。

合金钢的分类方法有很多,最常用的方法有按钢中合金元素总量进行分类和按钢的用途进行分类的两种方法,根据钢中合金元素含量的多少,又可分为低合金钢,中合金钢和高合金钢。

按钢的用途分可以分为结构钢、工具钢、模具钢、不锈钢、耐酸钢等等。合金钢的硬度耐磨性 淬透性 耐腐蚀性等比碳素钢优秀 在机械零件中应用比碳素钢要广。性能很突出。根据所添加的不同合金元素,可以具有各种不同的特殊性能。

二、包含元素不同

合金钢与碳钢相比含有较多其他元素。

1、合金钢是指钢中除含硅和锰作为合金元素或脱氧元素外,还含有其他合金元素,有的还含有某些非金属元素的钢。根据钢中合金元素含量的多少,又可分为低合金钢,中合金钢和高合金钢。

2、而碳钢主要指力学性能取决于钢中的碳含量,而一般不添加大量的合金元素的钢,有时也称为普碳钢或碳素钢。

三、化学性能不同

1、碳钢中含有一定量的碳,硬度越大,强度也越高,但塑性较低 。

2、而合金钢中则再加入另外元素,如锰、镍、铬、硅等,使其获得不同的机械与化学性能,以达到更好的使用要求。

『柒』 5A合金钢的简介有什么样的力学性能有无磁性相对应牌号有什么样的用途3A不锈钢的状态是什么样的

低合金钢的焊接工艺分析
参考文献:
焊接冶金学-材料焊接性 机械工业出版社 李亚江
金属焊接性基础 化学工业出版社 孟庆森
金属学与惹出了 机械工业出版社 崔忠圻 覃耀春
金属工艺学 哈尔滨工业大学出版社 邢忠文 张学仁
金属材料焊接工艺 机械工业出版社 李荣雪
金属材料焊接工艺 化学工业出版社 雷玉成
结构钢的焊接 冶金工业出版社 荆洪阳(译)
1.低合金钢的发展和应用
随着科学的发展和技术的进步,焊接结构设计日趋向高参数、轻量化及大型化发展,对钢材的性能提出可越来越高的要求。低合金钢由于性能优异和经济效益显著,在焊接结构中得到了越来越广泛的应用。
低合金钢的发展大体经历了三个阶段。20世纪20年代以前,工程上钢结构的制造主要采用铆接,设计参数主要是抗拉强度。钢的强化主要是靠碳以及单一合金元素,如Mn、Si、Cr等,总质量分数达到2%~3%,甚至更高一些。20世纪20~60年代,钢结构制造中逐步采取了焊接技术,设计参数要考虑材料的屈服强度、韧性、和焊接性要求。为了防止焊接裂纹,刚的化学成分低碳多合金化发展方向,碳的质量分数一般在0.2%一下,含2~4个有利于焊接性的合金元素并铺以热处理强化等工艺措施。20世纪70年代以后,低合金高强度钢得到快速发展,钢中碳的质量分数降低到0.1%一下,有的钢向超低碳含量方向发展。Ti、V、Nb等合金微量元素逐步引起关注,而且像多元复合合金化方向发展。
现代低合金钢的重大进展,自20世纪70年代以来,世界范围内低合金高强度钢的发展进入了一个全新时期,以控制轧制技术和微合金化的冶金学为基础,形成了现代低合金高强度钢即微合金化钢的新概念。进入80年代,一个涉及广泛工业领域和专用材料门类的品种开发,借助于冶金工艺技术方面的成就达到了顶峰。在钢的化学成分—工艺—组织—性能的四位一体的关系中,第一次突出了钢的组织和微观精细结构的主导地位,也表明低合金钢的基础研究已趋于成熟,以前所未有的新的概念进行合金设计。
低合金钢的应用,低合金钢在建筑、桥梁。工程机械等产业不能得到广泛的应用。当合金钢用于桥梁、海上建筑和起重机械等重要焊接结构时,应根据结构的最低温度提出冲击韧度的要求。对于在大气环境下工作的低合金结构钢,冲击吸收功(0℃、V形缺口冲击试样)至少应达到27J的最对要求。
对于车辆、船舶、工程机械的运动结构,减轻自重可以节约能源,提出运载能力和工业效率。因此采用焊接性好的低碳调质钢可以促进工程结构向大量化、轻量化和高效能方向发展。由于壁厚减薄,重量减轻,从而减少了焊接工作量,为野外施工,吊装创造了条件。这类钢强韧性和综合性能好,可以大大提高设备的耐用性,延长期使用寿命。WCF-80钢是我国继WCF-62之后开发的焊接裂纹敏感性小的高强度焊接结构钢,这种钢具有很高的抗冷裂纹和低温韧性,主要用于大型水电站、石化和露天煤矿等。
抗拉强度700MPa的低碳调质钢又较好的缺口冲击韧度,可用于低温下服役的焊接结构,如露天煤矿的大型挖掘机及电动轮自卸车等。抗拉强度800MPa低碳调质钢主要用于工程机械、矿山机械的制造中,如推土机、工程起重机、重型汽车和牙轮钻机等。抗拉强度10000MPa以上的低碳调质钢主要用于工程机械高强耐磨件、核动力装置及航海航天装备上。
2.低碳钢简介
低合金钢是在碳素钢的基础上添加一定量的合金化元素而成,其合金元素的质量分数一般不超过5%,用以提高钢的强度并保证其具有一定的塑性和韧性,或使钢具有某些特殊性能,如耐低温、耐高温或耐腐蚀等。常用来制作焊接结构的低合金钢可分为高强度钢、低温用钢、耐腐蚀用钢及珠光体耐热钢四种。其中高强度钢应用最广泛,按钢材的屈服强度及使用时的热处理状态又可分以下三种:
a. 在热轧、控冷控轧及正火(或正火加回火)状态下焊接和使用,屈服强度为295~490MPa的低合金高强度结构钢。
b. 在调质状态下焊接和使用的,屈服强度为490~980Mpa的低碳低合金调质钢。
c. w(C)为0.25~0.50%,屈服强度为880~1176Mpa的中碳调质钢。
标准中钢的分类是按照钢的力学性能划分的。钢的牌号由代表屈服点的汉语拼音字母Q、屈服点数值、质量等级符号三个部分按顺序排序排列。按照钢的屈服强度,低合金高强度钢分5个强度等级,分别是295MPa、345MPa、390MPa、420MPa及460MPa。每个强度等级又根据冲击吸收功要求分成A、B、C、D、E、5个质量等级,分别代表不同的冲击韧性要求。
低合金高强钢中W(c)一般控制在0.20%以下,为了确保钢的强度和韧性,通过添加适量的Mn、Mo等合金元素及V、Nb、Ti、Al、等微合金化元素,配合适当的轧制工艺或热处理工艺来保证钢材具有优良的综合力学性能。由于低合金高强度钢具有良好的焊接性、优良的可成形性及较低的制造成本,因此,被广泛地用于压力容器、车辆、桥梁、建筑、机械、海洋结构、船舶等制造中,已成为大型焊接结构中最主要的结构材料之一。
低合金高强钢的强化机理与碳素钢不同,碳素钢主要通过钢中的碳含量形成珠光体、贝氏体和马氏体来达到强化;而低合金高强钢的强化主要是通过晶粒细化、沉淀硬化及亚结构的变化来实现。
屈服强度为295~390MPa的低合金钢大多属于热轧钢,是靠合金元素锰的固溶强化获得高强度。如Q345,当Q345钢作为低温压力容器用钢或厚板结构时,为改善低温韧性,也可在正火处理后使用。Q345、Q390等微合金化低合金钢是在Q345钢基础上,加入少量可细化晶粒和沉淀强化的Nb(0.015%~0.06%)或V(0.02%~0.20%)。这些钢在热轧状态下性能不稳定,正火处理使其晶粒细化和碳化物均匀弥散析出,从而获得高的塑性和韧性。所以Q345、Q390钢在正火状态下使用更为合理。
屈服强度大于390MPa的低合金钢一般需要在正火或正火加回火状态下使用,如Q420等。正火处理后形成的碳、氮化合物以细小质点从固溶体沉淀析出,在提高钢材强度的同时,保证具有一定的塑性和韧性。随着钢材强度的进一步提高,钢中需要加入一定量Mo,Mo不仅可以细化组织、提高强度,而且还可提高钢材的中温性能。
低合金高强度钢按其用途还可分为:锅炉用钢、管线用钢、容器用钢、造船用钢及桥梁用钢等,此外,在正火钢中,还有具有良好的抗层状撕裂性能Z向钢,主要用于海上采油平台、核反应堆及潜艇等大型厚板结构。
3. 下面主要介绍低合金高强度钢的焊接性
低合金高强度钢含有一定量的合金元素及微合金化元素,其焊接性与碳钢有差别,主要是焊接热影响区组织与性能的变化对焊接热输入较敏感,热影响区淬硬倾向增大,对氢致裂纹敏感性较大,含有碳、氮化合物形成元素的低合金高强度钢还存在再热裂纹的危险等。只有在掌握各种不同低合金高强度钢焊接性特点和规律的基础上,才能制订正确的焊接工艺,保证低合金高强度钢的焊接质量。
1)焊接热影响区组织和性能
依据焊接热影响区被加热的峰值温度不同,焊接热影响区可分为熔合区(1350~1450℃)、粗晶区(1000~1300℃)、细晶区(800~1000℃)、不完全相变区(700~800℃)及回火区(500~700℃)。不同部位热影响区组织与性能取决于钢的化学成分和焊接时加热和冷却的速度。对于某些低合金高强钢,如果焊接冷却速度控制不当,焊接热影响区局部区域将产生淬硬或脆性组织,导致抗裂性或韧性降低。
低合金高强度钢焊接时,热影响区中被加热到1100℃以上的粗晶区及加热温度为700~800℃的不完全相变区是焊接接头的两个薄弱区。热轧钢焊接时,如果焊接热输入过大,粗晶区将因晶粒严重长大或出现魏氏组织等而降低韧性;如果焊接热输入过小,由于粗晶区组织中马氏体比例增大而降低韧性。正火钢焊接时,粗晶区组织性能受焊接热输入的影响更为显著。焊接热影响区的不完全相变区,在焊接加热时,该区域内只有部分富碳组元发生奥氏体转变,在随后的焊接冷却过程中,这部分富碳奥氏体将转变成高碳孪晶马氏体,而且这种高碳马氏体的转变终了温度(Mf)低于室温,相当一部分奥氏体残留在马氏体岛的周围,形成所谓的M-A组元。M-A组元的形成是该区域的组织脆化的主要原因。防止不完全相变区组织脆化的措施是控制焊接冷却速度,避免脆硬的马氏体产生。
焊接热影响区软化是控轧控冷钢焊接时遇到的主要问题,当采用埋弧焊、电渣焊及闪光对焊等高热输入焊接工艺方法时,控轧控冷钢焊接热影响区软化问题变得非常突出。焊接热影响区的软化使焊接接头强度明显低于母材,给焊接接头的疲劳性能带来损害。另外,焊接热输入还影响控轧控冷钢热影响区的组织和韧性,当采用较小的热输入焊接时,由于焊接冷却速度较快,焊接热影响区获得下贝氏体组织,具有较优良的韧性,而随着焊接热输入的增加,焊接冷却速度降低,焊接热影响区获得上贝氏体或侧板条铁素体组织,韧性显著降低。
2)热应变脆化
在自由氮含量较高的C-Mn系低合金钢中,焊接接头熔合区及最高加热温度低于Ac1的亚临界热影响区,常常有热应变脆化现象。一般认为,这种脆化是由于氮、碳原子聚集在位错周围,对位错造成钉扎作用所造成的。热应变脆化容易在最高加热温度范围200~400℃的亚临界热影响区产生。如有缺口效应,则热应变脆化更为严重,熔合区常常存在缺口性质的缺陷,当缺陷周围受到连续的焊接热应变作用后,由于存在应变集中和不利组织,热应变脆化倾向就更大,所以热应变脆化也容易发生在熔合区。在《国产低合金结构钢Q345和Q420焊接区热应变脆化研究》论文中分析了Q345和Q420钢的热应变脆化,发现Q345钢具有较大的热应变脆化倾向。分析认为,Q420钢中的V与N形成氮化物,从而降低热应变脆化倾向,而Q345钢中不含有氮化物形成元素。试验还发现,有热应变脆化的Q345钢经600℃×1h退火处理后,韧性得到很大恢复。
3)冷裂纹敏感性
焊接氢致裂纹(通常称焊接冷裂纹或延迟裂纹)是低合金高强度钢焊接时最容易产生,而且是危害最为严重的工艺缺陷,它常常是焊接结构失效破坏的主要原因。低合金高强度钢焊接时产生的氢致裂纹主要发生在焊接热影响区,有时也出现在焊缝金属中。根据钢种的类型、焊接区氢含量及应力水平的不同,氢致裂纹可能在焊后200℃以下立即产生,或在焊后一段时间内产生。
大量研究表明,当低合金高强度钢焊接热影响区中产生淬硬的M或M+B+F组织时,对氢致裂纹敏感;而产生B或B+F组织时,对氢致裂纹不敏感。热影响区最高硬度可被用来粗略的评定焊接氢致裂纹敏感性。对一般低合金高强度钢,为防止氢致裂纹的产生,焊接热影响区硬度应控制在350HV以下。热影响区淬硬倾向可以采用碳当量公式加以评定。
强度级别较低的热扎钢,由于其合金元素含量少,钢的淬硬倾向比低碳钢稍大。如Q345钢、15MnV钢焊接时,快速冷却可能出现淬硬的马氏体组织,冷裂倾向增大。但由于热轧钢的碳当量比较低,通常冷裂倾向不大。但在环境温度很低或钢板厚度大时应采取措施防止冷裂纹的产生。
控轧控冷钢碳含量和碳当量都很低,其冷裂纹敏感性较低。除超厚焊接结构外,490MPa级的控轧控冷钢焊接,一般不需要预热。
正火钢合金元素含量较高,焊接热影响区的淬硬倾向有所增加。对强度级别及碳当量较低的正火钢,冷裂倾向不大。但随着强度级别及板厚的增加,其淬硬性及冷裂倾向都随之增大,需要采取控制焊接热输入、降低含氢量、预热和及时后热等措施,以防止冷裂纹的产生。
4)热裂纹敏感性
与碳素钢相比,低合金高强度钢的w(C)、w(S)较低,且w(Mn)较高,其热裂纹倾向较小。但有时也会在焊缝中出现热裂纹,如厚壁压力容器焊接生产中,在多层多道埋弧焊焊缝的根部焊道或靠近坡口边缘的高稀释率焊道中易出现焊缝金属热裂纹;电渣焊时,如母材含碳量偏高并含Nb时,电渣焊焊缝可能出现八字形分布的热裂纹。另外,焊接热裂纹也常常在低碳的控轧控冷管线钢根部焊缝中出现,这种热裂纹产生的原因与根部焊缝基材的稀释率大及焊接速度较快有关。采用Mn:Si含量较高的焊接材料,减小焊接热输入,减少母材在焊缝中的熔合比,增大焊缝成形系数(即焊缝宽度与高度之比),有利于防止焊缝金属的热裂纹。
5)再热裂纹敏感性
低合金钢焊接接头中的再热裂纹亦称消除应力裂纹,出现在焊后消除应力热处理过程中。再热裂纹属于沿晶断裂,一般都出现在热影响区的粗晶区,有时也在焊缝金属中出现。其生产与杂质元素P、Sn、Sb、As在初生奥氏体晶界的偏聚导致的晶界脆化有关,也与V、Nb等元素的化合物强化晶内有关。
6)层状撕裂倾向
大型厚板焊接结构(海洋工程、核反应堆及船舶等)焊接时,如在钢材厚度方向承受较大的拉伸应力,可能沿钢材轧制方向发生阶梯状的层状撕裂。这种裂纹常出现于要求熔透的角接接头或丁字接头中。选用抗层状撕裂钢;改善接头型式以减缓钢板Z向的应力应变;在满足产品使用要求的前提下,选用强度级别较低的焊接材料或采用低强焊材预堆边;采用预热及降氢等措施都有利于防止层状撕裂。
4.具体焊接工艺,主要是Q345钢焊接工艺介绍
一、材料介绍
(1)材料化学成分和力学性能分析
表1Q345(16Mn)的材料化学成分

钢号 化学成分
备注
C Si Mn S P Cr Mo V Ni
Q345 ≤0.2 ≤0.55 1.00~1.60 ≤0.045 ≤0.045 _ _ 0.02~
0.15 _
表2 Q345(16Mn)的材料力学性能[2]

钢号 力学性能
备注
δb/MPa δs/MPa δ(%) AKV /J
Q345A 470~630 345 21 _ GB/T1S91—94
(2)Q345钢的焊接特点
碳当量(Ceq)的计算:
Ceq=C+Mn/6+Ni/15+Cu/15+Cr/5+Mo/5+V/5
计算Ceq=0.49%,大于0.45%,可见Q345钢焊接性能不是很好,需要在焊接时制定严格的工艺措施。
(3)Q345钢在焊接时易出现的问题
1. Q345钢在焊接冷却过程中,热影响区容易形成淬火组织-马氏体,使近缝区的硬度提高,塑性下降。结果导致焊后发生裂纹。
2. Q345钢的焊接裂纹主要是冷裂纹。
二、焊接施工流程
坡口准备→点固焊→预热→里口施焊→背部清根(碳弧气刨)→外口施焊 →里口施焊→自检/专检→焊后热处理→无损检验(焊缝质量一级合格)
三、焊接工艺参数的选择
通过对Q345钢的焊接性分析,制定措施如下:
1. 焊接材料的选用:
根据产品对焊缝性能要求选择焊接材料,低合金高强度钢焊接材料的选择首先应保证焊缝金属的强度、塑性、韧性达到产品的技术要求,同时还应该考虑抗裂性及焊接生产效率等。由于低合金高强度氢致裂纹敏感性较强,因此,选择焊接材料时应优先采用低氢焊条和碱度适中的埋弧焊焊剂。焊条、焊剂使用前应按制造厂或工艺规程规定进行烘干。焊缝金属强度过高,将导致焊缝韧性、塑性以致抗裂性能的下降,从而降低焊接结构生产及使用的安全性,这对与焊接接头的韧性要求高,且基材的抗裂性差的低合金钢结构的焊接尤为重要。为了保证焊接接头具有与母材相当的冲击韧性,正火钢与控轧控冷钢焊接材料优先选用高韧性焊材,配以正确的焊接工艺以保证焊缝金属和热影响区具有优良的冲击韧性。海洋工程、超高强钢壳体及压力容器选用的焊接材料,还应保证焊缝金属具有相应的低温、高温及耐蚀等特殊性能。由于Q345钢的冷裂纹倾向较大,应选用低氢型的焊接材料,同时考虑到焊接接头应与母材等强的原则,选用E5015 (J507)型电焊条。
2. 坡口形式:

采用同一焊接材料焊同一钢种时,如过坡口形式不同,则焊缝性能各异。如用HJ431焊剂进行Q345钢埋弧焊不开坡口直边对接焊时,由于母材溶入焊缝金属较多,此时采用合金成分较低的H08A焊丝配合HJ431,即可满足焊缝力学性能要求;但如焊接Q345钢厚板开坡口对接接头时,如仍用 H08—HJ431组合,则因母材熔合比小,而使焊缝强度偏低,此时应采用合金成分较高的H08MnA、H10Mn2等焊丝与HJ431组合。角接接头焊接时冷却速度要大于对接接头,因此Q345钢角接时,应采用合金成分较低的H08A焊丝与HJ431焊剂组合,以获得综合力学性能较好的焊缝金属;如采用合金成分偏高的H08MnA或H10Mn2焊丝,则该角焊缝的塑性偏低。
3.焊接方法的选择:
低合金高强度钢可采用焊条电弧焊、熔化极气体保护焊、埋弧焊、钨极氩弧焊、气电立焊、电渣焊等所有常用的熔焊及压焊方法焊接。具体选用何种焊接方法取决于所焊产品的结构、板厚、堆性能的要求及生产条件等。其中焊条电弧焊、埋弧焊、实心焊丝及药芯焊丝气体保护电弧焊是常用的焊接方法。对于氢致裂纹敏感性较强的低合金高强度钢的焊接,无论采用那种焊接工艺,都应采取低氢的工艺措施。厚度大于100mm低合金高强度钢结构的环形和长直线焊缝,常常采用单丝或双丝载间隙埋弧焊。当采用高热输入的焊接工艺方法,如电渣焊、气电立焊及多丝埋弧焊焊接低合金高强度钢时,在使用前应对焊缝金属和热影响区的韧性能够满足使用要求。Q345钢焊接时可采用电弧焊、CO 气体保护焊和电渣焊,但本次设计采用手工电弧焊。
4.焊接热输入的控制:
焊接热输入的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区的组织组成,并最终影响焊接接头的力学性能及抗裂性。屈服强度不超过500MPa的低合金高强度钢焊缝金属,如能获得细小均匀针状铁素体组织,其焊缝金属则具有优良的强韧性。而针状铁素体组织的形成需要控制焊接冷却速度。因此为了确保焊缝金属的韧性,不宜采用过大的焊接热输入。焊接操作上尽量不用横向摆动和挑弧焊接,推荐采用多层窄焊道焊接。
热输入对焊接热影响区的抗裂性及韧性也有显著的影响。低合金高强度热影响区组织的脆化或软化都与焊接冷却速度有关。由于低合金高强度钢的强度及板厚范围都较宽,合金体系及合金含量差别较大,焊接时钢材的状态各不相同,很难对焊接热输入作出统一的规定。各种低合金高强度钢焊接时应根据其自身的焊接性特点,结合具体的结构形式及板厚,选择合适的焊接热输入。与正火或正火加回火钢及控轧控冷钢相比,热轧钢可以适应较大的焊接热输入。含碳量较低的热轧钢(09Mn2、09MnNb等)以及含碳量偏下限的16Mn钢焊接时,焊接热输入没有严格的限制。因为这些钢焊接热影响区的脆化及冷裂纹倾向较小。但是,当焊接含碳量偏上限的16Mn钢时,为降低淬硬倾向,防止冷裂纹的产生,焊接热输入应偏大一些。
碳及合金元素含量较高、屈服强度为490MPa的正火钢,如18MnMoNb等。选择热输入时既要考虑钢种的淬硬倾向,同时也要兼顾热影响区粗晶区的过热倾向。一般为了确保热影响区的韧性,应选择较小的热输入,同时采用低氢焊接方法配合适当的预热或及时的焊后消氢处理来防止焊接冷裂纹的产生。Q345钢的含碳量和碳当量均较低,对氢致裂纹不敏感,为了防止焊接热影响区的软化,提高热影响区韧性,应采用较小的热输入焊接,使焊接冷却时间t8/5控制在10s以内为佳。
5.焊接接头的力学性能
焊缝金属和热影响区的力学性能是影响街头使用可靠性的基本性能,而其中强度与韧性又是关键的考核因素,特别是对合金结构钢街头更为重要,几种典型热轧及正火钢焊接接头的力学性能见下表。
钢种

焊接工艺 焊缝金属性能 过热区

/MPa
/MPa
(%)
ψ
(%) /J.cm
-20℃ -40℃
-20℃ -40℃
Q345 埋弧焊(δ=16mm,V形对接)H08MnA+HJ250焊态 504 351 30.2 65.3 166 121 175
埋弧焊(δ=12mm,I形对接)H08MnA+HJ431焊态 576 400 30.7 67 84 33q 73
CO 气体保护焊H08Mn2SiA焊态 540 390 24 61 78

6.焊接电流:
为了避免焊缝组织粗大,造成冲击韧性下降,必须采用小规范焊接。具体措施为:选用小直径焊条、窄焊道、薄焊层、多层多道的焊接工艺(焊接顺序如图一所示)。焊道的宽度不大于焊条的3倍,焊层厚度不大于5mm。第一层至第三层采用Ф3.2电焊条,焊接电流100-130A;第四层至第六层采用Ф4.0的电焊条,焊接电流120-180A。
7.预热温度:预热及焊道层间温度:
1)预热温度
预热可以控制焊接冷却速度,减少或避免热影响区中淬硬马氏体的产生,降低热影响区硬度,同时预热还可以降低焊接应力,并有助于氢从焊接接头的逸出。因此,预热是防止低合金高强度钢焊接氢致裂纹产生的有效措施。但预热常常恶化劳动条件,使生产工艺复杂化,不合理的、过高的预热和焊道间温度还会损害焊接接头的性能。因此,焊前是否需要预热及合理的预热温度,都需要认真考虑或通过试验确定。
预热温度的确定取决于钢材的成分(碳当量)、板厚、焊件结构形状和拘束度、环境温度以及所采用的焊接材料的含量等。随着钢材碳当量、板厚、结构拘束度、焊接材料的含氢量的增加和环境温度的降低,焊前预热温度要相应提高。对于厚板多道多层焊,为了促进焊接区氢的逸出,防止焊接过程中氢致裂纹的产生,应控制焊道间温度不低于预热温度和进行必要的中间消氢热处理。因此下图标为Q345的预热条件
板厚(mm) 不同气温条件下的预热温度
≤10 不低于-26 oC不预热
10~16 不低于-10oC不预热,低于-10oC预热100oC~150oC
16~14 不低于-5oC不预热,低于-5oC预热100oC~150oC
25~40 不低于0oC不预热,低于0oC预热100oC~150oC
≥40 均预热100oC~150oC
2)层间温度
层间温度过高会引起热影响区晶粒粗大,使焊缝强度及低温冲击韧性下降。如低于预热温度则可能在焊接过程中产生裂纹。因此规定道间温度不得低于预热温度,最高不得大于某一界线的温度。而对于Q345的层间温度则选用:Ti≤400℃。
8.焊后热处理参数:
除了电渣焊由于接头区严重过热而需要进行正火处理外,其他焊接条件应根据使用要求来判断是佛需要焊后热处理。低碳合金高强度钢中热轧钢和正火钢不需要焊后热处理,但对要求抗应力腐蚀的焊接机构、低温下使用的焊接结构和板厚结构等,焊后需要进行消除应力的高温回火。确定焊后回火温度的原则:
1) 不要超过木材原来的回火温度,以免影响母材本身的性能。
2) 对于回火脆性材料,要避开出现回火脆性的温度区间。例如,对含V或V+Mo的低合金钢,回火时应提高冷却速度,避免在600℃左右的温度区间停留时间过长,以免因V的二次碳化物析出而造成脆化;
如焊后不能及时进行热处理,应立即在200~350℃保温2~6h,以便焊接区的氢扩散逸出。为了消除焊接应力,焊后应立即轻轻锤击焊缝金属表面,但这不是用于塑性较差的钢件。强度级别较高或重要的焊接结构件,应用机械方法修正焊缝外形,使其平滑过渡到母材,较小应力集中。Q345焊后热处理工艺参数见下表:
强度级别
δs/MPa 典型钢种 预热温度/℃ 焊后处理工艺

电弧焊 电渣焊
345 Q345 100~150
δ≥16mm 一般不进行
或600~650℃回火 900~930℃正火
600~650℃回火
当我们悬着电弧焊时,为了降低焊接残余应力,减小焊缝中的氢含量,改善焊缝的金属组织和性能,在焊后应对焊缝进行热处理。热处理温度为:600-640℃,恒温时间为2小时(板厚40mm时),升降温速度为125℃/h 。
9.焊接过程:
1)焊前预热
在翼缘板焊接前,首先对翼缘板进行预热,恒温30分钟后开始焊接。 焊接的预热、层间温度、热处理由热处理控温柜自动控制,采用远红外履带式加热炉片,微电脑自动设定曲线和记录曲线,热电偶测量温度。预热时热电偶的测点距离坡口边缘15mm-20mm。
2)焊接
①为了防止焊接变形,每个柱接头采用二人对称施焊,焊接方向由中间向两边施焊。在焊接里口时(里口为靠近腹板的坡口),第一层至第三层必须使用小规范操作,因为它的焊接是影响焊接变形的主要原因。在焊接一至三层结束后,背面进行清根。在使用碳弧气刨清根结束后,必须对焊缝进行机械打磨,清理焊缝表面渗碳,露出金属光泽,防止表层碳化严重造成裂纹。外口焊接应一次焊完,最后再焊接里口的剩余部分。
② 当焊接第二层时,焊接方向应与第一层方向相反,以此类推。每层焊接接头应错开15-20mm。
③ 两名焊工在焊接时的焊接电流、焊接速度和焊接层数应保持一致。
④ 在焊接中应从引弧板开始施焊,收弧板上结束。焊接完成后割掉并打磨干净。
5.总结
通过对低碳钢的了解以及对Q345钢焊接工艺的研究,对其焊接工艺大体的认识,所以经过上面的叙述,对Q345的焊接工艺进行总结,如下表:
接头形式 焊件厚度/mm 焊缝次序(层次) 焊丝直径/mm 焊接电流/A 焊接电压/mm 焊机速度/
焊丝加焊剂
不开破口(双面焊) 8 正
反 4.0 550~580
600~650 34~36 34.5 H08A+HJ431
10~12 正
反 4.0 620~680
680~700 36~38 32 H08A+HJ431
V形坡口(双面焊)α=60°~70° 14~16 正
反 4.0 600~640
620~680 34~36 29.5 H08A+HJ431
18~20 正
反 4.0 680~700
700~720 36~38 27.5 H08MnA+HJ431
22~25 正
反 4.0 700~720
720~740 36~38 21.5 H08MnA+HJ431
T形接头不开坡口(双面焊) 16~18 (2) 4.0 600~650
680~720 32~34
36~38 34~38
24~29 H08A+HJ431
20~25 (2) 4.0 600~700
720~760 32~34
36~36 30~36
21~26 H08A+HJ431

『捌』 Q345是钢材什么材质是什么用途

舞钢隆盛达——Q345是低合金高强度结构钢,分为A、B、C、D、E五个质量等级等级作为尾注回,该材料的耐答磨、耐蚀、低温性能、冷冲压性能、焊接性能和可切削性能都比较好。一般应用于较重要的钢铁结构制作,如桥梁、车辆、船舶、建筑、压力容器等。

2、Q345含碳量很低,平均为0.2%,但加入了微量的锰、硅、磷、铜、钛、铌等元素,大大提高了其性能指标,是根据我国的富产资源特点而研制的钢种。

3、钢的牌号由代表屈服强度的汉语拼音字母、屈服强度数值、质量等级符号三个部分组成。Q代表的是这种材质的屈服强度,后面的345,就是指这种材质的屈服值在345MPa左右。

『玖』 Q355和Q345的区别是什么Q355的用途一般都是做什么用的

Q345B和的区别
一、执行标准的区别
Q345B 牌号表示方法:钢的牌号由代表屈服强度的汉语拼音字母,屈服强度数值,质量等级符号三个部分组成。例如Q345B:,其中:
Q—钢的屈服强度的“屈”字汉语拼音的首位字母;
345—屈服强度数值,单位MPa;
B—质量等级为B级。
当需方要求钢板具有厚度方向性能时,则在上述规定的牌号后面加上代表厚度方向(Z向)性能级别的符号,例如:Q345BZ15.
Q345B执行标准:执行GB/T1591-2008《低合金高强度结构钢》。
钢的牌号由代表屈服强度“屈”字的汉语拼音首字母 Q、规定的最小上屈服强度数值、交货状态代号、质量等级符号四个部分组成。
示例:Q355NB。其中:
Q ———钢的屈服强度的“屈”字汉语拼音的首字母;
355———规定的最小上屈服强度数值,单位为兆帕(MPa);
N ———交货状态为正火或正火轧制;
B———质量等级为 B级。
Q355B执行标准:GB/T1591-2018 《低合金高强度结构钢》。

二、化学成分的区别
Q345B化学成分

C

Si

Mn

P

S

Nb

V

Ti

Cr

Ni

Cu

N

Mo

Als

≤0.18

≤0.50

≤1.70

≤0.030

≤0.025

≤0.07

≤0.15

≤0.20

≤0.30

≤0.50

≤0.30

≤0.012

≤0.10

≥0.015

Q355B化学成分

C

Si

Mn

P

S

Nb

V

Ti

Cr

Ni

Cu

N

Mo

Als

≤0.24

≤0.55

0.9-1.60

≤0.035

≤0.035

0.005-0.05

0.01-0.12

0.006-0.05

≤0.30

≤0.30

≤0.40

≤0.012

≤0.10

≥0.015

三、力学性能的区别
Q345B力学性能
屈服强度:
≤16mm:≥345;
16—40mm:≥335;
40—63mm:≥325;
63—80mm:≥315;
80—100mm:≥305;
100—150mm:≥285;
150—200mm:≥275;
200—250mm:≥275;
250—400mm:≥265。
抗拉强度:450-630Mpa。
伸长率:≥21%。
冲击试验:20˚C
Q355B力学性能
屈服强度:
≤16mm:≥355;
16—40mm:≥345;
40—63mm:≥335;
63—80mm:≥325;
80—100mm:≥315;
100—150mm:≥295;
150—200mm:≥285;
200—250mm:≥275;
抗拉强度:450-630Mpa。
伸长率:≥21%。
冲击温度:20˚C

四、交货状态
Q345B 及Q355B钢板以控扎、正火、正火+回火、热机械轧制(TMCP)等状态交货,必要时根据客户需要还需加做Z向性能试验,如Q345D-Z15、Q345D-Z25、Q345D-Z35等。探伤等级有国标一探、二探、三探。

『拾』 合金元素在低合金高强度钢中的作用是什么

合金元素在钢中的作用
随着现代工业和科学技术的不断发展,在机械制造中,对工件的强度、硬度、韧性、塑性、耐磨性以及其他各种物理化学性能的要求愈来愈高,碳钢已不能完全满足这些要求了。
原因 :
①由碳钢制成的零件尺寸不能太大。否则,因淬透性不够而不能满足对强度与塑性、韧性的要求。加入合金元素可增大淬透性。
②用碳钢制成的切削刀具不能满足切削红硬性的要求。用合金工具钢、高速钢和硬质合金。
③碳钢不能满足特殊性能的要求,如要求耐热、耐低温、抗腐蚀、有强烈磁性或无磁性等等,只有特种的合金钢才能具有这些性能。
合金钢是以碳钢为基础,金相组织和相应的碳钢大体上是相似的。在钢中加入合金元素,钢的机械性能显著提高。弄清楚各种合金元素对钢材的影响对控制产品质量有非常大的作用。
1 合金元素在钢中的存在方式
1.1 合金元素与钢中的碳相互作用,形成碳化物存在于钢中
按合金元素在钢中与碳相互作用的情况,它们可以分为两大类:
(1) 不形成碳化物的元素(称为非碳化物形成元素),包括镍、硅、铝、钴、铜等。由于这些元素与碳的结合力比铁小,因此在钢中它们不能与碳化合,它们对钢中碳化物的结构也无明显的影响。
(2) 形成碳化物的元素(称为碳化物形成元素),根据其与碳结合力的强弱,可把碳化物形成元素分成三类。
1)弱碳化物形成元素:锰
锰对碳的结合力仅略强于铁。锰加入钢中,一般不形成特殊碳化物(结构与Fe3C不同的碳化物称为特殊碳化物),而是溶入渗碳体中。
2)中强碳化物形成元素;铬、钼、钨
3)强碳化物形成元素:钒、铌、钛
有极高的稳定性,例如TiC在淬火加热时要到1000℃以上才开始缓慢的溶解,这些碳化物有极高的硬度,例如在高速钢中加人钒,形成V4C,使之有更高的耐磨性。
1.2 合金元素溶解于铁素体(或奥氏体)中,以固溶体形式存在于钢中。
1.3 合金元素与钢中的氮、氧、硫等化合,以氮化物、氧化物、硫化物和硅酸盐等非金属夹杂物的形式存在于钢中。
1.4 游离态,即不溶于铁,也不溶于化合物:铅,铜
2 合金元素对钢的平衡组织的影响
表现在改变铁碳合金状态图。
2.1 合金元素对钢临界温度的影响
锰、镍、铜使A3线降低,钼、钨、硅、钒使A3线升高。同样影响A1,影响程度更大。
2.2 合金元素对钢共析点(S点)位置的影响
大多数合金使共析点左移,钼钨在质量分数大时使共析点右移。
2.3 合金元素对奥氏体相区大小的影响
2.3.1 扩大γ区
合金元素与γ-Fe、α-Fe形成固溶体,常温下为奥氏体组织。Ni,Mn
2.3.2 减小γ区
抑制F向A转变,Cr
3 合金元素对热处理的影响
3.1 合金元素对奥氏体化的影响
奥氏体晶粒在铁素体与碳化物边界处生核并长大;剩余碳化物的溶解;奥氏体成分的均匀化,在高温停留时奥氏体晶粒的长大粗化等过程。在钢中加入合金元素对后三个过程有较大的影响。
(1)含有碳化物形成元素的合金钢,其组织中的碳化物,是比渗碳体更稳定的合金渗碳体或特殊碳化物,因此,在奥氏体化加热时碳化物较难溶解,即需要较高的温度和较长的时间。一般来说,合金元素形成碳化物的倾向愈强,其碳化物也愈难溶解。
(2)合金元素在奥氏体中的均匀化,也需要较长时间,因为合金元素的扩散速度,均远低于碳的扩散速度。
(3)某些合金元素强烈地阻碍着奥氏体晶粒的粗化过程,这主要与合金碳化物很难溶解有关,未溶解的碳化物阻碍了奥氏体晶界的迁移,因此,含有较强的碳化物形成元素(如钼、钨,钒,铌、钛等)的钢,在奥氏体化加热时,易于获得细晶粒的组织。
各合金元素对奥氏体晶粒粗化过程的影响,一般可归纳如下:
1)强烈阻止晶粒粗化的元素:钛、铌、钒、铝等,其中以钛的作用最强。
2)钨、钼、铬等中强碳化物形成元素,也显著地阻碍奥氏体晶粒粗化过程。
3)一般认为硅和镍也能阻碍奥氏体晶粒的粗化,但作用不明显。
4)锰和磷是促使奥氏体晶粒粗化的元素。
3.2 合金元素对奥氏体分解转变的影响
多数合金元素使奥氏体分解转变的速度减慢,即C曲线向右移,也就是提高了钢的淬透性。
3.3 合金元素对马氏体转变的影响
增加冷却时间,降低冷却速度。另外,合金元素对马氏体开始转变温度(Ms点)也有明显的影响。多数合金元素均使马氏体开始转变温度(Ms点)降低,其中锰、铬、镍的作用最为强烈,只有铝、钴是提高Ms点。
3.3 合金元素对回火转变的影响
合金元素对淬火钢回火转变的影响主要有下列三个方面:
(1)提高钢的回火稳定性
这主要表现为合金元素在回火过程中推迟了马氏体的分解和残余奥氏体的转变,提高了铁素体的再结晶温度,使碳化物难以聚集长大而保持较大的弥散度,从而提高了钢对回火软化的抗力,即提高了钢的回火稳定性。
(2)产生二次硬化
一些合金元素加入钢中,在回火时,钢的硬度并不是随回火温度的升高一直降低的,而是在达到某一温度后,硬度开始增加,并随着回火温度的进一步提高,硬度也进一步增大,直至达到峰值。这种现象称为回火过程的二次硬化。回火二次硬化现象与合金钢回火时析出物的性质有关。当回火温度低于约450℃时,钢中析出渗碳体,在450℃以上渗碳体溶解,钢中开始沉淀析出弥散稳定的难熔碳化物Mo2C、
VC等,使钢的硬度开始升高,而在550~600℃左右沉淀析出过程完成,钢的硬度达到峰值。
(3)增大回火脆性
钢在回火过程中出现的第一类回火脆性(250~400℃回火),即回火马氏体脆性和第二类回火脆性(450~600℃回火),即高温回火脆性均与钢中存在的合金元素有关。
4 合金元素对氧化与腐蚀的影响
一些合金元素加入钢中能在钢的表面形成一层完整的、致密而稳定的氧化保护膜,从而提高了钢的抗氧化能力。最有效的合金元素是铬、硅和铝。但钢中硅、铝的质量分数较多时钢材变脆,因而它们只能作为辅加元素,一般都以铬为主加元素,以提高钢的抗氧化性。钢中加入少量的铜、磷等元素,可提高低合金高强度钢的耐大气腐蚀。
5 合金元素对机械性能的影响
5.1 金属材料的强化方法
金属材料的强化途径,主要有以下几个方面;
(1)结晶强化。结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括:
1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属材料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。
2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。在损坏的构件中,常可发现有大量的夹杂物。采用真空冶炼等方法,可以获得高纯度的金属材料。
(2)形变强化。金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。
(3)固溶强化。通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。
(4)相变强化。合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化.
相变强化可以分为两类:
1) 沉淀强化(或称弥散强化)。在金属材料中能形成稳定化合物的合金元素,在一定条件下,使之生成的第二相化合物从固溶体中沉淀析出,弥散地分布在组织中,从而有效地提高材料的强度,通常析出的合金化合物是碳化物相。
在低合金钢(低合金结构钢和低合金热强钢)中,沉淀相主要是各种碳化物,大致可分为三类。一是立方晶系,如TiC、V4C3,NbC等,二是六方晶系,如MO2、W2C、WC等,三是正菱形,如Fe3C。对低合金热强钢高温强化最有效的是体心立方晶系的碳化物。
2) 马氏体强化。金属材料经过淬火和随后回火的热处理工艺后,可获得马氏体组织,使材料强化。但是,马氏体强化只能适用于在不太高的温度下工作的元件,工作于高温条件下的元件不能采用这种强化方法。
(5)晶界强化。晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得多,晶界强度显著降低。因此强化晶界对提高钢的热强性是很有效的。
硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。
(6)综合强化。在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。例如:
1)固溶强化十形变强化,常用于固溶体系合金的强化。
2)结晶强化+沉淀强化,用于铸件强化。
3)马氏体强化+表面形变强化。对一些承受疲劳载荷的构件,常在调质处理后再进行喷丸或滚压处理。
4)固溶强化+沉淀强化。对于高温承压元件常采用这种方法,以提高材料的高温性能。
有时还采用硼的强化晶界作用,进一步提高材料的高温强度。
5.2 合金元素对正火(或退火)状态钢机械性能的影响
正火状态下钢有铁素体和珠光体组织。固溶强化,结晶强化,沉淀强化。合金元素不仅影响钢材的强度,同时也影响其韧性。
5.3 合金元素对调质钢机械性能的影响
合金元素对调质钢机械性能的影响,主要是通过它们对淬透性和回火性的影响而起作用的。主要表现于下列几方面:
(1) 由于合金元素增加了钢的淬透性,使截面较大的零件也可淬透,在调质状态下可获得综合机械性能优良的回火索氏体。
(2) 许多合金元素可使回火转变过程缓慢,因而在高温回火后,碳化物保持较细小的颗粒,使调质处理的合金钢能够得到较好的强度与韧性的配合。
(3)高温回火后,钢的组织是由铁素体和碳化物组成,合金元素对铁素体的固溶强化作用可提高调质钢的强度。
6 合金元素对钢的工艺性能的影响
6.1 合金元素对焊接性能的影响 :
钢的焊接性能,主要取决于它的淬透性、回火性和碳的质量分数。
合金元素对钢材焊接性能的影响,可用焊接碳当量来估算。我国目前所广泛应用的普通低合金钢,其焊接碳当量可按下述经验公式计算。
公式 Cd=C+1/6Mn+1/5Cr+1/15Ni+1/4Mo+1/5V+1/24Si+1/2P+1/13Cu
近年来,对厚度为15~50mm的200个钢种(从碳钢到强度等级为1000MPa级的高强度合金钢),以低氢焊条进行常温下的Y型坡口拘束焊接裂纹试验。在试验基础上,提出了一个用以估计钢材出现焊接裂纹可能性的指标,称为钢材焊接裂纹敏感性指数户,其计算公式为 Pc=C+1/30Si+1/20Mn+1/20Cu+1/60Ni+1/20Cr+1/15Mo+1/10V+5B+1/600t+1/60H%,与碳当量公式相比增加了板厚和含氢量。
6.2 合金元素对切削加工的影响
金属的切削性能是指金属被切削的难易程度和加工表面的质量。为了提高钢的切削性能,可在钢中加入一些能改善切削性能的合金元素,最常用的元素是硫,其次是铅和磷。
由于硫在钢中与锰形成球状或点状硫化锰夹杂,破坏了金属基体的连续性,使切削抗力降低,切屑易于碎断,在易切削钢中硫的质量分数可达0.08%~0.30%。
铅在钢中完全不溶,以2~3pm的极细质点均匀分布于钢中,使切屑易断,同时起润滑作用,改善了钢的切削性能,在易切削钢中铅的质量分数控制在0.10%~0.30%。
少量的磷溶入铁素体中,可提高其硬度和脆性,有利于获得良好的加工表面质量。
6.3 合金元素对塑性加工性能的影响
钢的塑性加工分为热加工和冷加工两种。
热加工工艺性能通常由热加工时钢的塑性和变形抗力,可加工温度范围、抗氧化能力、对锻造加热和锻后冷却的要求等来评价。合金元素溶入固溶体中,或在钢中形成碳化物,都能使钢的热变形抗力提高和塑性明显降低,容易发生锻裂现象。但有些元素(如钒+铌,钛等),其碳化物在钢中呈弥散状分布时,对钢的脆性影响不大。另外,合金元素一般都降低钢的导热性和提高钢的淬透性,因此为了防止开裂,合金钢锻造时的加热和冷却都必须缓慢。
冷加工工艺性能主要包括钢的冷态变形能力和钢件的表面质量两方面。
溶解在固溶体中的合金元素,一般将提高钢的冷加工硬化程度,使钢承受塑性变形后很快地变硬变脆,这对钢的冷加工是很不利的。因此,对于那些需要经受大量塑性变形加工的钢材,在冶炼时应限制其中各种残存合金元素的量,特别要严格控制硫、磷等。另一方面,碳、硅、磷、硫、镍、铬、钒、铜等元索还会使钢材的冷态压延性能恶化。
6.4 合金元素对铸造性能的影响
钢的铸造性能主要由铸造时金属的流动性、收缩特点、偏析倾向等来综合评定。它们与钢的固相线和液相线温度的高低及结晶温度区间的大小有关。固、液相线的温度愈低和结晶温度区间愈窄,铸造性能愈好。因此,合金元素的作用主要取决于其对状态图的影响。另外,一些元素如铬、钼、钒、钛、铝等,在钢中形成高熔点碳化物或氧化物质点,增大了钢液的粘度,降低其流动性,使铸造性能恶化。
7 几种常用合金元素在钢中的作用
为了合金化而加入的合金元素,最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等。现分别说明它们在钢中的作用。
7.1 硅在钢中的作用
(1)提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。
(2) 硅能显著地提高钢的弹性极限、屈服极限和屈强比。这是一般弹簧钢。
(3)耐腐蚀性。硅的质量分数为15%~20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层SiO2薄膜,从而提高钢在高温时的抗氧化性。
缺点:(4)使钢的焊接性能恶化。
7.2 锰在钢中的作用
(1)锰对提高钢的淬透性。
(2)锰对提高低碳和中碳珠光体钢的强度有显著的作用。
(3)锰对钢的高温瞬时强度有所提高。
锰钢的主要缺点是,①含锰较高时,有较明显的回火脆性现象;②锰有促进晶粒长大的作用,因此锰钢对过热较敏感t在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服:⑧当锰的质量分数超过1%时,会使钢的焊接性能变坏,④锰会使钢的耐锈蚀性能降低
合金元素影响钢的组织和性能。其主要作用表示在:提高钢的淬透性,提高钢的强度,增强钢的回火抗力和提高断面组织均一性等。合金元素的综合作用使得钢的机械性能提高,铸造生产上所用的低合金结构钢中,大多数是加入两种以上合金元素的多元素铸造低合金结构钢。但是应该适当掌握合金元素的加入量,加入量过少时,不能起到有效的强化作用,而加入量过多时,又会使钢的塑性和冲击韧性降低。依据有关资料分析,单合金元素的适宜含量控制在1~2%以下,多合金元素总含量为3~5%。合金元素在铸钢中的作用见表。
元 素
作 用
锰(Mn)
1. 强化基体作用很大,提高强度、硬度和耐磨性。
2. 在低合金范围内增加回火脆性。
3. 缩小结晶范围,提高流动性。
4. 增加体收缩和线收缩,增加冷、热裂倾向。
硅(Si)
1. 强化铁素体,提高耐热性和耐蚀性,降低韧性和塑性。
2. 降低熔点,改善流动性。
3. 含量在0.40%范围内,改善热裂倾向。含量高时,易形成柱状晶,增加热裂倾向。
磷(P)
1. 强化铁素体能力最大。
2. 改善切削性能。
3. 钢中含碳较高时,磷导致冷脆性。
4. 有抗大气腐蚀作用,有铜时,尤为显著。
5. 改善流动性,但增加冷、热裂倾向。
铬(Cr)

1. 强化基体能力很大。
2. 含量高时,提高抗氧化和耐蚀性。
3. 生成夹杂物,生成氧化膜,使钢水变稠,降低流动性,高铬钢铸件易形成皱纹及冷隔。
4. 减少导热性,增加热裂倾向。
5. 增加体收缩量,增大缩孔倾向。
钼(Mo)
1. 强化铁素体。
2. 提高高温性能,改善回火脆性。
3. 低合金范围内,降低流动性。
4. 含量在1%以下时,降低导热性,并增大收缩,增大冷、热裂倾向。
铝(Al)
1. 良好的脱氧作用,细化晶粒。
2. 提高抗氧化性能及抗氧化酸类的腐蚀能力。
3. 作脱氧剂时,改善流动性。
4. 作合金加入时,形成铝的夹杂物和氧化膜,降低流动性。
钛(Ti)
1. 脱氧、细化晶粒。
2. 强化铁素体。
3. 显著降低流动性。

镍(Ni)
1.扩大奥氏体区,是奥氏体化有效元素。
2.提高强度而不显著降低塑性。
3.对一些酸类(硫酸、盐酸)有良好耐腐蚀能力。
4. 改善流动性。
5. 易生成枝晶,增大热裂倾向。
硫(S)
1. 改善切削性能。
2. 生成夹杂物,使铸件延展性及韧性降低。
3. 含量高时,将损害钢的抗蚀性,使钢表面产生抗蚀。
4. 以FeS形式存在于钢时,容易在晶界上形成连续的网状组织,易导致铸件产生裂纹。
稀土元素(Re)
1. 脱硫、去气、净化钢水。
2. 细化晶粒,改善铸态组织。
3. 脱氧脱硫、改善流动性,减少热裂倾向。

一般来说对于碳钢和低合金钢,稀土元素对钢材的强度影响不大,但可使塑性和韧性、延性和展性有显著提高,还缩小材料的各向异性,提高冷弯合格率,降低脆性转变温度。

合金元素对钢的铸造性能的影响
合金元素对钢的铸造性能的影响,反映在铸件的一次结晶、钢液的流动性、收缩及热裂等方面。
3.1流动性
在合金元素中,一些高熔点的合金元素(如Mo、W)使钢水流动性降低,而低熔点的合金元素(Mn、Ca)使钢水流动性提高。锰降钢的液相线和固相线,硅使液相线降低的倾斜度更大,因此,锰钢中加入硅后,具有更好的流动性。
3.2收缩
线收缩率和缩孔率方面,低合金钢与具有相同含碳量的碳钢相似。
3.3热裂锰、硅、铬显著降低钢的导热性,见图1所示。因此,铸件在凝固和冷却过程中各部位的温度差异较大,产生较大的内应力,容易出现裂纹。随着含碳量的增加,低合金钢的热裂和冷裂倾向加大。

由于锰、硅、铬等元素降低钢的导热性,并在一定程度上增加结晶温度范围,从而降低冷却速度,促使产生粗大的晶粒,晶内偏析也较大。
4. 生产工艺措施
为了克服低合金钢的一次晶粒较粗大,热裂和回火脆性倾向较大等缺点,铸造过程应严格控制好生产各工序的工艺技术操作,采取有效的措施,防止或降低铸件缺陷的产生。尤其是对冶炼过程的控制和铸件热割的过程控制,是低合金钢铸件生产的关键性环节。

1、合金元素对钢中的基本相的影响
合金钢中常用的合金元素很多,按照其与碳结合的倾向大小,可分:
非碳化物形成元素(CO、Ni、Si、Cu、B等)
碳化物形成元素(Ti、V、W、Mo、Cr、Mn等)。
合金元素在钢中的存在形式有:
溶解于钢中的基本相(铁素体、奥氏体和渗碳体)
形成特殊碳化物(如VC、TiC、Cr23C6等)
非碳化物形成元素和大部分的锰基本上都溶解于铁素体(或奥氏体)中而形成合金铁素体(或合金奥氏体),并产生固溶强化的作用,使合金铁素体的强度、硬度升高,塑性和韧性下降(Cr、Ni、Mn含量少时略有上升)。其中,Si、Mn、Ni的强化作用较大。
碳化物形成元素(除锰外),当含量较低时,主要是溶入Fe3C中而形成合金渗碳体。合金元素的溶入大大地提高了渗碳体的稳定性。当一些强碳化物形成元素如Cr 、Ti、V、W、Mo等的含量较高时,它们还会形成新的稳定性较高或很高的特殊碳化物,如Cr23C6、WC、VC、TiC等。这一类特殊碳化物的特点是高熔点、高硬度。是钢中常用的强化相,对提高钢的强度、硬度和耐磨性有十分重要的意义。
2、合金元素对Fe-Fe3C相图的影响
合金元素的影响主要表现在扩大或缩小γ相区。一些合金元素如Mn、Ni、等将扩大γ相区使A3线下降,而另一些合金元素如Cr、Mo、W、V、Ti、Si等则缩小γ相区并导致A3线上升。
扩大或缩小γ相区的结果,必然使Fe-Fe3C相图中的S点、E点和C点的成分和温度发生变化。几乎所有的合金元素都使铁碳相图中S点、E点左移,其中以强碳化物形成元素的作用最为显著。
3、合金元素对热处理相变过程的影响
合金元素对热处理相变过程的影响主要在于对奥氏体形成速度和奥氏体晶粒长大的影响。
合金元素对过冷奥氏体转变的最突出的作用是使C曲线向右移(除钴外),增加过冷奥氏体的稳定性,因而,提高了钢的淬透性。常用的元素有:Cr、Mn、SI、NI和B。
合金元素对回火转变过程的影响表现在三个方面:
提高回火稳定性。
产生二次硬化,提高钢的红硬性和高温强度。常用的元素有W、Mo、 V。
使回火脆倾向增大,但一些元素如W、Mn能减弱或防止第二类脆性。

阅读全文

与低合金钢有什么用相关的资料

热点内容
钢材允许应力是什么意思 浏览:462
花纹板铺混泥土如何布钢筋 浏览:533
钢筋链条怎么封口焊接 浏览:10
模具的改模设计档案怎么做 浏览:353
钢材pip是什么意思 浏览:63
钢铁是怎么炼成的中的爱情 浏览:499
钢铁雄心4为什么被封 浏览:268
螺纹钢下差多少钱 浏览:837
空心普通钢管的密度是多少 浏览:236
钢板天沟的安装套什么定额 浏览:764
铝合金用什么油漆喷 浏览:956
模具厂开机床月工资多少 浏览:282
76是什么钢管 浏览:396
地磅焊接如何保护传感器 浏览:889
不锈钢板secc什么意思 浏览:144
铝合金阳台怎么认型材 浏览:225
烟台塑胶模具定制多少钱 浏览:101
钢筋要验收哪些内容 浏览:34
首次使用不锈钢锅怎么开锅 浏览:757
无缝钢管都什么材质 浏览:522